Math 430 - Problem Set 7 Solutions

Due April 22, 2016
18.10. (a) Prove that every field contains a unique prime subfield.

Solution. Suppose that F is a field, and let E be the intersection of all subfields of F. We show that E is the unique prime subfield of F.
Note that $0,1 \in E$, so E is nonempty. If $a, b \in E$ then $a, b \in L$ for every subfield L of F, so $a+b$, $a-b, a b$ and a / b are in L, and thus all in E. Thus E is a subfield.
If $L \subset E$ is a proper subfield, then L is a subfield of F as well. This contradicts the definition of E, since E is contained in every subfield of F. Thus E is a prime field.
Finally, supposed E^{\prime} is another prime subfield of F. By the construction of $E, E \subseteq E^{\prime}$. Since E^{\prime} is a prime subfield, we must have $E^{\prime}=E$.
(b) If F is a field of characteristic 0 , prove that the prime subfield of F is isomorphic to \mathbb{Q}.

Solution. Define a homomorphism $\phi: \mathbb{Z} \rightarrow F$ by $\phi(n)=n \cdot 1_{F}$. Since F has characteristic 0 , this homomorphism is injective, so its image is a subring of F isomorphic to \mathbb{Z}. Now by Theorem 18.4, F contains a subfield isomorphic to \mathbb{Q}. Since \mathbb{Q} has no subfields it is prime, and thus by part (a) is the unique prime subfield of F.
(c) If F is a field of characteristic p, prove that the prime subfield of F is isomorphic to \mathbb{Z}_{p}.

Solution. Define $\phi: \mathbb{Z} \rightarrow F$ as in part (b). Since F has characteristic p, ϕ has kernel $p \mathbb{Z}$ and thus by the first isomorphism theorem its image is isomorphic to $\mathbb{Z} / p \mathbb{Z}$, which is a prime field. By part (a), this is the unique prime subfield of F.
18.11. (d) Prove that $\mathbb{Z}[\sqrt{2} i]$ is a Euclidean domain under the Euclidean valuation $\nu(a+b \sqrt{2} i)=a^{2}+2 b^{2}$.

Solution. I first claim that $\nu(x y)=\nu(x) \nu(y)$ for $x, y \in \mathbb{Q}[\sqrt{2} i]$, since

$$
\begin{aligned}
\nu((a+b \sqrt{2} i)(c+d \sqrt{2} i)) & =\nu((a c-2 b d)+(a d+b c) \sqrt{2} i) \\
& =(a c-2 b d)^{2}+2(a d+b c)^{2} \\
& =a^{2} c^{2}+2 a^{2} d^{2}+2 b^{2} c^{2}+4 b^{2} d^{2} \\
\nu(a+b \sqrt{2} i) \nu(c+d \sqrt{2} i) & =\left(a^{2}+2 b^{2}\right)\left(c^{2}+2 d^{2}\right) \\
& =a^{2} c^{2}+2 a^{2} d^{2}+2 b^{2} c^{2}+4 b^{2} d^{2} .
\end{aligned}
$$

For nonzero $a+b \sqrt{2} i \in \mathbb{Z}[\sqrt{2} i]$ we have $\nu(a+b \sqrt{2} i)=a^{2}+2 b^{2} \geq 1$. Thus $\nu(x) \leq \nu(x y)$ for $x, y \in \mathbb{Z}[\sqrt{2} i]$ with $y \neq 0$.
Now suppose $a+b \sqrt{2} i, c+d \sqrt{2} i \in \mathbb{Z}[\sqrt{2} i]$ with $c+d \sqrt{2} i$ nonzero. Let q_{1} be the closest integer to $\frac{a c+2 b d}{c^{2}+2 d^{2}}$ and q_{2} the closest integer to $\frac{b c-a d}{c^{2}+2 d^{2}}$. Define $s_{1}, s_{2}, r_{1}, r_{2}$ by

$$
\begin{aligned}
& s_{1}+s_{2} \sqrt{2} i=\left(\frac{a c+2 b d}{c^{2}+2 d^{2}}+\frac{b c-a d}{c^{2}+2 d^{2}} \sqrt{2} i\right)-\left(q_{1}+q_{2} \sqrt{2} i\right), \\
& r_{1}+r_{2} \sqrt{2} i=(a+b \sqrt{2} i)-\left(q_{1}+q_{2} \sqrt{2} i\right)(c+d \sqrt{2} i) .
\end{aligned}
$$

We need to show that $r_{1}^{2}+2 r_{2}^{2}<c^{2}+2 d^{2}$. Note that $\left|s_{1}\right| \leq 1 / 2$ and $\left|s_{2}\right| \leq 1 / 2$ by the definition of q_{1} and q_{2}. Moreover,

$$
\left(s_{1}+s_{2} \sqrt{2} i\right)(c+d \sqrt{2} i)=(a+b \sqrt{2} i)-\left(q_{1}+q_{2} \sqrt{2} i\right)(c+d \sqrt{2} i)=r_{1}+r_{2} \sqrt{2} i
$$

Thus

$$
\nu\left(r_{1}+r_{2} \sqrt{2} i\right)=\nu\left(s_{1}+s_{2} \sqrt{2} i\right) \nu(c+d \sqrt{2} i) \leq\left(\frac{1}{4}+2 \cdot \frac{1}{4}\right) \nu(c+d \sqrt{2} i)<\nu(c+d \sqrt{2} i)
$$

as desired.
18.14. Let D be a Euclidean domain with Euclidean valuation ν. If u is a unit in D, show that $\nu(u)=\nu(1)$.

Solution. Since u is a unit we can find $v \in D$ with $u v=1$. Then $\nu(u) \leq \nu(u v)=\nu(1) \leq \nu(1 \cdot u)=\nu(u)$. So all of the inequalities must be equalities and we have $\nu(u)=\nu(1)$.
18.17. Prove or disprove: Every subdomain of a UFD is also a UFD.

Solution. We showed in class that $\mathbb{Z}+x \mathbb{Q}[x]$ was not a UFD. But $\mathbb{Z}+x \mathbb{Q}[x]$ is a subdomain of $\mathbb{Q}[x]$, which is a UFD.

