Math 430 — Problem Set 6 Solutions

Due April 18, 2016

16.27. Let R be a commutative ring. An element «¢ in R is nilpotent if o™ = 0 for some positive integer n.
Show that the set of all nilpotent elements forms an ideal in R.

Solution. Let N C R be the set of nilpotent elements, and suppose a™ = 0 and b = 0. Then

(—a)™ =0, so N is closed under negation. Moreover, (a + b)™+" = 7" (™M)t = 0 since

either i > m and a* =0 or m+n —i > n and b™+ "~ = 0. Thus N is closed under addition. Finally,
if x € R then (az)™ = a™2™ =0, so N is an ideal.

16.40. Let R be a ring and I and J be ideals in R such that I + J = R.
(a) Show that for any r and s in R, the system of equations
x=r (modI)
x=s (modJ)

has a solution.

Solution. Since I + J = R, we may find ¢ € I and j € J with ¢ 4+ j = 1. Setting x = si + rj, we
have

z=rj=r (modI)
x=si=s (modJ).

(b) In addition, prove that any two solutions of the system are congruent modulo I N J.
Solution. If z and y are solutions, then z—y =0 (mod I) and x—y =0 (mod J),soz—y € INJ.
(¢) Let I and J be ideals in a ring R such that I +J = R. Show that there exists a ring isomorphism
R/(INJ)XR/I x R/J.

Solution. Let ¢ : R — R/Ix R/J be defined by ¢(z) = (x+1,x2+J). By part (a), ¢ is surjective,
and by part (b) it has kernel I NJ. So by the First Isomorphism Theorem, it induces the desired
isomorphism.

17.2. (b) Compute (522 + 3z — 4)(42% — 2 + 9) in Ziz[z].

Solution. 8z* + 72% + 222 + Tz.

17.3. (b) Let a(z) = 62* — 22% + 2% — 3z + 1 and b(z) = 2% + x — 2 in Zz[z]. Use the division algorithm to find
q(x) and r(z) so that a(x) = q(x)b(x) + r(x) with degr(z) < degb(x).

Solution. We find that ¢(z) = 622 + 6z and r(z) = 2z + 1.

17.4. (c) Find the greatest common divisor d(z) of p(z) = 23 + 22 — 42+ 4 and g(z) = 23 + 3z — 2 in Zs[x] and
polynomials a(z) and b(x) such that a(x)p(z) + b(z)q(z) = d(z).



17.7.

17.9.

17.10.

17.18.

17.20.

Solution.

4 a? —dr+4=1+3x-2)+ (2 + 32+ 1)
x3—|—3x—2:(x+2)(w2—|—3x+1)—|—(m+1)
x +3x+1-(x+2)(m+1)+4
= (@ 4+324+1)— (z+2)(z+1)
=(@*+3z+1) — (2 +2)((2° + 3z — 2) — (z +2)(2* + 3z + 1))
= (2% +4x)(2? + 3z + 1) — (x4 2) (23 + 32 — 2)
=(2? +4a)((2® + 2 —da+4) — (2® + 32— 2)) — (z +2)(2® + 32 — 2)
= (2® +4x)(2® + 2% — 4z +4) — (2?2 + 2)(2® + 32 — 2)

Negating this last equation, we get
1= (42 +2)(2® + 2 — 4z +4) + (2% +2)(2® 4 32 — 2).

Find a unit p(x) in Z4[z] such that degp(z) > 1.

Solution. Since (222 + 1)(22% + 1) = 1, we may take p(z) = 222 + 1.

Find all of the irreducible polynomials of degrees 2 and 3 in Zs[z].

Solution. A polynomial of degree 2 or 3 is irreducible when it has no roots. The only two possible
roots in Zy are 0 and 1, so f(x) = 22 +ax +b is irreducible when f(0) =b=1and f(1) = 1+a+b=1,
soa=b=1.

Similarly, f(z) = 23 + az? 4 bx + c is irreducible when g(0) = c=1and g(1) =1+a+b+c = 1,
yielding a =1 and b =0 or a = 0 and b = 1. Thus the irreducible polynomials are

x2+x+1,x3+x—|—1,x3—|—x2—|—1.

Give two different factorizations of z? + z + 8 in Zjo[x].

Solution. We first find the roots by trial and error: x = 1,—2,3, —4. Pairing these up so that they
have product —2 and sum 1, we get the factorizations

P +r+8=(z—1)(z+2)
= (x —3)(z +4).

Let p(z) = apa" +x,_12" 1+ - -+ag € Z[z], with a,, # 0. Prove that if p(r/s) = 0 with ged(r, s) = 1,
then r | ap and s | ay,.

Solution. Substituting r/s into p(z) and multiplying by s™ we get

0=anr"™ + apn_17" ts+ - +ars" 1 4+ aps”

anr"™ = 8(—ap_ 17"t — - —ayrs™ % —ags™ )

aps" = 1(—anr" "t —ap 17" — o —aps"Th).
Thus s divides a,,r™ and r divides ags™. Since r and s are relatively prime, s divides a,, and r divides
agp.

Let @, (x) = 9’“’::11 = 2" 1+ 2" 2+ ...+ 2+ 1. Show that ®,(z) is irreducible over Q for any prime p.



17.21.

17.24.

Solution. We make the substitution t = x — 1, yielding

@, () = L1
t
- ; <’;)t“.

Since (7) is divisible by p for 0 < i < p and (}) = p is not divisible by p* and (Z) = 1 is not divisible by
p, this polynomial satisfies the Eisenstein criterion and is thus irreducible. Thus ®,(z) is irreducible
as well.

If Fis a field, show that there are infinitely many irreducible polynomials in F'[z].

Solution. Euclid’s proof for the infinitude of primes in Z applies in essentially the same way here.
Suppose that there were finitely many irreducible polynomials pq,...,px. Let p=1+ Hle p;. Since p
has remainder 1 when divided by each p;, it is not a multiple of any of them. But it must be divisible
by some irreducible since F[x] is Noetherian. Thus there are infinitely many irreducible polynomials.

Show that P — x has p distinct zeros in Z,, for any prime p. Conclude that
P —r=zz-1)(z-2)---(x—(p—1)).

Solution. By Fermat’s little theorem, a? = a (mod p) for all a € Z,, and thus z? — x is divisible by
(x—a) for all @ € Z,. By additivity of degree and the equality of leading coefficients, we get the desired
equation.



