Math 430 – Problem Set 4 Solutions

Due March 18, 2016

9.8. Prove that \mathbb{Q} is not isomorphic to \mathbb{Z} .

Solution. Suppose that $\phi : \mathbb{Q} \to \mathbb{Z}$ is an isomorphism. Since ϕ is surjective, there is an $x \in \mathbb{Q}$ with $\phi(x) = 1$. Then $2\phi(x/2) = \phi(x) = 1$, but there is no integer n with 2n = 1. Thus ϕ cannot exist.

9.12. Prove that S_4 is not isomorphic to D_{12} .

Solution. Note that D_{12} has an element of order 12 (rotation by 30 degrees), while S_4 has no element of order 12. Since orders of elements are preserved under isomorphisms, S_4 cannot be isomorphic to D_{12} .

9.23. Prove or disprove the following assertion. Let G, H, and K be groups. If $G \times K \cong H \times K$, then $G \cong H$.

Solution. Take $K = \prod_{i=1}^{\infty} \mathbb{Z}$ and $G = \mathbb{Z}$ and $H = \mathbb{Z} \times \mathbb{Z}$. Then

$$G \times K \cong K \cong H \times K$$

but $G \ncong H$. Thus the assertion is false.

Note that the assertion is true if K is finite, but it's difficult to show. Many people tried to used an isomorphism $\phi: G \times K \to H \times K$ to construct an isomorphism $G \to H$. The difficulty is that ϕ does not necessarily map $G \times \{1\}$ to $H \times \{1\}$ (and if it does, it may not be surjective).

9.29. Show that S_n is isomorphic to a subgroup of A_{n+2} .

Solution. Let $\tau = (n+1, n+2) \in S_{n+2}$. Identifying S_n with the subgroup of S_{n+2} that fix n+1 and n+2, we define

$$\begin{split} \phi: S_n \to A_{n+2} \\ \sigma \mapsto \begin{cases} \sigma & \text{if } \sigma \text{ even} \\ \sigma \tau & \text{if } \sigma \text{ odd} \end{cases} \end{split}$$

We check that ϕ is an injective homomorphism. Note that $\sigma \tau = \tau \sigma$ for all $\sigma \in S_n$. Then

$$\phi(\sigma_1 \sigma_2) = \begin{cases} \sigma_1 \sigma_2 = \phi(\sigma_1)\phi(\sigma_2) & \text{if } \sigma_1 \text{ even, } \sigma_2 \text{ even,} \\ \sigma_1 \sigma_2 \tau = \phi(\sigma_1)\phi(\sigma_2) & \text{if } \sigma_1 \text{ even, } \sigma_2 \text{ odd,} \\ \sigma_1 \tau \sigma_2 = \phi(\sigma_1)\phi(\sigma_2) & \text{if } \sigma_1 \text{ odd, } \sigma_2 \text{ even,} \\ \sigma_1 \sigma_2 \tau^2 = \phi(\sigma_1)\phi(\sigma_2) & \text{if } \sigma_1 \text{ odd, } \sigma_2 \text{ odd.} \end{cases}$$

Thus ϕ is a homomorphism. Moreover, since $\sigma\tau$ is never 1 and ϕ is the identity on A_n , ϕ is injective. Thus it defines an isomorphism with its image, a subgroup of A_{n+2} .

9.41. Let G be a group and $g \in G$. Define a map $i_g : G \to G$ by $i_g(x) = gxg^{-1}$. Prove that i_g defines an automorphism of G.

Solution. Since $i_g(xy) = gxyg^{-1} = gxg^{-1}gyg^{-1} = i_g(x)i_g(y)$, we see that i_g is a homomorphism. It is injective: if $i_g(x) = 1$ then $gxg^{-1} = 1$ and thus x = 1. And it is surjective: if $y \in G$ then $i_g(g^{-1}yg) = y$. Thus it is an automorphism.

10.4. Let T be the group of nonsingular upper triangular 2×2 matrices with entries in \mathbb{R} ; that is, matrices of the form

 $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix},$

where $a, b, c \in \mathbb{R}$ and $ac \neq 0$. Let U consist of matrices of the form

$$\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$$

where $x \in \mathbb{R}$.

(a) Show that U is a subgroup of T.

Solution. Taking x = 0, we see that the identity matrix is in U. The inverse of $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$ is $\begin{pmatrix} 1 & -x \\ 0 & 1 \end{pmatrix}$, which is also in U. Finally,

$$\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & x+y \\ 0 & 1 \end{pmatrix},$$

which is in U.

(b) Prove that U is abelian.

Solution. This follows from the formula for multiplication of elements of U given above, together with the commutativity of addition in \mathbb{R} .

(c) Prove that U is normal in T.

Solution.

$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}^{-1} = \begin{pmatrix} a & ax+b \\ 0 & c \end{pmatrix} \begin{pmatrix} 1/a & -b/(ac) \\ 0 & 1/c \end{pmatrix}$$
$$= \begin{pmatrix} 1 & ax/c \\ 0 & 1 \end{pmatrix}$$

(d) Show that T/U is abelian.

Solution. Note that

$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix} \begin{pmatrix} 1 & b/a \\ 0 & 1 \end{pmatrix},$$

so every coset in T/U has a representative that is a diagonal matrices. Since diagonal matrices commute with each other, T/U is commutative. Alternatively, note that

 $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \begin{pmatrix} a' & b' \\ 0 & c' \end{pmatrix} \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}^{-1} \begin{pmatrix} a' & b' \\ 0 & c' \end{pmatrix}^{-1} = \begin{pmatrix} aa' & ab' + bc' \\ 0 & cc' \end{pmatrix} \begin{pmatrix} 1/(aa') & -(b'c + bc')/(aca'c') \\ 0 & 1/(cc') \end{pmatrix}$

$$\begin{pmatrix} 0 & c \end{pmatrix} \begin{pmatrix} 0 & c' \end{pmatrix} \begin{pmatrix} 0 & c \end{pmatrix} \begin{pmatrix} 0 & c' \end{pmatrix} = \begin{pmatrix} 0 & cc' \end{pmatrix} \begin{pmatrix} 0 & 0 & 1/(cc') \\ 0 & 1 \end{pmatrix}.$$

Since U contains the commutator subgroup of T, T/U is abelian by 10.14.

(e) Is T normal in $GL_2(\mathbb{R})$?

Solution. No. For example,

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.$$

10.7. Prove or disprove: If H is a normal subgroup of G such that H and G/H are abelian, then G is abelian.

Solution. $U \triangleleft T$ from the previous problem provides a counterexample, as does $A_3 \triangleleft S_3$.

10.9. Prove or disprove: If H and G/H are cyclic, then G is cyclic.

Solution. $A_3 \triangleleft S_3$ provides a counterexample, as does $\mathbb{Z}_2 \triangleleft \mathbb{Z}_2 \times \mathbb{Z}_2$.

- 10.14. Let G be a group and let $G' = \langle aba^{-1}b^{-1} \rangle$; that is, G' is the subgroup of all finite products of elements in G of the form $aba^{-1}b^{-1}$. The subgroup G' is called the commutator subgroup of G.
 - (a) Show that G' is a normal subgroup of G.

Solution. Suppose $\gamma = aba^{-1}b^{-1}$ is a generator of G'. Since $g\gamma g^{-1} = (gag^{-1})(gbg^{-1})(gag^{-1})^{-1}(gbg^{-1})^{-1}$, we have that $g\gamma g^{-1} \in G'$. Since conjugation by g is a homomorphism, every product of such elements will also be an element of G'. Thus G' is normal. Alternatively, note that $g\gamma g^{-1} = g\gamma g^{-1}\gamma^{-1}\gamma \in G'$ since $\gamma \in G'$ and $g\gamma g^{-1}\gamma^{-1}$ is a commutator.

(b) Let N be a normal subgroup of G. Prove that G/N is abelian if and only if N contains the commutator subgroup of G.

Solution. Suppose $a, b \in G$. Then

$$(aN)(bN) = (bN)(aN) \Leftrightarrow Nab = Nba$$
$$\Leftrightarrow Naba^{-1}b^{-1} = N$$
$$\Leftrightarrow aba^{-1}b^{-1} \in N.$$

 So

$$G/N$$
 is abelian $\Leftrightarrow (aN)(bN) = (bN)(aN)$ for all $a, b \in G$
 $\Leftrightarrow aba^{-1}b^{-1} \in N$ for all $a, b \in G$
 $\Leftrightarrow G' \subseteq N.$

- 11.2. Which of the following maps are homomorphisms? If the map is a homomorphism, what is the kernel?
 - (a) $\phi : \mathbb{R}^* \to \mathrm{GL}_2(\mathbb{R})$ defined by

$$\phi(a) = \begin{pmatrix} 1 & 0\\ 0 & a \end{pmatrix}$$

Solution. This is a homomorphism since $\begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & b \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & ab \end{pmatrix}$. The kernel is $\{1\} \subset \mathbb{R}^*$.

(b) $\phi : \mathbb{R} \to \mathrm{GL}_2(\mathbb{R})$ defined by

$$\phi(a) = \begin{pmatrix} 1 & 0\\ a & 1 \end{pmatrix}$$

Solution. This is a homomorphism since $\begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ b & a \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ a+b & 1 \end{pmatrix}$. The kernel is $\{0\} \subset \mathbb{R}$.

(c) $\phi : \operatorname{GL}_2(\mathbb{R}) \to \mathbb{R}$ defined by

$$\phi\left(\begin{pmatrix}a&b\\c&d\end{pmatrix}\right) = a + d$$

Solution. This is not a homomorphism since it maps the identity to 2, which is not the identity in \mathbb{R} .

(d) $\phi : \operatorname{GL}_2(\mathbb{R}) \to \mathbb{R}^*$ defined by

$$\phi\left(\left(\begin{smallmatrix}a&b\\c&d\end{smallmatrix}\right)\right) = ad - bc$$

Solution. This is a homomorphism, since

$$\phi\left(\begin{pmatrix}a&b\\c&d\end{pmatrix}\begin{pmatrix}a'&b'\\c'&d'\end{pmatrix}\right) = \phi\left(\begin{pmatrix}aa'+bc'&ab'+bd'\\ca'+dc'&cb'+dd'\end{pmatrix}\right)$$
$$= (aa'+bc')(cb'+dd') - (ab'+bd')(ca'+dc')$$
$$= ada'd'+bcb'c'-adb'c'-bca'd'$$
$$= (ad-bc)(a'd'-b'c')$$
$$= \phi\left(\begin{pmatrix}a&b\\c&d\end{pmatrix}\right)\phi\left(\begin{pmatrix}a'&b'\\c'&d'\end{pmatrix}\right).$$

The kernel is $SL_2(\mathbb{R})$, the subgroup of $GL_2(\mathbb{R})$ consisting of matrices of determinant 1.

(e) $\phi : \mathbb{M}_2(\mathbb{R}) \to \mathbb{R}$ defined by

$$\phi\left(\left(\begin{smallmatrix}a&b\\c&d\end{smallmatrix}\right)\right) = b,$$

where $\mathbb{M}_2(\mathbb{R})$ is the additive group of 2×2 matrices with entries in \mathbb{R} . Solution. This is a homomorphism, since

$$\phi\left(\begin{pmatrix}a&b\\c&d\end{pmatrix}+\begin{pmatrix}a'&b'\\c'&d'\end{pmatrix}\right)=b+b'=\phi\left(\begin{pmatrix}a&b\\c&d\end{pmatrix}\right)+\phi\left(\begin{pmatrix}a'&b'\\c'&d'\end{pmatrix}\right)$$

The kernel is the group (under addition) of lower triangular matrices:

$$\left\{ \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} : a, b, c \in \mathbb{R} \right\}.$$

11.9. If $\phi: G \to H$ is a group homomorphism and G is abelian, prove that $\phi(G)$ is abelian.

Solution. If $x, y \in \phi(G)$ then there exist $a, b \in G$ with $x = \phi(a)$ and $y = \phi(b)$. Then $xy = \phi(a)\phi(b) = \phi(ab) = \phi(ba) = \phi(b)\phi(a) = yx$, so $\phi(G)$ is abelian.

11.15. Let G_1 and G_2 be groups, and let H_1 and H_2 be normal subgroups of G_1 and G_2 respectively. Let $\phi : G_1 \to G_2$ be a homomorphism. Show that ϕ induces a natural homomorphism $\overline{\phi} : (G_1/H_1) \to (G_2/H_2)$ if $\phi(H_1) \subseteq H_2$.

Solution. We define $\overline{\phi}(gH_1) = \phi(g)H_2$ for $g \in G_1$. We show that this is well defined. If $g'H_1 = gH_1$ then $g'g^{-1} \in H_1$ so $\phi(g'g^{-1}) \in \phi(H_1) \subseteq H_2$. Thus $\phi(g')\phi(g)^{-1} \in H_2$, so $\overline{\phi}(g'H_1) = \phi(g')H_2 = \phi(g)H_2 = \overline{\phi}(gH_1)$.

It is also a homomorphism, since

$$\begin{split} \bar{\phi}((gH_1)(g'H_1)) &= \bar{\phi}(gg'H_1) \\ &= \phi(gg')H_2 \\ &= \phi(g)\phi(g')H_2 \\ &= (\phi(g)H_2)(\phi(g')H_2) \\ &= \bar{\phi}(gH_1)\bar{\phi}(g'H_1). \end{split}$$

11.19. Given a homomorphism $\phi: G \to H$ define a relation \sim on G by $a \sim b$ if $\phi(a) = \phi(b)$ for $a, b \in G$. Show this relation is an equivalence relation and describe the equivalence classes.

Solution. Checking the conditions for an equivalence relation is straightforward: $a \sim a$ since $\phi(a) = \phi(a)$; if $a \sim b$ then $\phi(a) = \phi(b)$ and thus $b \sim a$; if $a \sim b$ and $b \sim c$ then $\phi(a) = \phi(b) = \phi(c)$ so $a \sim c$. The equivalence classes are precisely the cosets of $K = \ker(\phi)$, since

$$\begin{aligned} a \sim b \Leftrightarrow \phi(a) &= \phi(b) \\ \Leftrightarrow \phi(ab^{-1}) &= 1 \\ \Leftrightarrow ab^{-1} \in K \\ \Leftrightarrow aK &= bK. \end{aligned}$$