
Math 430 – Problem Set 6 Solutions

Due April 18, 2016

16.27. Let R be a commutative ring. An element a in R is nilpotent if an = 0 for some positive integer n.
Show that the set of all nilpotent elements forms an ideal in R.

Solution. Let N ⊆ R be the set of nilpotent elements, and suppose am = 0 and bn = 0. Then
(−a)m = 0, so N is closed under negation. Moreover, (a + b)m+n =

∑m+n
i=0

(
m+n

i

)
aibm+n−i = 0 since

either i ≥ m and ai = 0 or m+ n− i ≥ n and bm+n−i = 0. Thus N is closed under addition. Finally,
if x ∈ R then (ax)m = amxm = 0, so N is an ideal.

16.40. Let R be a ring and I and J be ideals in R such that I + J = R.

(a) Show that for any r and s in R, the system of equations

x ≡ r (mod I)

x ≡ s (mod J)

has a solution.

Solution. Since I + J = R, we may find i ∈ I and j ∈ J with i+ j = 1. Setting x = si+ rj, we
have

x ≡ rj ≡ r (mod I)

x ≡ si ≡ s (mod J).

(b) In addition, prove that any two solutions of the system are congruent modulo I ∩ J .

Solution. If x and y are solutions, then x−y ≡ 0 (mod I) and x−y ≡ 0 (mod J), so x−y ∈ I∩J .

(c) Let I and J be ideals in a ring R such that I+J = R. Show that there exists a ring isomorphism

R/(I ∩ J) ∼= R/I ×R/J.

Solution. Let φ : R→ R/I×R/J be defined by φ(x) = (x+I, x+J). By part (a), φ is surjective,
and by part (b) it has kernel I ∩ J . So by the First Isomorphism Theorem, it induces the desired
isomorphism.

17.2. (b) Compute (5x2 + 3x− 4)(4x2 − x+ 9) in Z12[x].

Solution. 8x4 + 7x3 + 2x2 + 7x.

17.3. (b) Let a(x) = 6x4 − 2x3 + x2 − 3x+ 1 and b(x) = x2 + x− 2 in Z7[x]. Use the division algorithm to find
q(x) and r(x) so that a(x) = q(x)b(x) + r(x) with deg r(x) < deg b(x).

Solution. We find that q(x) = 6x2 + 6x and r(x) = 2x+ 1.

17.4. (c) Find the greatest common divisor d(x) of p(x) = x3 + x2− 4x+ 4 and q(x) = x3 + 3x− 2 in Z5[x] and
polynomials a(x) and b(x) such that a(x)p(x) + b(x)q(x) = d(x).
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Solution.

x3 + x2 − 4x+ 4 = 1(x3 + 3x− 2) + (x2 + 3x+ 1)

x3 + 3x− 2 = (x+ 2)(x2 + 3x+ 1) + (x+ 1)

x2 + 3x+ 1 = (x+ 2)(x+ 1) + 4

4 = (x2 + 3x+ 1)− (x+ 2)(x+ 1)

= (x2 + 3x+ 1)− (x+ 2)((x3 + 3x− 2)− (x+ 2)(x2 + 3x+ 1))

= (x2 + 4x)(x2 + 3x+ 1)− (x+ 2)(x3 + 3x− 2)

= (x2 + 4x)((x3 + x2 − 4x+ 4)− (x3 + 3x− 2))− (x+ 2)(x3 + 3x− 2)

= (x2 + 4x)(x3 + x2 − 4x+ 4)− (x2 + 2)(x3 + 3x− 2)

Negating this last equation, we get

1 = (4x2 + x)(x3 + x2 − 4x+ 4) + (x2 + 2)(x3 + 3x− 2).

17.7. Find a unit p(x) in Z4[x] such that deg p(x) > 1.

Solution. Since (2x2 + 1)(2x2 + 1) = 1, we may take p(x) = 2x2 + 1.

17.9. Find all of the irreducible polynomials of degrees 2 and 3 in Z2[x].

Solution. A polynomial of degree 2 or 3 is irreducible when it has no roots. The only two possible
roots in Z2 are 0 and 1, so f(x) = x2 +ax+b is irreducible when f(0) = b = 1 and f(1) = 1+a+b = 1,
so a = b = 1.

Similarly, f(x) = x3 + ax2 + bx + c is irreducible when g(0) = c = 1 and g(1) = 1 + a + b + c = 1,
yielding a = 1 and b = 0 or a = 0 and b = 1. Thus the irreducible polynomials are

x2 + x+ 1, x3 + x+ 1, x3 + x2 + 1.

17.10. Give two different factorizations of x2 + x+ 8 in Z10[x].

Solution. We first find the roots by trial and error: x = 1,−2, 3,−4. Pairing these up so that they
have product −2 and sum 1, we get the factorizations

x2 + x+ 8 = (x− 1)(x+ 2)

= (x− 3)(x+ 4).

17.18. Let p(x) = anx
n +xn−1x

n−1 + · · ·+a0 ∈ Z[x], with an 6= 0. Prove that if p(r/s) = 0 with gcd(r, s) = 1,
then r | a0 and s | an.

Solution. Substituting r/s into p(x) and multiplying by sn we get

0 = anr
n + an−1r

n−1s+ · · ·+ a1rs
n−1 + a0s

n

anr
n = s(−an−1r

n−1 − · · · − a1rsn−2 − a0sn−1)

a0s
n = r(−anrn−1 − an−1r

n−2 − · · · − a1sn−1).

Thus s divides anr
n and r divides a0s

n. Since r and s are relatively prime, s divides an and r divides
a0.

17.20. Let Φn(x) = xn−1
x−1 = xn−1 +xn−2 + · · ·+x+ 1. Show that Φp(x) is irreducible over Q for any prime p.
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Solution. We make the substitution t = x− 1, yielding

Φp(x) =
(t+ 1)p − 1

t

=

p∑
i=1

(
p

i

)
ti−1.

Since
(
p
i

)
is divisible by p for 0 < i < p and

(
p
1

)
= p is not divisible by p2 and

(
p
p

)
= 1 is not divisible by

p, this polynomial satisfies the Eisenstein criterion and is thus irreducible. Thus Φp(x) is irreducible
as well.

17.21. If F is a field, show that there are infinitely many irreducible polynomials in F [x].

Solution. Euclid’s proof for the infinitude of primes in Z applies in essentially the same way here.
Suppose that there were finitely many irreducible polynomials p1, . . . , pk. Let p = 1 +

∏k
i=1 pi. Since p

has remainder 1 when divided by each pi, it is not a multiple of any of them. But it must be divisible
by some irreducible since F [x] is Noetherian. Thus there are infinitely many irreducible polynomials.

17.24. Show that xp − x has p distinct zeros in Zp, for any prime p. Conclude that

xp − x = x(x− 1)(x− 2) · · · (x− (p− 1)).

Solution. By Fermat’s little theorem, ap ≡ a (mod p) for all a ∈ Zp and thus xp − x is divisible by
(x−a) for all a ∈ Zp. By additivity of degree and the equality of leading coefficients, we get the desired
equation.
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