Math 430 – Problem Set 4 Solutions

Due March 18, 2016

9.8. Prove that \(\mathbb{Q} \) is not isomorphic to \(\mathbb{Z} \).

Solution. Suppose that \(\phi: \mathbb{Q} \to \mathbb{Z} \) is an isomorphism. Since \(\phi \) is surjective, there is an \(x \in \mathbb{Q} \) with \(\phi(x) = 1 \). Then \(2\phi(x/2) = \phi(x) = 1 \), but there is no integer \(n \) with \(2n = 1 \). Thus \(\phi \) cannot exist.

9.12. Prove that \(S_4 \) is not isomorphic to \(D_{12} \).

Solution. Note that \(D_{12} \) has an element of order 12 (rotation by 30 degrees), while \(S_4 \) has no element of order 12. Since orders of elements are preserved under isomorphisms, \(S_4 \) cannot be isomorphic to \(D_{12} \).

9.23. Prove or disprove the following assertion. Let \(G, H, \) and \(K \) be groups. If \(G \times K \cong H \times K \), then \(G \cong H \).

Solution. Take \(K = \prod_{i=1}^{\infty} \mathbb{Z} \) and \(G = \mathbb{Z} \) and \(H = \mathbb{Z} \times \mathbb{Z} \). Then

\[G \times K \cong K \cong H \times K \]

but \(G \not\cong H \). Thus the assertion is false.

Note that the assertion is true if \(K \) is finite, but it’s difficult to show. Many people tried to use an isomorphism \(\phi: G \times K \to H \times K \) to construct an isomorphism \(G \to H \). The difficulty is that \(\phi \) does not necessarily map \(G \times \{1\} \) to \(H \times \{1\} \) (and if it does, it may not be surjective).

9.29. Show that \(S_n \) is isomorphic to a subgroup of \(A_{n+2} \).

Solution. Let \(\tau = (n+1, n+2) \in S_{n+2} \). Identifying \(S_n \) with the subgroup of \(S_{n+2} \) that fix \(n+1 \) and \(n+2 \), we define

\[\phi: S_n \to A_{n+2} \]

\[\sigma \mapsto \begin{cases}
\sigma & \text{if } \sigma \text{ even} \\
\sigma \tau & \text{if } \sigma \text{ odd}
\end{cases} \]

We check that \(\phi \) is an injective homomorphism. Note that \(\sigma \tau = \tau \sigma \) for all \(\sigma \in S_n \). Then

\[\phi(\sigma_1 \sigma_2) = \begin{cases}
\sigma_1 \sigma_2 = \phi(\sigma_1)\phi(\sigma_2) & \text{if } \sigma_1 \text{ even, } \sigma_2 \text{ even,} \\
\sigma_1 \sigma_2 \tau = \phi(\sigma_1)\phi(\sigma_2) & \text{if } \sigma_1 \text{ even, } \sigma_2 \text{ odd,} \\
\sigma_1 \tau \sigma_2 = \phi(\sigma_1)\phi(\sigma_2) & \text{if } \sigma_1 \text{ odd, } \sigma_2 \text{ even,} \\
\sigma_1 \sigma_2 \tau^2 = \phi(\sigma_1)\phi(\sigma_2) & \text{if } \sigma_1 \text{ odd, } \sigma_2 \text{ odd.}
\end{cases} \]

Thus \(\phi \) is a homomorphism. Moreover, since \(\sigma \tau \) is never 1 and \(\phi \) is the identity on \(A_n \), \(\phi \) is injective. Thus it defines an isomorphism with its image, a subgroup of \(A_{n+2} \).

9.41. Let \(G \) be a group and \(g \in G \). Define a map \(i_g : G \to G \) by \(i_g(x) = gxg^{-1} \). Prove that \(i_g \) defines an automorphism of \(G \).
Solution. Since \(i_g(xy) = gxg^{-1} = gxg^{-1}gyg^{-1} = i_g(x)i_g(y) \), we see that \(i_g \) is a homomorphism. It is injective: if \(i_g(x) = 1 \) then \(gxg^{-1} = 1 \) and thus \(x = 1 \). And it is surjective: if \(y \in G \) then \(i_g(g^{-1}yg) = y \). Thus it is an automorphism.

10.4. Let \(T \) be the group of nonsingular upper triangular \(2 \times 2 \) matrices with entries in \(\mathbb{R} \); that is, matrices of the form
\[
\begin{pmatrix}
a & b \\
0 & c
\end{pmatrix},
\]
where \(a, b, c \in \mathbb{R} \) and \(ac \neq 0 \). Let \(U \) consist of matrices of the form
\[
\begin{pmatrix}
1 & x \\
0 & 1
\end{pmatrix},
\]
where \(x \in \mathbb{R} \).

(a) Show that \(U \) is a subgroup of \(T \).

Solution. Taking \(x = 0 \), we see that the identity matrix is in \(U \). The inverse of \(\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \) is \(\begin{pmatrix} 1 & -x \\ 0 & 1 \end{pmatrix} \), which is also in \(U \). Finally,
\[
\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & x + y \\ 0 & 1 \end{pmatrix},
\]
which is in \(U \).

(b) Prove that \(U \) is abelian.

Solution. This follows from the formula for multiplication of elements of \(U \) given above, together with the commutativity of addition in \(\mathbb{R} \).

(c) Prove that \(U \) is normal in \(T \).

Solution.
\[
\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}^{-1} = \begin{pmatrix} a & ax + b \\ 0 & c \end{pmatrix} \begin{pmatrix} 1/a & -b/(ac) \\ 0 & 1/c \end{pmatrix} = \begin{pmatrix} 1 & ax/c \\ 0 & 1 \end{pmatrix},
\]

(d) Show that \(T/U \) is abelian.

Solution. Note that
\[
\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix} \begin{pmatrix} 1 & b/a \\ 0 & 1 \end{pmatrix},
\]
so every coset in \(T/U \) has a representative that is a diagonal matrices. Since diagonal matrices commute with each other, \(T/U \) is commutative.

Alternatively, note that
\[
\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \begin{pmatrix} a' & b' \\ 0 & c' \end{pmatrix} \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}^{-1} \begin{pmatrix} a' & b' \\ 0 & c' \end{pmatrix}^{-1} = \begin{pmatrix} aa' & ab' + bc' \\ 0 & cc' \end{pmatrix} \begin{pmatrix} 1/(aa') & -(b'/c')/(aca'e') \\ 0 & 1/(cc') \end{pmatrix} = \begin{pmatrix} 1 & (ab' - b'/c')/(cc') \\ 0 & 1 \end{pmatrix}.
\]

Since \(U \) contains the commutator subgroup of \(T \), \(T/U \) is abelian by 10.14.

(e) Is \(T \) normal in \(GL_2(\mathbb{R}) \)?
Solution. No. For example,
\[
\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.
\]

10.7. Prove or disprove: If \(H \) is a normal subgroup of \(G \) such that \(H \) and \(G/H \) are abelian, then \(G \) is abelian.

Solution. \(U \triangleleft T \) from the previous problem provides a counterexample, as does \(A_3 \triangleleft S_3 \).

10.9. Prove or disprove: If \(H \) and \(G/H \) are cyclic, then \(G \) is cyclic.

Solution. \(A_3 \triangleleft S_3 \) provides a counterexample, as does \(Z_2 \triangleleft Z_2 \times Z_2 \).

10.14. Let \(G \) be a group and let \(G' = \langle aba^{-1}b^{-1} \rangle \); that is, \(G' \) is the subgroup of all finite products of elements in \(G \) of the form \(aba^{-1}b^{-1} \). The subgroup \(G' \) is called the commutator subgroup of \(G \).

(a) Show that \(G' \) is a normal subgroup of \(G \).

Solution. Suppose \(\gamma = aba^{-1}b^{-1} \) is a generator of \(G' \). Since \(g\gamma g^{-1} = (gag^{-1})(gbg^{-1})(gag^{-1})^{-1}(gbg^{-1})^{-1} \), we have that \(g\gamma g^{-1} \in G' \). Since conjugation by \(g \) is a homomorphism, every product of such elements will also be an element of \(G' \). Thus \(G' \) is normal. Alternatively, note that \(g\gamma g^{-1} = g\gamma g^{-1}\gamma^{-1} \gamma \in G' \) since \(\gamma \in G' \) and \(g\gamma g^{-1}\gamma^{-1} \) is a commutator.

(b) Let \(N \) be a normal subgroup of \(G \). Prove that \(G/N \) is abelian if and only if \(N \) contains the commutator subgroup of \(G \).

Solution. Suppose \(a, b \in G \). Then
\[
(aN)(bN) = (bN)(aN) \iff Nab = Nba \\
\iff Naba^{-1}b^{-1} = N \\
\iff aba^{-1}b^{-1} \in N.
\]

So \(G/N \) is abelian \(\iff (aN)(bN) = (bN)(aN) \) for all \(a, b \in G \)
\(\iff aba^{-1}b^{-1} \in N \) for all \(a, b \in G \)
\(\iff G' \subseteq N \).

11.2. Which of the following maps are homomorphisms? If the map is a homomorphism, what is the kernel?

(a) \(\phi : \mathbb{R}^* \to \text{GL}_2(\mathbb{R}) \) defined by
\[
\phi(a) = \begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix}
\]

Solution. This is a homomorphism since \(\begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & b \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & ab \end{pmatrix} \). The kernel is \(\{1\} \subset \mathbb{R}^* \).

(b) \(\phi : \mathbb{R} \to \text{GL}_2(\mathbb{R}) \) defined by
\[
\phi(a) = \begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix}
\]

Solution. This is a homomorphism since \(\begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ b & a \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ a+b & a \end{pmatrix} \). The kernel is \(\{0\} \subset \mathbb{R} \).

(c) \(\phi : \text{GL}_2(\mathbb{R}) \to \mathbb{R} \) defined by
\[
\phi \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) = a + d
\]

Solution. This is not a homomorphism since it maps the identity to 2, which is not the identity in \(\mathbb{R} \).
(d) \(\phi : \text{GL}_2(\mathbb{R}) \rightarrow \mathbb{R}^* \) defined by
\[
\phi \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) = ad - bc
\]

Solution. This is a homomorphism, since
\[
\phi \left(\begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} \right) = \phi \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) = \phi \left(\begin{pmatrix} a & b' \\ c & d' \end{pmatrix} \right) = (ad' + bc') - (a'd' + b'c') = \phi \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) \phi \left(\begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} \right).
\]

The kernel is \(\text{SL}_2(\mathbb{R}) \), the subgroup of \(\text{GL}_2(\mathbb{R}) \) consisting of matrices of determinant 1.

(e) \(\phi : M_2(\mathbb{R}) \rightarrow \mathbb{R} \) defined by
\[
\phi \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) = b,
\]
where \(M_2(\mathbb{R}) \) is the additive group of \(2 \times 2 \) matrices with entries in \(\mathbb{R} \).

Solution. This is a homomorphism, since
\[
\phi \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} \right) = b + b' = \phi \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) + \phi \left(\begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} \right).
\]

The kernel is the group (under addition) of lower triangular matrices:
\[
\left\{ \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} : a, b, c \in \mathbb{R} \right\}.
\]

11.9. If \(\phi : G \rightarrow H \) is a group homomorphism and \(G \) is abelian, prove that \(\phi(G) \) is abelian.

Solution. If \(x, y \in \phi(G) \) then there exist \(a, b \in G \) with \(x = \phi(a) \) and \(y = \phi(b) \). Then \(xy = \phi(a)\phi(b) = \phi(ab) = \phi(ba) = \phi(b)\phi(a) = yx \), so \(\phi(G) \) is abelian.

11.15. Let \(G_1 \) and \(G_2 \) be groups, and let \(H_1 \) and \(H_2 \) be normal subgroups of \(G_1 \) and \(G_2 \) respectively. Let \(\phi : G_1 \rightarrow G_2 \) be a homomorphism. Show that \(\phi \) induces a natural homomorphism \(\bar{\phi} : (G_1/H_1) \rightarrow (G_2/H_2) \) if \(\phi(H_1) \subseteq H_2 \).

Solution. We define \(\bar{\phi}(gH_1) = \phi(g)H_2 \) for \(g \in G_1 \). We show that this is well defined. If \(g'H_1 = gH_1 \) then \(g^{-1}g' \in H_1 \) so \(\phi(g^{-1}g') \in \phi(H_1) \subseteq H_2 \). Thus \(\phi(g')\phi(g)^{-1} \in H_2 \), so \(\bar{\phi}(g'H_1) = \phi(g')H_2 = \bar{\phi}(gH_1) \).

It is also a homomorphism, since
\[
\bar{\phi}((gH_1)(g'H_1)) = \bar{\phi}(gg'H_1) = \phi(gg'H_1) = \bar{\phi}(gH_1)\bar{\phi}(g'H_1).
\]

11.19. Given a homomorphism \(\phi : G \rightarrow H \) define a relation \(\sim \) on \(G \) by \(a \sim b \) if \(\phi(a) = \phi(b) \) for \(a, b \in G \). Show this relation is an equivalence relation and describe the equivalence classes.
Solution. Checking the conditions for an equivalence relation is straightforward: $a \sim a$ since $\phi(a) = \phi(a)$; if $a \sim b$ then $\phi(a) = \phi(b)$ and thus $b \sim a$; if $a \sim b$ and $b \sim c$ then $\phi(a) = \phi(b) = \phi(c)$ so $a \sim c$.

The equivalence classes are precisely the cosets of $K = \ker(\phi)$, since

\[
\begin{align*}
 a \sim b & \iff \phi(a) = \phi(b) \\
 & \iff \phi(ab^{-1}) = 1 \\
 & \iff ab^{-1} \in K \\
 & \iff aK = bK.
\end{align*}
\]