
Math 430 – Problem Set 2 Solutions

Due February 5, 2016

3.1(e). Find all x ∈ Z satisfying 5x ≡ 1 (mod 6)

Solution. In Z6, 5 + 6Z is its own inverse. Multiplying both sides by 5 yields x ≡ 5 (mod 6).

3.1(f). Find all x ∈ Z satisfying 3x ≡ 1 (mod 6)

Solution. The multiples of 3 modulo 6 are 0 and 3, so there are no solutions to this equation.

3.7. Let S = R\{−1} and define a binary operation on S by a ∗ b = a + b + ab. Prove that (S, ∗) is an
abelian group.

Solution.

• We first show that the operation gives a function S×S → S. Certainly a ∗ b ∈ R, so we just need
to show that if a, b ∈ S then a∗ b 6= −1. If a∗ b = −1 then 1 +a+ b+ab = 0, or (1 +a)(1 + b) = 0.
This is impossible since a 6= −1 and b 6= −1.

• We show that 0 is the identity for S: for any a ∈ S, we have 0∗a = 0+a+0 ·a = a = a+0+a ·0 =
a ∗ 0.

• We show that the operation is associative:

a ∗ (b ∗ c) = a ∗ (b+ c+ bc)

= a+ b+ c+ bc+ a(b+ c+ bc)

= a+ b+ c+ bc+ ab+ ac+ abc

= a+ b+ ab+ c+ (a+ b+ ab)c

= (a+ b+ ab) ∗ c
= (a ∗ b) ∗ c.

• We show that if a ∈ S then −a
1+a ∈ S is its inverse. Note that −a1+a ∈ R since a 6= −1. Moreover, if

−a
1+a = −1 then −a = −1− a, which is impossible. Thus −a1+a ∈ S. We then compute

a ∗ −a
1 + a

= a+
−a

1 + a
+
−a2

1 + a
= 0

−a
1 + a

∗ a =
−a

1 + a
+ a+

−a2

1 + a
= 0

• Finally, note that a ∗ b = a+ b+ ab = b ∗ a since addition and multiplication are commutative in
R.

Thus (S, ∗) is an abelian group.
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3.16. Give a specific example of some group G and elements g, h ∈ G where (gh)n 6= gnhn.

Solution. For n = 2, any g, h with gh 6= hg will work. For example, in S3 we have

[(12)(13)]2 = (132)2

= (123)

(12)2(13)2 = () · ()
= ().

3.17. Give an example of three different groups with eight elements. Why are the groups different?

Solution. There are five groups of order eight, up to isomorphism: you can select any three. They
are

• Z8,

• Z4 × Z2,

• Z2 × Z2 × Z2,

• D4,

• Q8.

The first three are abelian, and thus different from the last two. The first three are distinguished from
each other by the largest order of an element (8 vs 4 vs 2). To see that D4 and Q8 are not isomorphic,
note that D4 has four elements of order 2 (the four reflections) while Q8 only has one (−1).

3.22. Show that addition and multiplication mod n are well defined operations. That is, show that the
operations do not depend on the choice of the representative from the equivalence classes mod n.

Solution. Suppose that a ≡ b (mod n) and c ≡ d (mod n). Then there are integers r, s with a = b+rn
and c = d+ sn. We find that

a+ c = b+ rn+ d+ sn

= b+ d+ (r + s)n,

so a+ c ≡ b+ d (mod n) and thus addition is well defined. Similarly,

ac = (b+ rn)(c+ sn)

= bc+ bsn+ crn+ rsn2

= bc+ (bs+ cr + rsn)n,

so ac ≡ bd (mod n) and thus multiplication is well defined.

3.25. Let a and b be elements in a group G. Prove that abna−1 = (aba−1)n for n ∈ Z.

Solution.

• For n = 0, this is the statement that a · 1 · a−1 = (aba−1)0, which is true since both sides are the
identity.

• For n > 0 we prove the statement by induction. Suppose that abn−1a−1 = (aba−1)n−1. Then

(aba−1)n = (aba−1)n−1(aba−1)

= abn−1a−1aba−1

= abna−1.
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• Finally, for n < 0, let m = −n. Using the statement for m > 0, we have

(aba−1)n = ((aba−1)−1)m

= (ab−1a−1)m

= a(b−1)ma−1

= abna−1

3.31. Show that if a2 = e for all elements a in a group G then G must be abelian.

Solution. Suppose a, b ∈ G. Then e = (ab)(ab) and e = (ab)(ba) since b2 = e and a2 = e. Since
inverses are unique, ab = ba. Thus G is abelian.

3.33. Let G be a group and suppose that (ab)2 = a2b2 for all a and b in G. Prove that G is an abelian group.

Solution. For all a, b ∈ G we have
abab = aabb.

Multiplying on the left by a−1 and on the right by b−1 yields ba = ab, so G is abelian.

3.40. Let
G =

{(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)}
,

where θ ∈ R. Prove that G is a subgroup of SL2(R).

Solution.

• Since det
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
= cos2(θ) + sin2(θ) = 1, we get that G ⊆ SL2(R).

• Setting θ = 0 shows that G contains the identity.

• Since (
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
·
(

cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

)
= ( 1 0

0 1 ),

G is closed under taking inverses.

• We have(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
·
(

cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)
=
(

cos(θ) cos(ϕ)−sin(θ) sin(ϕ) − sin(θ) cos(ϕ)−cos(θ) sin(ϕ)
sin(θ) cos(ϕ)+cos(θ) sin(ϕ) cos(θ) cos(ϕ)−sin(θ) sin(ϕ)

)
=
(

cos(θ+ϕ) − sin(θ+ϕ)
sin(θ+ϕ) cos(θ+ϕ)

)
.

Thus G is closed under taking products, and thus G is a subgroup of SL2(R).

3.44. List the subgroups of the quaternion group Q8.

Solution.
{{1}, {±1}, {±1,±i}, {±1,±j}, {±1,±k}, Q8} .

3.46. Prove or disprove: if H and K are subgroups of a group G, then H ∪K is a subgroup of G.

Solution. This is only true if H ⊆ K or K ⊆ H. It suffices to give a counterexample: if G = Z6,
H = {0, 2, 4} and K = {0, 3} then H ∪K = {0, 2, 3, 4} is not a subgroup since it’s not closed under
addition.

3.52. Prove or disprove: every proper subgroup of a nonabelian group is nonabelian.

3



Solution. False. For example, {±1,±i} ⊂ Q8 is abelian but Q8 is not.

3.54. Let H be a subgroup of G. If g ∈ G, show that gHg−1 = {g−1hg : h ∈ H} is also a subgroup of G.

Solution.

• Note that gHg−1 is a subset of G since G is closed under multiplication.

• Since 1 ∈ H, we have 1 = g · 1 · g−1 ∈ gHg−1.

• If ghg−1, gh′g−1 ∈ gHg−1 then ghg−1gh′g−1 = ghh′g−1 ∈ gHg−1 since H is closed under multi-
plication.

• If ghg−1 ∈ gHg−1 then (ghg−1)−1 = gh−1g−1 ∈ gHg−1 since H is closed under taking inverses.
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