Math 430 – Problem Set 3 Solutions

Due February 19, 2016

4.14. Let $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$ be elements in $GL_2(\mathbb{R})$. Show that A and B have finite orders but AB does not.

Solution.

- $A^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, A^3 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, and $A^4 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ so A has order 4.
- $B^2 = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}$ and $B^3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ so B has order 3.
- I claim that $(AB)^n = \begin{pmatrix} 1 & -n \\ 0 & 1 \end{pmatrix}$. $AB = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$, which is the base case, and $\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -n \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -n-1 \\ 0 & 1 \end{pmatrix}$, which is the induction step. Thus $(AB)^n$ is never the identity matrix for n > 0 and AB has infinite order.
- 4.15(c). Evaluate (5-4i)(7+2i).

Solution.

$$(5-4i)(7+2i) = 35+10i-18i+8 = 43-18i$$

4.15(f). Evaluate $(1+i) + \overline{(1+i)}$.

Solution.

$$(1+i) + \overline{(1+i)} = 1 + i + 1 - i = 2$$

4.16(c). Convert $3 \operatorname{cis}(\pi)$ to the form a + bi.

Solution.

$$3 \operatorname{cis}(\pi) = 3(\cos(\pi) + i \sin(\pi)) = -3$$

4.17(c). Change 2 + 2i to polar representation.

Solution. Using the formulas $r = \sqrt{a^2 + b^2}$ and $\theta = \tan^{-1}(b/a)$ (which holds since 2 + 2i is in the first quadrant), we get $r = \sqrt{8}$ and $\theta = \tan^{-1}(1)$ so $2 + 2i = 2\sqrt{2} \operatorname{cis}(\pi/4)$.

4.27. If g and h have orders 15 and 16 respectively in a group G, what is the order of $\langle g \rangle \cap \langle h \rangle$?

Solution. The intersection $\langle g \rangle \cap \langle h \rangle$ is a subgroup of both $\langle g \rangle$ and $\langle h \rangle$. By Lagrange's theorem, its order must therefore divide both 15 and 16. Since gcd(15, 16) = 1, we get that $|\langle g \rangle \cap \langle h \rangle| = 1$.

5.2(c). Compute (143)(23)(24).

Solution.

$$(143)(23)(24) = (14)(23)$$

5.2(i). Compute $(123)(45)(1254)^{-2}$.

Solution. Since (1254) has order 4, $(1254)^{-2} = (1254)^2 = (15)(24)$. Thus

$$(123)(45)(1254)^{-2} = (123)(45)(15)(24) = (143)(25)$$

5.2(n). Compute $(12537)^{-1}$.

Solution. We reverse the order of the cycle, yielding

$$(12537)^{-1} = (73521) = (17352).$$

5.7. Find all possible orders of elements in S_7 and A_7 .

Solution. Orders of permutations are determined by least common multiple of the lengths of the cycles in their decomposition into disjoint cycles, which correspond to partitions of 7.

• -		•
Representative Cycle	Order	Sign
()	1	Even
(12)	2	Odd
(123)	3	Even
(1234)	4	Odd
(12345)	5	Even
(123456)	6	Odd
(1234567)	7	Even
(12)(34)	2	Even
(12)(345)	6	Odd
(12)(3456)	4	Even
(12)(34567)	10	Odd
(123)(456)	3	Even
(123)(4567)	12	Odd
(12)(34)(56)	2	Odd
(12)(34)(567)	6	Even

Therefore the orders of elements in S_7 are 1, 2, 3, 4, 5, 6, 7, 10, 12 and the orders of elements in A_7 are 1, 2, 3, 4, 5, 6, 7.

5.16. Find the group of rigid motions of a tetrahedron. Show that this is the same group as A_4 .

Solution. Let G be the group of rigid motions. Label the vertices of the tetrahedron 1, 2, 3, 4. A rotation is determined by where it sends vertex 1 (four possibilities) and the orientation of the edges emanating from that vertex (three possibilities). So there are 12 elements in G. Define a map ϕ from G to the symmetric group on the vertices by mapping a given rotation to the permutation it induces on the vertices. There are eight rotations of order 3 that fix a single vertex and rotate around the axis connecting that vertex to the center of the opposite face. The images of these rotations under ϕ are {(123), (132), (124), (142), (134), (143), (234), (243)}. There are three rotations of order 2 around the axis between midpoints of opposite edges. The images of these rotations under ϕ are $\{(12)(34), (13)(24), (14)(23)\}$. Together with the identity, this gives all twelve rotations. The image of ϕ is A_4 , it is injective, and it preserves the group operation (since the operation is function composition in both cases), so ϕ gives an isomorphism between the group of rigid motions of the tetrahedron and A_4 .

- 5.26. Prove that any element can be written as a finite product of the following permutations.
 - (a) $(12), (13), \ldots, (1n)$

Solution. Every element of S_n can be written as a product of transpositions, and any transposition (ab) can be written as (1a)(1b)(1a). Thus $(12), (13), \ldots, (1n)$ generate S_n .

(b) $(12), (23), \ldots, (n-1, n)$

Solution. We prove by induction that (1k) can be written in terms of $(12), (23), \ldots, (n-1, n)$ for $k = 2, 3, \ldots, n$. The base case is clear: (12) = (12). The induction step follows from the identity (1, k + 1) = (1k)(k, k + 1)(1k). By part (a), the set $(12), (13), \ldots, (1n)$ generates S_n , and thus $(12), (23), \ldots, (n-1, n)$ does as well.

(c) (12), (12...n)

Solution. We prove by induction that (k-1,k) can be written in terms of (12), (12...n) for k = 2, 3, ..., n. The base case is again clear: (12) = (12). The induction step follows from the identity (k, k + 1) = (12...n)(k - 1, k)(n ... 21). By part (b), the set (12), (23), ..., (n - 1, n) generates S_n , and thus (12), (12...n) does as well.

- 5.30. Let $\tau = (a_1, a_2, \dots, a_k)$ be a cycle of length k.
 - (a) Prove that if σ is any permutation, then

$$\sigma\tau\sigma^{-1} = (\sigma(a_1), \sigma(a_2), \dots, \sigma(a_k))$$

is a cycle of length k.

Solution. Let $L = \sigma \cdot \tau$ and $R = (\sigma(a_1), \sigma(a_2), \ldots, \sigma(a_k)) \cdot \sigma$. We show that L = R by proving that L(x) = R(x) for $x = 1, 2, \ldots, n$. There are two cases: $x = a_i$ for some i and $x \neq a_i$ for any i. If $x = a_i$ then

$$L(x) = \sigma\tau(a_i) = \sigma(a_{i+1}),$$

where we set $a_{k+1} = a_1$ by convention. Since

$$R(x) = (\sigma(a_1), \sigma(a_2), \dots, \sigma(a_k))(\sigma(a_i)) = \sigma(a_{i+1}),$$

L and R have the same value on x.

If $x \neq a_i$ then x is fixed by τ and thus $L(x) = \sigma(x)$. Similarly, $\sigma(x)$ is fixed by the cycle $(\sigma(a_1), \sigma(a_2), \ldots, \sigma(a_k))$ so $R(x) = \sigma(x)$. Since L = R, we also have $L\sigma^{-1} = R\sigma^{-1}$.

(b) Let μ be a cycle of length k. Prove that there is a permutation σ such that $\sigma \tau \sigma^{-1} = \mu$.

Solution. Let $\mu = (b_1, b_2, \ldots, b_k)$. For $i = 1, \ldots, k$ define $\sigma(a_i) = b_i$. Since the sets $X = \{1, \ldots, n\} - \{a_1, \ldots, a_k\}$ and $Y = \{1, \ldots, n\} - \{b_1, \ldots, b_k\}$ both have cardinality n - k, there exists a bijection ϕ between them. Set $\sigma(x) = \phi(x)$ for $x \neq a_i$. Then $\sigma \in S_n$ and, by part (a), $\sigma\tau\sigma^{-1} = \mu$.

6.5(f). List the left and right cosets of D_4 in S_4 .

Solution. Label the vertices of the square 1, 2, 3, 4 in clockwise order. Then the elements of D_4 , as a subgroup of S_4 , are

 $\{(), (1234), (13)(24), (1432), (12)(34), (14)(23), (13), (24)\},\$

and this set is both a left and right coset. Since (12) $\notin D_4$,

 $(12)D_4 = \{(12), (234), (1324), (143), (34), (1423), (132), (124)\}$

is another left coset of D_4 . Moreover, since $g_1H = g_2H \Leftrightarrow Hg_1^{-1} = Hg_2^{-1}$, the set consisting of the inverses of these elements is a right coset of D_4 :

 $D_4(12) = \{(12), (243), (1423), (134), (34), (1324), (123), (142)\}$

Finally, we can construct the remaining left coset by collecting the remaining elements,

 $(14)D_4 = \{(14), (23), (123), (142), (134), (243), (1243), (1342)\},\$

and the remaining right coset likewise:

 $D_4(14) = \{(14), (23), (132), (124), (143), (234), (1342), (1243)\}.$

6.8. Use Fermat's Little Theorem to show that if p = 4n + 3 is prime, there is no solution to the equation $x^2 \equiv -1 \pmod{p}$.

Solution. Suppose that $x^2 \equiv -1 \pmod{p}$ for some x. Then $x \not\equiv 0 \pmod{p}$, so Fermat's Little Theorem implies that $x^{p-1} \equiv 1 \pmod{p}$. Thus

$$1 \equiv x^{p-1} \pmod{p}$$

$$\equiv x^{4n+2} \pmod{p}$$

$$\equiv (x^4)^n \cdot x^2 \pmod{p}$$

$$\equiv 1^n \cdot (-1) \pmod{p}$$

$$\equiv -1 \pmod{p}.$$

This is a contradiction since $p \neq 2$.

- 6.11. Let H be a subgroup of a group G and suppose that $g_1, g_2 \in G$. Prove that the following conditions are equivalent.
 - (a) $g_1H = g_2H$
 - (b) $Hg_1^{-1} = Hg_2^{-1}$
 - (c) $q_1 H \subseteq q_2 H$
 - (d) $g_2 \in g_1 H$
 - (e) $g_1^{-1}g_2 \in H$

Solution.

- (a) \Rightarrow (c) Since $g_1H = g_2H$, certainly $g_1H \subseteq g_2H$.
- (c) \Rightarrow (d) Since $g_1 \in g_1 H \subseteq g_2 H$, there is an $h \in H$ with $g_1 = g_2 h$. Then $g_2 = g_1 h^{-1} \in g_1 H$ since $h^{-1} \in H$.
- (d) \Rightarrow (e) Since $g_2 = g_1 h$ for some $h \in H$, $g_1^{-1}g_2 = h \in H$.
- (e) \Rightarrow (b) Let $g_1^{-1}g_2 = h \in H$. We show first that $Hg_1^{-1} \subseteq Hg_2^{-1}$. Suppose $h'g_1^{-1} \in Hg_1^{-1}$. Since $g_1^{-1} = hg_2^{-1}$, we have $h'g_1^{-1} = h'hg_2^{-1} \in Hg_2^{-1}$. Conversely, $h''g_2^{-1} = h''h^{-1}g_1^{-1} \in Hg_1^{-1}$, so $Hg_2^{-1} \subseteq Hg_1^{-1}$.
- (b) \Rightarrow (a) Since $Hg_1^{-1} = Hg_2^{-1}$, there is an $h \in H$ with $g_1^{-1} = hg_2^{-1}$, so $g_1^{-1}g_2 = h$ and $g_2 = g_1h$. Then for any $h' \in H$, $g_2h' = g_1hh'$, so $g_2H \subseteq g_1H$. Similarly, $g_1h' = g_2h^{-1}h'$, so $g_1H \subseteq g_2H$.
- 6.15. Show that any two permutations $\alpha, \beta \in S_n$ have the same cycle structure if and only if there exists a permutation γ such that $\beta = \gamma \alpha \gamma^{-1}$.

Solution. Suppose first that $\beta = \gamma \alpha \gamma^{-1}$, and let $\alpha = \alpha_1 \alpha_2 \dots \alpha_k$ be a decomposition of α into disjoint cycles. Then $\beta = (\gamma \alpha_1 \gamma^{-1})(\gamma \alpha_2 \gamma^{-1}) \dots (\gamma \alpha_k \gamma^{-1})$. By 5.30(a), $(\gamma \alpha_i \gamma^{-1})$ is a cycle of the same length as α_i , and if $i \neq j$ then $(\gamma \alpha_i \gamma^{-1})$ is disjoint from $(\gamma \alpha_j \gamma^{-1})$. Thus the cycle structures of α and β are the same.

Conversely, suppose that α and β have the same cycle structure. Then we get write $\alpha = \alpha_1 \alpha_2 \dots \alpha_k$ and $\beta = \beta_1 \beta_2 \dots \beta_k$, with $\alpha_i = (a_1, \dots, a_{n_i})$ and $\beta_i = (b_1, \dots, b_{n_i})$. Let X be the complement of the $a_{i,j}$ in $\{1, \dots, n\}$ and let Y be the complement of the $b_{i,j}$. Then the cardinality of X is the same as the cardinality of Y, and we may choose a bijection γ between them. Extending γ to all of $\{1, \dots, n\}$ by setting $\gamma(a_{i,j}) = b_{i,j}$ yields a permutation, and by 5.30(a), $\beta = \gamma \alpha \gamma^{-1}$. 6.18. If [G:H] = 2, prove that gH = Hg.

Solution. Since there are only two left cosets of H, which are disjoint, and one of them is H itself, the left cosets are H and G - H. The same holds for the right cosets. Moreover, gH = H iff $g \in H$ iff Hg = H, and gH = G - H iff $g \notin H$ iff Hg = G - H. Thus Hg = gH for all $g \in G$.