
Math 430 – Practice Final Solutions

April 28, 2016

1. (a)

Solution. A cyclic group is a group G that is generated by a single element. Namely, there is
some g ∈ G with the property that, for every h ∈ G there is an m ∈ Z with h = gm.

(b)

Solution. Suppose that G has order p. Then every element of G has order dividing p by La-
grange’s theorem. Since p is prime, the only divisors are 1 and p, and only the identity element
has order 1. Thus there is some element g of order p. The powers of G

1, g, g2, . . . , gp−1

are all distinct and there are p of them. Thus every element of G is a power of g, so G is cyclic.

2. Let

σ =

(
1 2 3 4 5 6
3 6 4 1 5 2

)
(a)

Solution.

σ−1 =

(
3 6 4 1 5 2
1 2 3 4 5 6

)
=

(
1 2 3 4 5 6
4 6 1 3 5 2

)
(b)

Solution. σ = (134)(26).

(c)

Solution. σ = (14)(13)(26).

(d)

Solution. σ is odd, since it is the product of an odd number of transpositions.

(e)

Solution. The order of σ is the least common multiple of the lengths of the cycles in its disjoint
cycle decomposition, namely lcm(2, 3) = 6.

3.

Solution. Suppose H is a subgroup of S3. Then H contains the identity ρ0. If H contains ρ1 then it
contains ρ2 = ρ21 and vice versa. Each µi has order 2, so H could be just {ρ0, µi} for some i.
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By Lagrange’s theorem, the number of elements in H is either 1, 2, 3, or 6, so once H contains four
elements it must be all of S3. If H contains two µs then it contains their product, which is either ρ1
or ρ2. We must then have H = S3. Similarly, if H contains all ρs and a µ then we must have H = S3.

As usual, the trivial subgroup and the whole group are normal. Moreover, {ρ0, ρ1, ρ2} is normal since
it has index 2. The subgroups of order 2 are not normal since (12)(13)(12) = (23), (23)(12)(23) = (13)
and (13)(23)(13) = (12), so in each case there is some g ∈ S3 with gµig

−1 6∈ {ρ0, µi}.
In summary the subgroups are

{ρ0} (normal),

{ρ0, µ1} (not normal),

{ρ0, µ2} (not normal),

{ρ0, µ3} (not normal),

{ρ0, ρ1, ρ2} (normal),

S3 (normal).

4. (a)

Solution. A zero divisor a in a ring R is a nonzero element of R so that there is some other
nonzero element b ∈ R with ab = 0.

(b)

Solution. A unit u in a ring R with unity is an element u ∈ R so that there is some other element
v ∈ R with uv = 1.

(c)

Solution. Units: 1, 3, 7, 9. Zero divisors: 2, 4, 5, 6, 8. Note that 0 is not a zero divisor.

5. (a)

Solution. x2− 2 is irreducible because
√

2 is not rational (or by Eisenstein’s criterion for p = 2).

(b)

Solution. x2 − 2 = (x −
√

2)(x +
√

2) so it is reducible. We can use the intermediate value
theorem to prove this rigorously: 02 − 2 < 0 and 22 − 2 > 0 so there is a square root of 2 in R.

(c)

Solution. Since 32 − 2 ≡ 0 (mod 7), it is reducible.

(d)

Solution. Let f(x) = x4 +x2 + 1. It has no roots since x4 ≥ 0 and x2 ≥ 0 for all x ∈ R. Suppose

f(x) = (x2 + ax+ b)(x2 + cx+ d).

Then

a+ c = 0,

b+ ac+ d = 1,

ad+ bc = 0,

bd = 1.

So c = −a and d = 1/b from the first and last equations. The third equation then implies
a/b − ab = 0 so a = 0 or b = ±1. If a = 0, the second equation implies b + 1/b = 1 so
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b2 − b + 1 = 0, which has no real roots. If b = d = −1, the second equation implies −a2 = 3,
which has no real roots. If b = d = 1, the second equation implies −a2 = −1, so a = ±1. Thus

x4 + x2 + 1 = (x2 − x+ 1)(x2 + x+ 1)

is reducible.

(e)

Solution. The factorization in part (d) holds in Z[x] and thus determines a factorization in Z2[x]
by reducing the coefficients modulo 2. So

x4 + x2 + 1 = (x2 + x+ 1)2

is reducible.

(f)

Solution. Evaluating this polynomial at x = 1 yields 1 + 1 + 1 + 1 = 0, so it is reducible.

6. (a)

Solution. Since
√

2 ∈ R, S is a subset of R. The sum of two elements

(a+ b
√

2) + (c+ d
√

2) = (a+ c) + (b+ d)
√

2

is again an element of S, as is the product of two elements

(a+ b
√

2)(c+ d
√

2) = (ac+ 2bd) + (ad+ bc)
√

2

and the negation of an element

−(a+ b
√

2) = (−a) + (−b)
√

2.

Finally, the inverse of an element is an element of S as well:

1

a+ b
√

2
=
a− b

√
2

a2 − 2b2
=

a

a2 − 2b2
+

−b
a2 − 2b2

√
2.

(b)

Solution. We first show that 〈x2 − 2〉 ⊆ I. Suppose f(x) = (x2 − 2)g(x) ∈ 〈x2 − 2〉. Then
f(
√

2) = ((
√

2)2 − 2)g(
√

2) = 0, so f ∈ I.

Now suppose that f(x) ∈ I, so that f(
√

2) = 0. Since
√

2 is a root of f , we may factor f(x) =
(x−

√
2)g1(x) for some g1(x) ∈ S[x].

Consider the map σ : S[x] → S[x] which maps each coefficient a + b
√

2 to a − b
√

2. It is a ring
homomorphism, and thus

σ(f) = σ(x−
√

2)σ(g1)

f = (x+
√

2)σ(g1),

since f ∈ Q[x] and is thus fixed by σ. Therefore f(−
√

2) = 0, so f(x) is divisible by x+
√

2. We
can thus factor

f(x) = (x−
√

2)g1(x) = (x−
√

2)(x+
√

2)g2(x) = (x2 − 2)g2(x).

Thus I ⊆ 〈x2 − 2〉, so in fact the two ideals are equal.
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(c) Define a map φ : Q[x]→ S by

φ(f) = f(
√

2).

By part (b), the kernel of φ is 〈x2 − 2〉. Moreover, φ is surjective since φ(a+ bx) = a+ b
√

2. So
by the first isomorphism theorem, S is isomorphic to Q[x]/〈x2 − 2〉.

7. (a)

Solution. A principal ideal in a commutative ring R with unity is an ideal I of the form 〈a〉 =
{ra : r ∈ R} for some a ∈ R.

(b)

Solution. Suppose I ⊂ Z is an ideal. If I = 0 then I = 〈0〉 is principal. Otherwise, there is some
positive element of I since I is closed under negation; let a be the smallest positive element of I.
I claim that I = 〈a〉.
Certainly 〈a〉 ⊆ I: na ∈ I for all nZ since I is an ideal and a ∈ I. Suppose that b ∈ I. Using the
division algorithm, we may write b = qa+ r with 0 ≤ r < a. Then r = b− qa ∈ I. But we chose
a to be the smallest positive element of I, so we must have r = 0. Therefore b = qa ∈ 〈a〉 and
I ⊆ 〈a〉.

8. (a)

Solution. A greatest common divisor of two elements a, b in an integral domain R is an element
d ∈ R so that d | a and d | b, and if e ∈ R is any other element with e | a and e | b then e | d.

(b)

Solution. Let I = 〈a, b〉 = {ra + sb : r, s ∈ R} be the ideal generated by a and b. Since R is a
PID, there is some element d ∈ R with 〈a, b〉 = 〈d〉. I claim that d is a greatest common divisor
of a and b.

Since a ∈ 〈d〉 we have d | a, and likewise for b. Now suppose a = xe and b = ye. Since 〈a, b〉 = 〈d〉,
there are elements r, s ∈ R with d = ra+ bs. Then

d = ra+ bs = (rx+ sy)e,

so e | d.
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