Math 430 Midterm Exam Solutions

1. Consider the symmetry group G of a rectangle with side lengths 1 and 2.

(a) (4 points) List the elements of G.

Solution. You can either give geometric descriptions — $\{id, \mu_h, \mu_v, \rho\}$ where μ_h and μ_v are horizontal and vertical reflections and ρ is rotation by 180 degrees — or descriptions in terms of the action on vertices — $\{(), (14)(23), (12)(34), (13)(24)\}$.

(b) (4 points) Show that G is abelian.

Solution. Every element has order 2, so G is abelian by a homework problem. Alternately, you can give the Cayley table of G and observe that it is symmetric.

(c) (5 points) List the subgroups of G.

Solution.

- {id},
- $\langle \mu_h \rangle = \{ id, \mu_h \},$
- $\langle \mu_v \rangle = \{ id, \mu_v \},$
- $\langle \rho \rangle = \{ id, \rho \},$
- $G = \{ id, \mu_h, \mu_v, \rho \}.$

(d) (5 points) Do there exist nontrivial subgroups H and K so that G is an internal direct product of H and K? Explain.

Solution. Yes. Any two of the subgroups of order 2 will work. For example, if we set $H = \langle \mu_h \rangle$ and $K = \langle \mu_v \rangle$ then

- $H \cap K = \{id\},$
- $\#G = \#H \cdot \#K$,
- G is abelian, so hk = kh for all $h \in H$ and $k \in K$.
- 2. Let $\sigma = (123)(4567) \in S_7$.
 - (a) (5 points) What is the order of σ ? Explain.

Solution. Since σ is a product of disjoint cycles of length 3 and 4, it has order lcm(3,4) = 12.

(b) (5 points) Find σ^{-1} .

Solution. We reverse the order of the cycles, yielding (7654)(321) = (132)(4765).

(c) (5 points) Is σ even or odd? Why?

Solution. Since σ is the product of a 3-cycle (even) and a 4-cycle (odd), it is odd. Alternately, you could give a decomposition of σ into transpositions and note that there are an odd number of them (the shortest decomposition will have 5 transpositions).

(d) (5 points) Give an isomorphism between the subgroup $\langle \sigma \rangle$ generated by σ and \mathbb{Z}_n for some n.

Solution. The map

$$f: \mathbb{Z}_{12} \to \langle \sigma \rangle$$
$$a \mapsto \sigma^a$$

is an isomorphism. It is well defined since $\sigma^{12} = ()$, bijective since the order of σ is 12 and a homomorphism since $\sigma^{a+b} = \sigma^a \sigma^b$ for all $a, b \in \mathbb{Z}$.

(e) (6 points) Find all $\tau \in S_7$ that also generate $\langle \sigma \rangle$, i.e. all τ with $\langle \tau \rangle = \langle \sigma \rangle$.

Solution. The other generators of $\langle \sigma \rangle$ will be the powers of σ that also have order 12: the σ^a for gcd(a, 12) = 1. These are

$$\sigma^{1} = (123)(4567)$$

$$\sigma^{5} = (132)(4567)$$

$$\sigma^{7} = (123)(4765)$$

$$\sigma^{11} = (132)(4765)$$

- 3. Suppose H and K are normal subgroups of a group G.
 - (a) (8 points) Prove that $H \cap K$ is a subgroup of G.

Solution. We check that it contains the identity and is closed under multiplication and inversion.

- Since H and K are subgroups, $1 \in H$ and $1 \in K$ so $1 \in H \cap K$.
- Let $g, g' \in H \cap K$. Since H and K are subgroups, $gg' \in H$ and $gg' \in K$. Thus $gg' \in H \cap K$.
- Let $g \in H \cap K$. Since H and K are subgroups, $g^{-1} \in H$ and $g^{-1} \in K$. Thus $g^{-1} \in K$.
- (b) (8 points) Prove that $H \cap K$ is a normal subgroup of G.

Solution. Suppose that $g \in G$ and $h \in H \cap K$. We show that $ghg^{-1} \in H \cap K$, and thus that $g(H \cap K)g^{-1} \subseteq H \cap K$. This proves that $H \cap K$ is normal by a theorem from the book. Since $h \in H$ and H is normal, $ghg^{-1} \in H$. Similarly, since $h \in K$ and K is normal, $ghg^{-1} \in K$. Thus $ghg^{-1} \in H \cap K$ and $H \cap K$ is normal.

4. (8 points) Consider the subgroup $H = D_5$ of $G = S_5$. How many cosets does H have in G? Justify your answer.

Solution. By Lagrange's theorem, $[G:H] = \frac{\#G}{\#H} = \frac{5!}{2\cdot 5} = 12.$

5. (8 points) Suppose G is a group and $g, h \in G$. Prove that the order of hgh^{-1} is the same as the order of g.

Solution. We showed that $(hgh^{-1})^m = hg^mh^{-1}$ as a homework problem (for all $m \in \mathbb{Z}$). Note that $hg^mh^{-1} = 1$ if and only if $g^m = 1$. Thus $(hgh^{-1})^m = 1$ if and only if $g^m = 1$. Since the order of an element is the smallest positive integer m with the mth power equal to 1, the order of g will be the same as the order of hgh^{-1} .

6. (Bonus) Prove that there is no cyclic group G that has 34 different generators (i.e. $G = \langle g \rangle$ for 34 different $g \in G$).

Solution. The number of generators of a cyclic group of order n is $\phi(n)$. So we need to show that there is no integer n with $\phi(n)=34=2\cdot 17$. Recall that if $n=\prod_{i=1}^k p_i^{e_i}$ then $\phi(n)=\prod_{i=1}^k (p_i-1)p_i^{e_i-1}$.

- If n were prime then $\phi(n) = n 1$, so we would need n = 35. But 35 is not prime.
- More generally, suppose p divides n. Then p-1 divides $\phi(n)$. The divisors of 34 are d=1,2,17,34. Of these, only d=1 and d=2 have d+1 prime, so the only primes that can divide n are 2 and 3.. If 9 divides n then 3 would divide $\phi(n)$, which it doesn't. If 8 divides n then 4 would divide $\phi(n)$, which it doesn't. So the only possible n are 1,2,4,3,6,12, none of which are large enough to have $\phi(n)=34$.