Math 430 - Problem Set 6 Solutions

Due April 18, 2016
16.27. Let R be a commutative ring. An element a in R is nilpotent if $a^{n}=0$ for some positive integer n. Show that the set of all nilpotent elements forms an ideal in R.

Solution. Let $N \subseteq R$ be the set of nilpotent elements, and suppose $a^{m}=0$ and $b^{n}=0$. Then $(-a)^{m}=0$, so N is closed under negation. Moreover, $(a+b)^{m+n}=\sum_{i=0}^{m+n}\binom{m+n}{i} a^{i} b^{m+n-i}=0$ since either $i \geq m$ and $a^{i}=0$ or $m+n-i \geq n$ and $b^{m+n-i}=0$. Thus N is closed under addition. Finally, if $x \in R$ then $(a x)^{m}=a^{m} x^{m}=0$, so N is an ideal.
16.40. Let R be a ring and I and J be ideals in R such that $I+J=R$.
(a) Show that for any r and s in R, the system of equations

$$
\begin{aligned}
x \equiv r & (\bmod I) \\
x \equiv s & (\bmod J)
\end{aligned}
$$

has a solution.
Solution. Since $I+J=R$, we may find $i \in I$ and $j \in J$ with $i+j=1$. Setting $x=s i+r j$, we have

$$
\begin{array}{ll}
x \equiv r j \equiv r & (\bmod I) \\
x \equiv s i \equiv s & (\bmod J) .
\end{array}
$$

(b) In addition, prove that any two solutions of the system are congruent modulo $I \cap J$.

Solution. If x and y are solutions, then $x-y \equiv 0(\bmod I)$ and $x-y \equiv 0(\bmod J)$, so $x-y \in I \cap J$.
(c) Let I and J be ideals in a ring R such that $I+J=R$. Show that there exists a ring isomorphism

$$
R /(I \cap J) \cong R / I \times R / J
$$

Solution. Let $\phi: R \rightarrow R / I \times R / J$ be defined by $\phi(x)=(x+I, x+J)$. By part (a), ϕ is surjective, and by part (b) it has kernel $I \cap J$. So by the First Isomorphism Theorem, it induces the desired isomorphism.
17.2. (b) Compute $\left(5 x^{2}+3 x-4\right)\left(4 x^{2}-x+9\right)$ in $\mathbb{Z}_{12}[x]$.

Solution. $8 x^{4}+7 x^{3}+2 x^{2}+7 x$.
17.3. (b) Let $a(x)=6 x^{4}-2 x^{3}+x^{2}-3 x+1$ and $b(x)=x^{2}+x-2$ in $\mathbb{Z}_{7}[x]$. Use the division algorithm to find $q(x)$ and $r(x)$ so that $a(x)=q(x) b(x)+r(x)$ with $\operatorname{deg} r(x)<\operatorname{deg} b(x)$.
Solution. We find that $q(x)=6 x^{2}+6 x$ and $r(x)=2 x+1$.
17.4. (c) Find the greatest common divisor $d(x)$ of $p(x)=x^{3}+x^{2}-4 x+4$ and $q(x)=x^{3}+3 x-2$ in $\mathbb{Z}_{5}[x]$ and polynomials $a(x)$ and $b(x)$ such that $a(x) p(x)+b(x) q(x)=d(x)$.

Solution.

$$
\begin{aligned}
x^{3}+x^{2}-4 x+4 & =1\left(x^{3}+3 x-2\right)+\left(x^{2}+3 x+1\right) \\
x^{3}+3 x-2 & =(x+2)\left(x^{2}+3 x+1\right)+(x+1) \\
x^{2}+3 x+1 & =(x+2)(x+1)+4 \\
4 & =\left(x^{2}+3 x+1\right)-(x+2)(x+1) \\
& =\left(x^{2}+3 x+1\right)-(x+2)\left(\left(x^{3}+3 x-2\right)-(x+2)\left(x^{2}+3 x+1\right)\right) \\
& =\left(x^{2}+4 x\right)\left(x^{2}+3 x+1\right)-(x+2)\left(x^{3}+3 x-2\right) \\
& =\left(x^{2}+4 x\right)\left(\left(x^{3}+x^{2}-4 x+4\right)-\left(x^{3}+3 x-2\right)\right)-(x+2)\left(x^{3}+3 x-2\right) \\
& =\left(x^{2}+4 x\right)\left(x^{3}+x^{2}-4 x+4\right)-\left(x^{2}+2\right)\left(x^{3}+3 x-2\right)
\end{aligned}
$$

Negating this last equation, we get

$$
1=\left(4 x^{2}+x\right)\left(x^{3}+x^{2}-4 x+4\right)+\left(x^{2}+2\right)\left(x^{3}+3 x-2\right) .
$$

17.7. Find a unit $p(x)$ in $\mathbb{Z}_{4}[x]$ such that $\operatorname{deg} p(x)>1$.

Solution. Since $\left(2 x^{2}+1\right)\left(2 x^{2}+1\right)=1$, we may take $p(x)=2 x^{2}+1$.
17.9. Find all of the irreducible polynomials of degrees 2 and 3 in $\mathbb{Z}_{2}[x]$.

Solution. A polynomial of degree 2 or 3 is irreducible when it has no roots. The only two possible roots in \mathbb{Z}_{2} are 0 and 1 , so $f(x)=x^{2}+a x+b$ is irreducible when $f(0)=b=1$ and $f(1)=1+a+b=1$, so $a=b=1$.
Similarly, $f(x)=x^{3}+a x^{2}+b x+c$ is irreducible when $g(0)=c=1$ and $g(1)=1+a+b+c=1$, yielding $a=1$ and $b=0$ or $a=0$ and $b=1$. Thus the irreducible polynomials are

$$
x^{2}+x+1, x^{3}+x+1, x^{3}+x^{2}+1 .
$$

17.10. Give two different factorizations of $x^{2}+x+8$ in $\mathbb{Z}_{10}[x]$.

Solution. We first find the roots by trial and error: $x=1,-2,3,-4$. Pairing these up so that they have product -2 and sum 1 , we get the factorizations

$$
\begin{aligned}
x^{2}+x+8 & =(x-1)(x+2) \\
& =(x-3)(x+4)
\end{aligned}
$$

17.18. Let $p(x)=a_{n} x^{n}+x_{n-1} x^{n-1}+\cdots+a_{0} \in \mathbb{Z}[x]$, with $a_{n} \neq 0$. Prove that if $p(r / s)=0$ with $\operatorname{gcd}(r, s)=1$, then $r \mid a_{0}$ and $s \mid a_{n}$.

Solution. Substituting r / s into $p(x)$ and multiplying by s^{n} we get

$$
\begin{aligned}
0 & =a_{n} r^{n}+a_{n-1} r^{n-1} s+\cdots+a_{1} r s^{n-1}+a_{0} s^{n} \\
a_{n} r^{n} & =s\left(-a_{n-1} r^{n-1}-\cdots-a_{1} r s^{n-2}-a_{0} s^{n-1}\right) \\
a_{0} s^{n} & =r\left(-a_{n} r^{n-1}-a_{n-1} r^{n-2}-\cdots-a_{1} s^{n-1}\right) .
\end{aligned}
$$

Thus s divides $a_{n} r^{n}$ and r divides $a_{0} s^{n}$. Since r and s are relatively prime, s divides a_{n} and r divides a_{0}.
17.20. Let $\Phi_{n}(x)=\frac{x^{n}-1}{x-1}=x^{n-1}+x^{n-2}+\cdots+x+1$. Show that $\Phi_{p}(x)$ is irreducible over \mathbb{Q} for any prime p.

Solution. We make the substitution $t=x-1$, yielding

$$
\begin{aligned}
\Phi_{p}(x) & =\frac{(t+1)^{p}-1}{t} \\
& =\sum_{i=1}^{p}\binom{p}{i} t^{i-1} .
\end{aligned}
$$

Since $\binom{p}{i}$ is divisible by p for $0<i<p$ and $\binom{p}{1}=p$ is not divisible by p^{2} and $\binom{p}{p}=1$ is not divisible by p, this polynomial satisfies the Eisenstein criterion and is thus irreducible. Thus $\Phi_{p}(x)$ is irreducible as well.
17.21. If F is a field, show that there are infinitely many irreducible polynomials in $F[x]$.

Solution. Euclid's proof for the infinitude of primes in \mathbb{Z} applies in essentially the same way here. Suppose that there were finitely many irreducible polynomials p_{1}, \ldots, p_{k}. Let $p=1+\prod_{i=1}^{k} p_{i}$. Since p has remainder 1 when divided by each p_{i}, it is not a multiple of any of them. But it must be divisible by some irreducible since $F[x]$ is Noetherian. Thus there are infinitely many irreducible polynomials.
17.24. Show that $x^{p}-x$ has p distinct zeros in \mathbb{Z}_{p}, for any prime p. Conclude that

$$
x^{p}-x=x(x-1)(x-2) \cdots(x-(p-1))
$$

Solution. By Fermat's little theorem, $a^{p} \equiv a(\bmod p)$ for all $a \in \mathbb{Z}_{p}$ and thus $x^{p}-x$ is divisible by $(x-a)$ for all $a \in \mathbb{Z}_{p}$. By additivity of degree and the equality of leading coefficients, we get the desired equation.

