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Suppose that I have an integer a, and I know

a ≡ 11 (mod 20).

Question 1. Can I conclude anything about a (mod n) for other n?

The investigation of this question will lead us to the Chinese Remainder Theorem.

Reducing Modulo Divisors
If we unravel the statement that a ≡ 11 (mod 20), what is it saying? What are the possibilities

for a?
We’ve specified the remainder after dividing a by 20, so a must be one of the following sequence

of numbers:
. . . ,−29,−9, 11, 31, 51, 71, . . .

and moreover, any of these are possible given that our only restriction on a is that a ≡ 11 (mod 20).
Let’s try reducing each of the numbers in this list modulo different n and seeing what we get.

n Our list (mod n)
2 . . . , 1, 1, 1, 1, 1, 1, . . .
3 . . . , 1, 0, 2, 1, 0, 2, . . .
4 . . . , 3, 3, 3, 3, 3, 3, . . .
5 . . . , 1, 1, 1, 1, 1, 1, . . .
6 . . . , 1, 3, 5, 1, 3, 5, . . .
7 . . . , 6, 5, 4, 3, 2, 1, . . .
8 . . . , 3, 7, 3, 7, 3, 7, . . .
9 . . . , 7, 0, 2, 4, 6, 8, . . .

10 . . . , 1, 1, 1, 1, 1, 1, . . .

The first pattern that jumps out at us from this table is that some of the sequences are constant.
In these cases, knowing that a ≡ 11 (mod 20) determines a (mod n). This happens for the following
n among those we considered:

2, 4, 5, 10.

Question 2. How are these numbers (2, 4, 5, 10) related to 20?

While you think about that for a bit, let’s take a look at other patterns in the table. Modulo 3,
apparently we learn nothing from the statement that a ≡ 11 (mod 20). All three possibilities mod
3 are appearing, and they seem to be appearing equally frequently. Similarly, all possibilities seem
to be occurring modulo 7 and 9.

Question 3. How are these numbers (3, 7, 9) related to 20?

There are two other ns in our table, namely 6 and 8. For these n, we seem to have gained some
sort of partial information: knowing that a ≡ 11 (mod 20) is not enough to determine a (mod 6),
but it is enough to rule out the possibility that a ≡ 4 (mod 6).

Question 4. How are these numbers (6, 8) related to 20? How are they distinguished from the other
kinds of numbers in Questions 2 and 3?

Think about all of this for a bit. Can you figure out what’s going on?
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Answer.

(a) The numbers in Question 2 (2, 4, 5, 10) are all divisors of 20.

(b) The numbers in Question 3 (3, 7, 9) are all relatively prime to 20 (ie they have no common
factors with 20).

(c) The numbers in Question 4 (6, 8) all share a common factor with 20, but are not themselves
divisors.

What’s going on here? Let’s address Question 2 first. Suppose that n is a divisor of 20. Then we
already know what the remainder after dividing a by n is! Since 20 is a multiple of n, the remainder
after dividing a by n is the same as the remainder after dividing 11 by n. For example, the remainder
after dividing a by 4 is the same as dividing 11 by 4, namely 3.

Let’s rephrase this another way. Knowing that a ≡ 11 (mod 20) means that a = 11+20k, where
k is allowed to be anything. If we reduce a modulo a divisor d of 20 (d = 4 for example), then 20k
will still be zero, and we’ll get a ≡ 11 (mod d). More generally, we have

Proposition 1. Knowing an integer modulo m determines it modulo any divisor of m.

What about Question 3? Suppose that n is relatively prime to 20, say n = 3 for example. We
know that a = 11 + 20k for some k. But this gives us nothing now! Let’s try to figure out what
a is modulo 3. We know that a ≡ 2 + 2k (mod 3). But since 2 is relatively prime to 3, a can be
anything modulo 3. Namely, if we fix a modulo 3 (say we want a ≡ 1 (mod 3)), then we can find
a k to make it so: the equation 1 ≡ 2 + 2k (mod 3) is solvable since 3 is relatively prime to 2 (or
equivalently, to 20).

Proposition 2. Knowing an integer modulo m gives no information about it modulo anything
relatively prime to m.

The answer to Question 4 lies somewhere in between. I’ll leave it to you to work out the details
in this case, because we have another important question to ask.

Question 5. What if we’re stubborn, and don’t take the fact that we can’t figure out a (mod 3)
calmly. Suppose that we require that a ≡ 0 (mod 3), in addition to our earlier requirement that
a ≡ 11 (mod 20). What can we say about a now?

The Chinese Remainder Theorem
From our list of possibilities for a, we cross off the ones that are not 0 (mod 3). This gives

. . . ,−69,−9, 51, 111, . . .

Notice that, in the resulting list, each possibility differs from the next by 60. This means that
we’ve determined a modulo 60!

This idea generalizes.

Theorem 1 (Chinese Remainder Theorem). Suppose that m and n are relatively prime. Given a
number a (mod m) and another number b (mod n), there is some x such that x ≡ a (mod m) and
x ≡ b (mod n). Moreover, this x is uniquely determined modulo mn.

Since Proposition 1 tells us that knowing x modulo mn determines x modulo m and x modulo
n, we can rephrase the theorem as

Theorem 2 (CRT, version 2). Suppose that m and n are relatively prime. Then knowing a number
modulo mn is equivalent to knowing it modulo m and knowing it modulo m.
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How about some more examples. We’ve already seen that

a ≡ 11 (mod 20)
a ≡ 0 (mod 3)

}
⇔ a ≡ 51 (mod 60).

If we impose the conditions that a ≡ 4 (mod 45) and a ≡ 3 (mod 4) then we need to find
something that’s 3 (mod 4) from the sequence 4, 49, 94, 139, 184, . . ., the first of which is 139. So

a ≡ 4 (mod 45)
a ≡ 3 (mod 4)

}
⇔ a ≡ 139 (mod 180).

If we know instead that a ≡ 8 (mod 21) and a ≡ 4 (mod 10) then we consider the possible a ≡ 8
(mod 21), and find one that ends in a 4: 29, 50, 71, 82, 103, 124 and so

a ≡ 8 (mod 21)
a ≡ 4 (mod 10)

}
⇔ a ≡ 124 (mod 210).

An Algorithm
So far we’ve been finding a solution using what is basically brute force. There is a better way.
Since the m and n in the statement of the Chinese Remainder Theorem are relatively prime, we

can find an x and y with
mx + ny = 1.

Then
mx ≡ 1 (mod n) and mx ≡ 0 (mod m),

while
ny ≡ 0 (mod n) and ny ≡ 1 (mod m).

So

bmx + any ≡ b · 1 + a · 0 (mod n)
≡ b (mod n),

and

bmx + any ≡ b · 0 + a · 1 (mod n)
≡ a (mod n).

Thus bmx + any is a solution modulo mn.

To summarize,

Algorithm (Chinese Remainder Theorem).
Objective: find a number congruent to a (mod m) and b (mod n):

1. Use the Euclidean algorithm to express 1 as a combination of m and n: 1 = mx + ny.

2. The answer is bmx + any (mod mn).

Let’s take a look at this algorithm in action.

Problem 1. Suppose that a ≡ 73 (mod 101) and a ≡ 44 (mod 99). Find a (mod 99).

Answer.

1. Use the Euclidean algorithm to express 1 as a combination of 101 and 99.

101 = 1 · 99 + 2
99 = 49 · 2 + 1

So 1 = 99− 49 · 2 = 99− 49 · (101− 99) = 50 · 99− 49 · 101.

2. Thus the answer is 50 · 99 · 73− 49 · 101 · 44 ≡ 3608 (mod 9999).
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Problem 2. Suppose that you have a deck of playing cards. After playing with them for a while,
you notice that some of the cards are missing. You deal them out into piles of five, and notice that
there are four left over. Similarly, when you deal them out into piles of nine, there are three left
over. How many cards are there in the deck?

Answer.

1. Use the Euclidean algorithm to express 1 as a combination of 5 and 9. Well, you can do so, or
just note that 2 · 5− 1 · 9 = 1.

2. So the answer is 2 · 5 · 3− 1 · 9 · 4 = 30− 36 = −6 ≡ 39 (mod 45).

Because there were 52 cards in the deck before any cards were lost, there must be at most 52 now.
Since 39 + 45 = 84 > 52, there must in fact be 39 cards left in the deck.

Generalizations

The Chinese Remainder Theorem has been generalized greatly, though most of those generaliza-
tions are beyond the scope of this class. But I do want to mention two generalizations. You will not
be responsible for using these versions of the CRT, but one provides an explanation of the name,
and the other drops an assumption that might have been bothering you.

Theorem 3 (CRT, version 3). Suppose that m1,m2, . . . ,ml have the property that every pair of
them is relatively prime. Then given a1, a2, . . . , al, there is some x with

x ≡ a1 (mod m1)
x ≡ a2 (mod m2)
...

...
...

x ≡ al (mod ml),

and moreover x is uniquely determined modulo m1m2 · · ·ml.

Let’s see an example.

Problem 3. There’s a legend that in ancient China, the armies gathered by emperors were so
massive that counting the soldiers posed a major problem. Suppose that the general in command of
the army orders the soldiers to form ranks, each rank 100 soldiers wide. There are 12 soldiers left
over. When they line up in ranks of 101, there is only 1 soldier left over. In ranks of 103, there are
62 soldiers remaining, and in groups of 99 one of the groups is 14 short. How many soldiers are in
the army?

Answer.
We use a modification of the algorithm for two numbers. Our first task is to solve the equation

100 · 101 · 103 · x1 + 99 · 101 · 103 · x2 + 99 · 100 · 103x3 + 99 · 100 · 101 · x4 = 1.

Actually, we only need to solve it modulo 99 · 100 · 101 · 103. This lets us solve for x1 (mod 99),
x2 (mod 100), x3 (mod 101), x4 (mod 103).

8x1 ≡ 1 (mod 99) ⇒ x1 ≡ −37 (mod 99),
−3x2 ≡ 1 (mod 100) ⇒ x2 ≡ 33 (mod 100),

4x3 ≡ 1 (mod 101) ⇒ x3 ≡ −25 (mod 101),
−24x4 ≡ 1 (mod 103) ⇒ x4 ≡ 30 (mod 103),

Then, analogously to the two variable case, the answer is

100 · 101 · 103 · (−37) · (−14) + 99 · 101 · 103 · 33 · 12 + 99 · 101 · 103 · (−25) · 1 + 99 · 100 · 101 · 30 · 62
≡ 314212 (mod 99 · 100 · 101 · 103).

Since 99 · 100 · 101 · 103 is about 100 million, which is larger than possible even in ancient China,
there must be 314212 soldiers in the army.
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Our final version of the CRT drops the assumption that m and n are relatively prime.

Theorem 4 (CRT, version 4). Given m and n, not necessarily relatively prime, and any a and b,
then there is an x satisfying

x ≡ a (mod m)
x ≡ b (mod n)

if and only if
a ≡ b (mod gcd(m,n)),

in which case x is uniquely determined modulo lcm(m,n).

Let’s see an example of this final version of the CRT.

Problem 4. What one condition on x is equivalent to the two equations

9x ≡ 15 (mod 16)
5x ≡ 11 (mod 28)?

Answer.
We first rewrite these equations in forms suitable to applying CRT.
For the first, we can either solve it using the Euclidean algorithm or note that 63 = 3·16+15 = 9·7.

For the second, we similarly use the Euclidean algorithm or note that −45 = −2 · 28 + 11 = 5
cdot(−9). Thus the given equations are equivalent to

x ≡ 7 (mod 16)
x ≡ 19 (mod 28)

The greatest common divisor of 16 and 28 is 4, and 7 ≡ 19 ≡ 3 (mod 4), so the CRT guarantees
that there is a solution, unique modulo lcm(16, 28) = 112. In this case, since every prime dividing
the gcd divides 16 a larger number of times than it divides 28, we can use a trick. Reducing the
second equation modulo 7 doesn’t lose any information, so our equations are equivalent to

x ≡ 7 (mod 16)
x ≡ 5 (mod 7),

and we’ve now reduced the problem to the relatively prime case. We find that

7 · 7− 3 · 16 = 1,

so the answer is
7 · 7 · 7− 3 · 16 · 5 ≡ 103 (mod 112).

The one condition equivalent to the given two is

x ≡ 103 (mod 112).
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