Math 220 - Practice Exam 1

1. Give the limit if it exists
(a) $\lim _{x \rightarrow 2-} \frac{\left|x^{2}-2 x\right|}{x-2}$
(b) $\lim _{x \rightarrow 2+} \frac{\left|x^{2}-2 x\right|}{x-2}$
(c) $\lim _{x \rightarrow 2} \frac{\sqrt{x+2}-2}{x-2}$
2. Determine the derivatives of the following functions:
(a) $f(x)=x^{4}-2 \sqrt{x}+1-\frac{2}{x^{3}}+\pi x^{\pi}$,
(b) $f(x)=\left(x^{2}-4 x+5\right)^{6}\left(2 x^{3}-1\right)^{3}$,
(c) $g(x)=\frac{3}{(x-\sin (x))^{2}}$,
(d) $f(x)=\frac{\sin (x) \tan (3 x)}{1+\cos ^{2}(x)}$,
(e) $h(x)=\sin ^{3}\left(x^{3}\right)$.
3. Evaluate the limit

$$
\lim _{h \rightarrow 0} \frac{\tan (\pi / 4+h)-1}{h} .
$$

4. If $f(x)=x^{3}-2 x+1$,
(a) What is the differential of $f(x)$ at $x=2$?
(b) $f(2)=5$. Use the differential to approximate $f(1.9)$.
5. Use implicit differentiation to determine the equation of the tangent line to the curve

$$
x^{3} y^{2}-x^{2} y^{3}+2 x^{2}-y^{2}=1
$$

at the point $(1,1)$.
6. A 10 m ladder leans against a wall. As the base of the ladder is pulled away at a rate of $0.6 \mathrm{~m} / \mathrm{s}$, the ladder slides down the wall. At what rate is the height of the top of the ladder changing when the base of the ladder is 6 m from the wall? (Give an exact numerical answer)
7. Determine where the function $f(x)=x \sqrt{8-x^{2}}$ has a horizontal tangent line.
8. Sketch the graph of the derivative of the given function $f(x)$:

9. The chart below gives the values of $f(x)$ and $g(x)$ and their derivatives at $x=2, x=3$ and $x=4$.

	$f(x)$	$g(x)$	$f^{\prime}(x)$	$g^{\prime}(x)$
2	4	-2	3	9
3	0	29	-1	4
4	3	2	7	11

Use it to find the following derivatives,
(a) If $h(x)=f(g(x))$, determine $h^{\prime}(4)$.
(b) If $k(x)=g(f(x))$, determine $k^{\prime}(4)$.

