Math 430 – Problem Set 2 Solutions

Due February 5, 2016

3.1(e). Find all $x \in \mathbb{Z}$ satisfying $5x \equiv 1 \pmod{6}$

Solution. In \mathbb{Z}_6 , $5 + 6\mathbb{Z}$ is its own inverse. Multiplying both sides by 5 yields $x \equiv 5 \pmod{6}$.

3.1(f). Find all $x \in \mathbb{Z}$ satisfying $3x \equiv 1 \pmod{6}$

Solution. The multiples of 3 modulo 6 are 0 and 3, so there are no solutions to this equation.

3.7. Let $S = \mathbb{R} \setminus \{-1\}$ and define a binary operation on S by a * b = a + b + ab. Prove that (S, *) is an abelian group.

Solution.

- We first show that the operation gives a function $S \times S \to S$. Certainly $a * b \in \mathbb{R}$, so we just need to show that if $a, b \in S$ then $a * b \neq -1$. If a * b = -1 then 1 + a + b + ab = 0, or (1 + a)(1 + b) = 0. This is impossible since $a \neq -1$ and $b \neq -1$.
- We show that 0 is the identity for S: for any $a \in S$, we have $0 * a = 0 + a + 0 \cdot a = a = a + 0 + a \cdot 0 = a * 0$.
- We show that the operation is associative:

$$a * (b * c) = a * (b + c + bc)$$

= a + b + c + bc + a(b + c + bc)
= a + b + c + bc + ab + ac + abc
= a + b + ab + c + (a + b + ab)c
= (a + b + ab) * c
= (a * b) * c.

• We show that if $a \in S$ then $\frac{-a}{1+a} \in S$ is its inverse. Note that $\frac{-a}{1+a} \in \mathbb{R}$ since $a \neq -1$. Moreover, if $\frac{-a}{1+a} = -1$ then -a = -1 - a, which is impossible. Thus $\frac{-a}{1+a} \in S$. We then compute

$$a * \frac{-a}{1+a} = a + \frac{-a}{1+a} + \frac{-a^2}{1+a} = 0$$
$$\frac{-a}{1+a} * a = \frac{-a}{1+a} + a + \frac{-a^2}{1+a} = 0$$

• Finally, note that a * b = a + b + ab = b * a since addition and multiplication are commutative in \mathbb{R} .

Thus (S, *) is an abelian group.

3.16. Give a specific example of some group G and elements $g, h \in G$ where $(gh)^n \neq g^n h^n$.

Solution. For n = 2, any g, h with $gh \neq hg$ will work. For example, in S_3 we have

$$[(12)(13)]^{2} = (132)^{2}$$
$$= (123)$$
$$(12)^{2}(13)^{2} = () \cdot ()$$
$$= ().$$

3.17. Give an example of three different groups with eight elements. Why are the groups different?

Solution. There are five groups of order eight, up to isomorphism: you can select any three. They are

ℤ₈,
ℤ₄ × ℤ₂,

- $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$,
- D_4 ,
- Q₈.

The first three are abelian, and thus different from the last two. The first three are distinguished from each other by the largest order of an element (8 vs 4 vs 2). To see that D_4 and Q_8 are not isomorphic, note that D_4 has four elements of order 2 (the four reflections) while Q_8 only has one (-1).

3.22. Show that addition and multiplication mod n are well defined operations. That is, show that the operations do not depend on the choice of the representative from the equivalence classes mod n.

Solution. Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then there are integers r, s with a = b + rn and c = d + sn. We find that

$$a + c = b + rn + d + sn$$
$$= b + d + (r + s)n,$$

so $a + c \equiv b + d \pmod{n}$ and thus addition is well defined. Similarly,

$$ac = (b + rn)(c + sn)$$
$$= bc + bsn + crn + rsn^{2}$$
$$= bc + (bs + cr + rsn)n,$$

so $ac \equiv bd \pmod{n}$ and thus multiplication is well defined.

3.25. Let a and b be elements in a group G. Prove that $ab^n a^{-1} = (aba^{-1})^n$ for $n \in \mathbb{Z}$.

Solution.

- For n = 0, this is the statement that $a \cdot 1 \cdot a^{-1} = (aba^{-1})^0$, which is true since both sides are the identity.
- For n > 0 we prove the statement by induction. Suppose that $ab^{n-1}a^{-1} = (aba^{-1})^{n-1}$. Then

$$(aba^{-1})^n = (aba^{-1})^{n-1}(aba^{-1})$$

= $ab^{n-1}a^{-1}aba^{-1}$
= ab^na^{-1} .

• Finally, for n < 0, let m = -n. Using the statement for m > 0, we have

$$(aba^{-1})^n = ((aba^{-1})^{-1})^m$$

= $(ab^{-1}a^{-1})^m$
= $a(b^{-1})^m a^{-1}$
= $ab^n a^{-1}$

3.31. Show that if $a^2 = e$ for all elements a in a group G then G must be abelian.

Solution. Suppose $a, b \in G$. Then e = (ab)(ab) and e = (ab)(ba) since $b^2 = e$ and $a^2 = e$. Since inverses are unique, ab = ba. Thus G is abelian.

3.33. Let G be a group and suppose that $(ab)^2 = a^2b^2$ for all a and b in G. Prove that G is an abelian group.

Solution. For all $a, b \in G$ we have

$$abab = aabb.$$

Multiplying on the left by a^{-1} and on the right by b^{-1} yields ba = ab, so G is abelian.

3.40. Let

$$G = \left\{ \begin{pmatrix} \cos(\theta) - \sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \right\},\$$

where $\theta \in \mathbb{R}$. Prove that G is a subgroup of $SL_2(\mathbb{R})$.

Solution.

- Since det $\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} = \cos^2(\theta) + \sin^2(\theta) = 1$, we get that $G \subseteq SL_2(\mathbb{R})$.
- Setting $\theta = 0$ shows that G contains the identity.
- Since

$$\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \cdot \begin{pmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

G is closed under taking inverses.

• We have

$$\begin{pmatrix} \cos(\theta) - \sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \cdot \begin{pmatrix} \cos(\varphi) - \sin(\varphi) \\ \sin(\varphi) & \cos(\varphi) \end{pmatrix} = \begin{pmatrix} \cos(\theta) \cos(\varphi) - \sin(\theta) \sin(\varphi) & -\sin(\theta) \cos(\varphi) - \cos(\theta) \sin(\varphi) \\ \sin(\theta) \cos(\varphi) + \cos(\theta) \sin(\varphi) & \cos(\theta) \cos(\varphi) - \sin(\theta) \sin(\varphi) \end{pmatrix}$$
$$= \begin{pmatrix} \cos(\theta + \varphi) & -\sin(\theta + \varphi) \\ \sin(\theta + \varphi) & \cos(\theta + \varphi) \end{pmatrix}.$$

Thus G is closed under taking products, and thus G is a subgroup of $SL_2(\mathbb{R})$.

3.44. List the subgroups of the quaternion group Q_8 .

Solution.

$$\{\{1\}, \{\pm 1\}, \{\pm 1, \pm i\}, \{\pm 1, \pm j\}, \{\pm 1, \pm k\}, Q_8\}.$$

3.46. Prove or disprove: if H and K are subgroups of a group G, then $H \cup K$ is a subgroup of G.

Solution. This is only true if $H \subseteq K$ or $K \subseteq H$. It suffices to give a counterexample: if $G = \mathbb{Z}_6$, $H = \{0, 2, 4\}$ and $K = \{0, 3\}$ then $H \cup K = \{0, 2, 3, 4\}$ is not a subgroup since it's not closed under addition.

3.52. Prove or disprove: every proper subgroup of a nonabelian group is nonabelian.

Solution. False. For example, $\{\pm 1, \pm i\} \subset Q_8$ is abelian but Q_8 is not.

- 3.54. Let H be a subgroup of G. If $g \in G$, show that $gHg^{-1} = \{g^{-1}hg : h \in H\}$ is also a subgroup of G. Solution.
 - Note that gHg^{-1} is a subset of G since G is closed under multiplication.
 - Since $1 \in H$, we have $1 = g \cdot 1 \cdot g^{-1} \in gHg^{-1}$.
 - If $ghg^{-1}, gh'g^{-1} \in gHg^{-1}$ then $ghg^{-1}gh'g^{-1} = ghh'g^{-1} \in gHg^{-1}$ since H is closed under multiplication.
 - If $ghg^{-1} \in gHg^{-1}$ then $(ghg^{-1})^{-1} = gh^{-1}g^{-1} \in gHg^{-1}$ since H is closed under taking inverses.