Math 0430 Midterm Exam
Name:
February 23, 2015
Instructions: Attempt all problems. Show your work! No books or notes may be used.

1. (5 points each)
(a) Define the term group.
(b) State and prove the Cancellation Law for groups. Justify all steps using the definition you gave above.
2. (5 points each) In each item below, you are given a group and a subset. In each item, determine whether the given subset is a subgroup. No credit will be given for answers without justification.
(a) The non-negative integers $\{0,1,2, \ldots\}$ as a subset of the group $(\mathbb{Z},+)$.
(b) The set of all even permutations in S_{n}.
(c) The set of all odd permutations in S_{n}.
(d) The set of all positive rational numbers as a subset of $\left(\mathbb{R}^{+}, \cdot\right)$.
(e) The set of all positive irrational numbers as a subset of $\left(\mathbb{R}^{+}, \cdot\right)$.
3. (5 points each) Prove or disprove:
(a) $(\mathbb{R},+)$ is isomorphic to $\left(\mathbb{R}^{+}, \cdot\right)$.
(b) $(\mathbb{Z},+)$ is isomorphic to $\left(\mathbb{R}^{+}, \cdot\right)$.
(c) The circle group (U, \cdot) is isomorphic to $\left(\mathbb{R}^{*}, \cdot\right)$.
4. (5 points each)
(a) Find the subgroup of S_{3} generated by the transposition $(1,2)$.
(b) List all left cosets of the subgroup you found in 5 a .
(c) Find the subgroup of S_{3} generated by $\{(1,2),(2,3)\}$.
5. (5 points each) Consider the following permutation in S_{6} :

$$
\sigma=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 6 & 4 & 1 & 5 & 2
\end{array}\right)
$$

(a) Find σ^{-1}.
(b) Express σ as a product of disjoint cycles.
(c) Express σ as a product of transpositions.
(d) Is σ even or odd? Explain.
(e) Find the order of σ.
6. (10 points) Let G be a group and let H be a subgroup of G. Prove that every left coset of H has the same cardinality as H by exhibiting a bijection between the two sets.
7. (Bonus!) Prove that the groups $(\mathbb{Q},+)$ and $\left(\mathbb{Q}^{+}, \cdot\right)$ are not isomorphic by completing the following.
(a) Suppose $\varphi: \mathbb{Q} \rightarrow \mathbb{Q}^{+}$is an isomorphism. Show that for every rational number r we have $\varphi(r / 2)^{2}=\varphi(r)$.
(b) Deduce from 8a that if $(\mathbb{Q},+)$ and $\left(\mathbb{Q}^{+}, \cdot\right)$ are isomorphic, then every positive rational number has a rational square root, and conclude that such an isomorphism is impossible.

