Math 430 - Problem Set 5 Solutions

Due April 1, 2016
13.2. Find all of the abelian groups of order 200 up to isomorphism.

Solution. Every abelian group is a direct product of cyclic groups. Using the fact that $\mathbb{Z}_{m n} \cong \mathbb{Z}_{m} \times \mathbb{Z}_{n}$ if and only if $\operatorname{gcd}(m, n)=1$, the list of groups of order 200 is determined by the factorization of 200 into primes:

- $\mathbb{Z}_{8} \times \mathbb{Z}_{25}$
- $\mathbb{Z}_{4} \times \mathbb{Z}_{2} \times \mathbb{Z}_{25}$
- $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{25}$
- $\mathbb{Z}_{8} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5}$
- $\mathbb{Z}_{4} \times \mathbb{Z}_{2} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5}$
- $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5}$.
13.5. Show that the infinite direct product $G=\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \cdots$ is not finitely generated.

Solution. Note that every element of G has order 2 and that G is abelian. The group generated by any finite set of k elements thus has at order at most 2^{k}, while G has infinite order. Thus G cannot be finitely generated.
16.1. Which of the following sets are rings with respect to the usual operations of addition and multiplication? If the set is a ring, is it also a field?
(a) $7 \mathbb{Z}$

Solution. The is a subring of \mathbb{Z} and thus a ring:

- $(7 n)+(7 m)=7(m+n)$ so it is closed under addition;
- $(7 n)(7 m)=7(7 m n)$ so it is closed under multiplication;
- $-(7 n)=(-7)(n)$, so it is closed under negation.

It is not a field since it does not have an identity.
(b) \mathbb{Z}_{18}

Solution. This is a ring: the operations of arithmetic modulo 18 are well defined. It is not a field, since $2 \cdot 9=0$ gives a pair of zero divisors.
(c) $\mathbb{Q}(\sqrt{2})$

Solution. This is a subfield of \mathbb{R} and thus a field (in addition to being a ring:

- $(a+b \sqrt{2})+(c+d \sqrt{2})=(a+c)+(b+d) \sqrt{2}$ so it is closed under addition;
- $(a+b \sqrt{2})(c+d \sqrt{2})=(a c+2 b d)+(a d+b c) \sqrt{2}$ so it is closed under multiplication;
- $-(a+b \sqrt{2})=(-a)+(-b) \sqrt{2}$ so it is closed under negation;
- $(a+b \sqrt{2})^{-1}=\frac{a}{a^{2}-2 b^{2}}-\frac{b}{a^{2}-2 b^{2}} \sqrt{2}$ and $a^{2}-2 b^{2} \neq 0$ for $a, b \in \mathbb{Q}$ (unless both are zero)
(f) $R=\{a+b \sqrt[3]{3}: a, b \in \mathbb{Q}\}$

Solution. This is not a ring since $\sqrt[3]{3} \cdot \sqrt[3]{3}$ is not in R.
(h) $\mathbb{Q}(\sqrt[3]{3})$

Solution. This is a subfield of \mathbb{R} and thus a field:

- $(a+b \sqrt[3]{3}+c \sqrt[3]{9})+(d+e \sqrt[3]{3}+f \sqrt[3]{9})=(a+d)+(b+e) \sqrt[3]{3}+(c+f) \sqrt[3]{9}$ so it is closed under addition;
- $(a+b \sqrt[3]{3}+c \sqrt[3]{9})(d+e \sqrt[3]{3}+f \sqrt[3]{9})=(a d+3 b f+3 c e)+(a e+b d+3 c f) \sqrt[3]{3}+(a f+b e+c d) \sqrt[3]{9}$ so it is closed under multiplication;
- $-(a+b \sqrt[3]{3}+c \sqrt[3]{9})=(-a)+(-b) \sqrt[3]{3}+(-c) \sqrt[3]{9}$ so it is closed under negation.
- Closure under inverses takes a bit more work, since there is no single conjugate. We give two arguments.
i. In our first approach, we show directly that each element has an inverse. Given $(a+b \sqrt[3]{3}+$ $c \sqrt[3]{9})$ we prove that there is some $(d+e \sqrt[3]{3}+f \sqrt[3]{9})$ with $(a+b \sqrt[3]{3}+c \sqrt[3]{9})(d+e \sqrt[3]{3}+f \sqrt[3]{9})=1$ using the formula for multiplication above. This requires solving

$$
\begin{aligned}
a d+3 c e+3 b f & =1 \\
b d+a e+3 c f & =0 \\
c d+b e+a f & =0 .
\end{aligned}
$$

This system will have a solution as long as the determinant

$$
\operatorname{det}\left(\begin{array}{ccc}
a & 3 c & 3 b \\
b & a & 3 c \\
c & b & a
\end{array}\right)=a^{3}+3 b^{3}+9 c^{3}-9 a b c
$$

is nonzero. Multiplying all of a, b and c by a common rational value we may assume that they are all integers and share no common factor. If $a^{3}+3 b^{3}+9 c^{3}-9 a b c=0$ then a^{3} is a multiple of 3 , and thus a is by unique factorization (say $a=3 a^{\prime}$). Then

$$
9 a^{\prime 3}+b^{3}+3 c^{3}-9 a^{\prime} b c=0
$$

Repeating this for b and c, we see that all are divisible by 3 , contradicting the fact that we chose them to have no common factor.
ii. The other approach uses the extended Euclidean algorithm for polynomials. Since $\sqrt[3]{3}$ is irrational, $x^{3}-3$ is irreducible and thus $\operatorname{gcd}\left(x^{3}-3, a+b x+c x^{2}\right)=1$. Therefore, there exist $f(x), g(x) \in \mathbb{Q}[x]$ with

$$
f(x)\left(x^{3}-3\right)+g(x)\left(a+b x+c x^{2}\right)=1
$$

Evaluating this equation at $x=\sqrt[3]{3}$ shows that $g(\sqrt[3]{3})$ is the inverse of $a+b \sqrt[3]{3}+c \sqrt[3]{9}$.
16.2. Let R be the ring of 2×2 matrices of the form

$$
\left(\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right)
$$

where $a, b \in \mathbb{R}$. Show that although R is a ring that has no identity, we can find a subring S of R with an identity.

Solution. Suppose that $\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right)$ is an identity for R. Then

$$
\begin{aligned}
\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right) & =\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) \\
\left(\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right) & =\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right),
\end{aligned}
$$

so $a=1$ and $b=1$. But $\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$ is not an identity, since

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) .
$$

Thus R has no identity.
Let S be the subring of matrices of the form $\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right)$. Then $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ is an identity for S, since

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right), \\
& \left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right) .
\end{aligned}
$$

16.6. Find all homomorphisms $\phi: \mathbb{Z} / 6 \mathbb{Z} \rightarrow \mathbb{Z} / 15 \mathbb{Z}$.

Solution. Since ϕ is a ring homomorphism, it must also be a group homomorphism (of additive groups). Thuso $6 \phi(1)=\phi(0)=0$, and therefore $\phi(1)=0,5$ or 10 (and ϕ is determined by $\phi(1)$). If $\phi(1)=5$, then

$$
\begin{aligned}
\phi(1) & =\phi(1 \cdot 1) \\
& =\phi(1) \cdot \phi(1) \\
& =5 \cdot 5 \\
& =10,
\end{aligned}
$$

which is a contradiction. So the only two possibilities are

$$
\begin{array}{r}
\phi_{1}(n)=0 \text { for all } n \in \mathbb{Z}_{6} \\
\phi_{2}(n)=10 n \text { for all } n \in \mathbb{Z}_{6} .
\end{array}
$$

We show that these are both well defined ring homomorphisms.
In both cases, adding a multiple of 6 to n changes the result by a multiple of 15 (0 in the first case and 60 in the second), so they are well defined. They are additive group homomorphisms by the distributive law in \mathbb{Z}_{15}. They are multiplicative since

$$
\begin{aligned}
0 \cdot 0 & =0 \\
(10 \mathrm{n}) \cdot(10 \mathrm{~m}) & =100 \mathrm{~nm}=10 \mathrm{~nm} .
\end{aligned}
$$

16.10. Define a $\operatorname{map} \phi: \mathbb{C} \rightarrow \mathbb{M}_{2}(\mathbb{R})$ by

$$
\phi(a+b i)=\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)
$$

Show that ϕ is an isomorphism of \mathbb{C} with its image in $\mathbb{M}_{2}(\mathbb{R})$.

Solution. We first show that ϕ is a homomorphism.

$$
\begin{aligned}
\phi((a+b i)+(c+d i)) & =\phi((a+c)+(b+d) i) \\
& =\left(\begin{array}{cc}
a+c & b+d \\
-b-d & a+c
\end{array}\right) \\
\phi(a+b i)+\phi(c+d i) & =\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)+\left(\begin{array}{cc}
c & d \\
-d & c
\end{array}\right) \\
& =\left(\begin{array}{cc}
a+c & b+d \\
-b-d & a+c
\end{array}\right) \\
\phi((a+b i)(c+d i)) & =\phi((a c-b d)+(a d+b c) i) \\
& =\left(\begin{array}{cc}
a c-b d & a d+b c \\
-a d-b c & a c-b d
\end{array}\right) \\
\phi(a+b i) \phi(c+d i) & =\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)\left(\begin{array}{cc}
c & d \\
-d & c
\end{array}\right) \\
& =\left(\begin{array}{cc}
a c-b d & a d+b c \\
-a d-b c & a c-b d
\end{array}\right)
\end{aligned}
$$

Finally, we show that ϕ is injective and thus an isomorphism onto its image. If $\phi(a+b i)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ then $a=0$ and $b=0$.
16.17. Let a be any element in a ring R with identity. Show that $(-1) a=-a$.

Solution. We have

$$
\begin{aligned}
(-1) a+a & =(-1) a+(1) a \\
& =(-1+1) a \\
& =(0) a \\
& =0 .
\end{aligned}
$$

The result now follows from the uniqueness of additive inverses.
16.22. Prove the Correspondence Theorem: Let I be an ideal of a ring R. Then $S \rightarrow S / I$ is a one-to-one correspondence between the set of subrings S containing I and the set of subrings of R / I. Furthermore, the ideals of R correspond to the ideals of R / I.

Solution.

- We first show that the function $S \mapsto S / I$ sends subrings of R to subrings of R / I. If $s, t \in S$ then $(s+I)+(t+I)=(s+t)+I \in S / I$ since S is closed under addition, $(s+I)(t+I)=(s t)+I \in S / I$ since S is closed under multiplication and $-(s+I)=(-s)+I \in S / I$ since S is closed under negation. Thus S / I is a subring.
- We now show that this function is surjective. Let $T \subseteq R / I$ be a subring and set $S=\{x \in R$: $x+I \in T\}$. Then S is a subring of R : if $s, t \in S$ then $s+t \in S$ since $(s+t)+I=(s+I)+(t+I)$ and T is closed under addition, st $\in S$ since $(s t)+I=(s+I)(t+I)$ and T is closed under multiplication, and $-s \in S$ since $(-s)+I=-(s+I)$ and T is closed under negation. Moreover, S contains I since $i+I=0+I \in T$ for every $i \in I$. Finally, $S / I=T$ by construction.
- Next, we show that this function is injective. Suppose S_{1} and S_{2} are two subrings of R that contain I and that $S_{1} / I=S_{2} / I$ inside R / I. We show that $S_{1} \subseteq S_{2}$ (the opposite inclusion is analogous). Suppose $x \in S_{1}$. Since $S_{1} / I=S_{2} / I$, there is some $y \in S_{2}$ with $x+I=y+I$. Thus there is an $i \in I$ with $x=y+i$. Since $I \subseteq S_{2}$, both y and i are in S_{2} and thus x is as well.
- Next, suppose that S is actually an ideal of R. To show that S / I is an ideal of R / I, we take an arbitrary $s+I \in S / I$ and $x+I \in R / I$. Then $x s+I \in S / I$ and $s x+I \in S / I$ since S is an ideal of R.
- Finally, suppose that $T \subseteq R / I$ is an ideal. Let $S=\{x \in R: x+I \in T\}$ as before. We show that S is an ideal of R, proving that the correspondence restricts to a correspondence on ideals. If $s \in S$ and $x \in R$ then $x s+I=(x+I)(s+I) \in S / I$ since S / I is an ideal; similarly for $s x$. Thus S is an ideal.
16.26. Let R be an integral domain. Show that if the only ideals in R are $\{0\}$ and R itself, R must be a field.

Solution. In order to show that R is a field it suffices to prove that every nonzero $a \in R$ has an inverse. Let $a \in R$ be nonzero, and consider the ideal $\langle a\rangle$ generated by a. Since $a \neq 0$, this ideal is nonzero and thus is all of R by assumption. Therefore it contains 1 ; by the definition of a principal ideal there is some $b \in R$ with $a b=1$, providing the inverse of a.
16.31. Let R be a ring such that $1=0$. Prove that $R=\{0\}$.

Solution. If $a \in R$ then $a=(1) a=(0) a=0$, so $R=\{0\}$.
16.34. Let p be a prime. Prove that

$$
\mathbb{Z}_{(p)}=\{a / b: a, b \in \mathbb{Z} \text { and } \operatorname{gcd}(b, p)=1\}
$$

is a ring.
Solution. We show that this is a subring of \mathbb{Q} and thus a ring. If $a / b, c / d \in \mathbb{Z}_{(p)}$ to show that $a / b+c / d=(a d+b c) /(b d)$ and $(a / b)(c / d)=a c) /(b d) \in \mathbb{Z}_{(p)}$ it suffices to show that $\operatorname{gcd}(b d, p)=1$. This follows from the fact that p is prime: if it does not divide b or d then it cannot divide $b d$. Negation is even easier: $-(a / b)=(-a) / b \in \mathbb{Z}_{(p)}$ since it has the same denominator.
16.38. An element x in a ring is called an idempotent if $x^{2}=x$. Prove that the only idempotents in an integral domain are 0 and 1 . Find a ring with an idempotent x not equal to 0 or 1 .

Solution. If $x^{2}=x$ then $(x-1) x=x^{2}-x=0$. An integral domain has no zero divisors, so the only possibilities for x are 0 and 1 .
$3 \in \mathbb{Z}_{6}$ is an example of an idempotent that is neither 0 nor 1.

