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1. Introduction

In [6], Herbst initiated the spectral analysis and scattering theory for the Schrö-
dinger operator ∆ + V on Rn where V is a smooth, real-valued potential which
is homogeneous of degree zero near infinity. Further results, reviewed below, are
due to Agmon, Cruz and Herbst [1] and Herbst and Skibsted [5]. In this paper,
in which the main results are restricted to the two-dimensional case, we give a
rather detailed description of the generalized eigenfunctions and the structure of
the scattering matrix for these operators. To obtain the most complete results
we make generic assumptions on the potential, including the requirement that the
restriction of the potential to the sphere at infinity is Morse. On the other hand
we work in a more general context than Euclidean scattering so that our methods
apply to general two-dimensional compact manifolds with boundary equipped with
a scattering metric in the sense of [10]. In particular we show that the scattering
matrix for this problem is a Fourier integral operator, of an appropriate type,
associated with a classical scattering relation describing the asymptotic behaviour
of the classical trajectories.

As can be seen already from this very brief description, even the statement of
the results requires a detailed description of the associated classical problem, and
the definition of classes of Fourier integral operators which match the resulting
geometry in phase space. Thus, we proceed by first discussing the basic notions
in scattering theory, with focus on the parameterization of tempered distributional
eigenfunctions, then describe the classical problem in detail. We remark that this
problem is microlocally analogous to that considered in a paper [4] of Guillemin
and Schaeffer in the traditional microlocal setting. Indeed, their analysis is used
in the proof of some of our results. This detailed picture will allow us to state our
results, with a short interlude discussing generalizations of the isotropic calculus
on vector spaces to allow different homogeneities in different directions of phase
space. Finally we sketch the proof of at least some of our results. The full proofs
will appear in a forthcoming manuscript.

Thus, let X be a compact manifold with boundary where, for the moment, we
do not restrict the dimension. The boundary Y = ∂X consists of a finite union of
compact manifolds without boundary, Y = Y1 ∪ · · · ∪ YN . It is always possible to
find a boundary defining function on X, x ∈ C∞(X) such that x ≥ 0, Y = {x = 0}
and dx 6= 0 on Y. A Riemannian metric on the interior of X is a scattering metric
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if, for some choice of defining function, it takes the form

(1.1) g =
dx2

x4
+

h

x2
, h ∈ C∞(X;S2X), h0 = h

∣∣
Y

>> 0.

That is, h = x2(g − x−4dx2) is a smooth 2-cotensor on X which restricts to a
metric on Y. In this more general setting we consider a real potential V ∈ C∞(X)
and examine the spectral and scattering theory of ∆ + V where ∆ is the Laplace
operator of a scattering metric. The Euclidean case is included since the Euclidean
metric is a scattering metric on the radial compactification of Rn to a ball (or half-
sphere) and a smooth potential which is homogeneous of degree zero near infinity
is a smooth function up to the boundary of the radial compactification.

Under these assumptions the Schrödinger operator

(1.2) P = ∆ + V

has continuous spectrum of infinite multiplicity (assuming dim X ≥ 2) occupying
the interval [κ,∞) where

(1.3) κ = inf
Y

V.

In addition there may be discrete spectrum in the interval [−m,K],

(1.4) m = inf
X

V, K = sup
Y

V

which is discrete in the open set (−∞,K) \ Crit(V ),

(1.5) Crit(V ) = {p ∈ Y ; dY V (p) = 0}.

The main interest lies in the continuous spectrum which we analyse in detail here
under the assumption that dim X = 2 and V

∣∣
Y

is Morse. For simplicity in these
notes we outline the results under the additional assumption that Y has only one
component circle and V

∣∣
Y

is perfect Morse, so only has a global maxiumum and
minimum forming Crit(V ). These restrictions are straightforward to remove but
this does change the global geometry.

Our central result is the parameterization of all tempered distributions associated
to the continuous spectrum; this constitutes a distributional form of ‘asymptotic
completeness’. Thus we examine

(1.6) E(λ) =
{
u ∈ C−∞(X); (∆ + V − λ)u = 0

}
.

Note that the space of extendible distributions C−∞(X) reduces precisely to the
space of tempered distributions in the sense of Schwartz in case X is the radial
compactification of Rn. For λ < κ, E(λ) is finite-dimensional and consists of square-
integrable eigenfunctions. More generally

(1.7) Epp(λ) = E(λ) ∩ L2(X) ⊂ Ċ∞(X),

where L2(X) is computed with respect to the Riemannian volume form, is always
finite dimensional and is empty for λ > K. Since C−∞(X) is the dual of Ċ∞(X)
this allows us to consider

(1.8)
Eess(λ) =

{
u ∈ C−∞(X); (∆ + V − λ)u = 0, 〈u, v〉 = 0 ∀ v ∈ Epp(λ)

}
,

E(λ) = Eess(λ)⊕ Epp(λ).
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The structure of the space Eess(λ) depends on λ; there are three distinct cases,
corresponding to the values of κ, K and the additional transition point

(1.9) λHess = κ + V ′′(ymin), κ = V (ymin)

where the derivatives are with respect to boundary arclength. Clearly λHess > κ
but the three possibilities λHess < K, λHess = K, λHess > K may all occur for
different V (or for the same V but different metrics). For any particular problem
only two or three of the following four intervals can occur

(1.10)


κ < λ < min(λHess,K) “Near minimum”
λHess < λ < K “Hessian range”
K < λ < λHess “Mixed range”
max(λHess,K) < λ “Above thresholds.”

The maximum and the minimum of the potential are thresholds corresponding to
changes in the geometry of the fixed energy (i.e. characteristic) surface of the clas-
sical problem. Away from these thresholds both the maximum and the minimum
correspond to critical points of the classical flow (at infinity); the Hessian transition
corresponds to an energy at which there is a change in the local geometry at critical
points corresponding to the minimum.

The structure of Eess(λ) is closely related to the precise structure of the boundary
values of the resolvent which exist for λ ∈ (κ, +∞) \ (Crit(V ) ∪ σpp(∆ + V )), as
a consequence of an appropriate version of the Mourre estimate, or of microlocal
estimates closely related to it, see [6] for the proof in the Euclidean setting. That
is, for any δ > 0,
(1.11)
(∆+V − (λ+ i0))−1 = lim

ε→0+
(∆+V − (λ+ iε))−1 : x1/2+δL2(X) → x−1/2−δL2(X).

For λ ∈ σpp(∆ + V ) \ Crit(V ), the limits still exist on the orthocomplement of
Epp(λ). Note that

(1.12) f ∈ x1/2+δL2(X) =⇒ [(∆+V −(λ+i0))−1−(∆+V −(λ−i0))−1]f ∈ E(λ).

In each of these ranges for the eigenparameter we can thus define spaces of
‘smooth’ eigenfunctions by setting

(1.13) E−∞
ess (λ) = [(∆+V − (λ+ i0))−1− (∆+V − (λ− i0))−1](Ċ∞(X)	Epp(λ)).

We give a microlocal characterization of these spaces below. In all of the non-
transition regions

(1.14) E−∞
ess (λ) ⊂ Eess(λ) is dense

in the topology of C−∞(X). In fact, approximating sequences can be constructed
rather explicitly by extending (∆ + V − (λ ± i0))−1 to distributions satisfying a
scattering wave front set condition, but we do not describe this here.

The roughest picture of the parameterization of generalized eigenfunctions, which
has little to do with our particular problem, is via the two terms of (1.13). Namely,
let

(1.15) R−∞ess,±(λ) = [(∆ + V − (λ± i0))−1(Ċ∞(X)	 Epp(λ))]/Ċ∞(X)

be the range of the incoming/outgoing boundary value of the resolvent acting on
Schwartz functions, modulo Schwartz functions. It is not hard to show that (∆ +
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V − λ)Ċ∞(X) ⊂ Ċ∞(X) is closed, and

(1.16) (∆ + V − λ) : R−∞ess,±(λ) −→ Ċ∞(X)/(∆ + V − λ)Ċ∞(X)

is an isomorphism (for each sign). Thus the range space in (1.16) is a Fréchet
space. Complex conjugation gives a conjugate linear isomorphism between the two
spaces R−∞ess,±(λ). The scattering matrix may now be defined abstractly on, say, the
incoming space as

(1.17) S(λ) : R−∞ess,−(λ) → R−∞ess,+(λ), S(λ)u = [−(∆+V −λ+ i0)−1(∆+V −λ)u].

There is a natural pairing on R−∞ess,+(λ) given by

(1.18) B(u, v) =
∫

X

(
[(∆ + V − λ)u]v − u[(∆ + V − λ)v]

)
;

the same formula also defines a pairing on R−∞ess,−(λ). These are easily seen to be
well-defined and non-degenerate. This induces pre-Hilbert norms on R−∞ess,±(λ) with
respect to which S(λ) is unitary.

In fact, B can also be thought of as a pairing between u ∈ E−∞
ess (λ) and v ∈

R−∞ess,+(λ) (or v ∈ R−∞ess,−(λ)), and then the first term of (1.18) may be dropped. This
way B extends to a pairing between u ∈ Eess(λ) and v ∈ R−∞ess,+(λ), and defines the
incoming distributional boundary value of u in the dual space of R−∞ess,+(λ).

One of the purposes of scattering theory is to make these parameterizations of the
continuous spectrum and the scattering matrix, which is the relation between them,
geometric. In particular this gives a linear, rather than an anti-linear isomorphism
between R−∞ess,−(λ) and R−∞ess,+(λ). To do so, we need to describe the structure of the
smooth eigenfunctions in the four non-transition regions. Since this structure is
intimately connected to the corresponding classical problem, we proceed to describe
that first.

2. Classical problem

The classical system formally associated to the Schrödinger operator ∆ + V on
Rn is generated by the Hamiltonian function

(2.1) p = |ζ|2 + V (z) ∈ C∞(Rn
z × Rn

ζ ).

In fact, only the ‘large momentum’ (the usual semiclassical limit) ζ → ∞ or the
‘large distance’ limit z → ∞ are relevant to the behaviour of solutions. Since we
are interested in eigenfunctions

(2.2) (∆ + V − λ)u = 0,

only the vicinity of the finite (fixed) energy, or characteristic, surface which can be
written formally

(2.3) Σ(λ) =
{
|ζ|2 + V (z) = λ, |z| = ∞

}
is involved. Setting |z| = ∞ is restriction to the sphere at infinity for the radial
compactification R̄n of Rn so Σ(λ) ⊂ Sn−1

ω × Rn, z = |z|ω. This phase space at
infinity is a contact manifold where the contact form is

(2.4) σ = dρ + µ · dω, ζ = µ⊕ ρω, µ ∈ ω⊥.
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In the general case of a scattering metric on a compact manifold with boundary
the corresponding phase space consists of

(2.5) C∂ = scT ∗Y X,

the restriction of the scattering cotangent bundle to the boundary and the charac-
teristic variety at energy λ is

(2.6) Σ(λ) =
{
|(τ, µ)|2y + V (y) = λ

}
where | · |2y is the metric function, a fibre metric on scT ∗X, at the boundary, and
τ = −ρ in the notation of (2.4).

Again C∂ = scT ∗Y X is naturally a contact manifold. The contact structure arises
as the ‘boundary value’ of the singular symplectic structure on scT ∗X, correspond-
ing to the fact that the associated semiclassical model is the leading part, at the
boundary, of the Hamiltonian sytem defined by the energy. Thus, in terms of local
coordinates x, y near a boundary point, with x a boundary defining function, the
symplectic form, arising from the identification scT ∗X◦ ' T ∗X◦, is

(2.7) ω̃ = d(τ
dx

x2
+ µ · dy

x
) = (dτ + µ · dy) ∧ dx

x2
+

dµ ∧ dy

x
,

and is hence singular at the boundary. Since the vector field x2∂x is well-defined at
the boundary, modulo multiples and an additive term which is O(x2∂y), the contact
form

(2.8) σ = ω̃(x2∂x, ·) = dτ + µ · dy

defines a contact line bundle on T ∗C∂ .
The leading part of the Hamilon vector field Hp, with p in (2.1), is given by the

Legendre vector field W on C∂ . This is fixed in terms of the contact form by

(2.9) dσ(·,W ) + γσ = dp, σ(W ) = 0,

for some function γ. Clearly Wp−λ = W for all λ is tangent to Σ(λ) whenever the
latter is smooth as follows by pairing the identity with W.

Thus the semiclassical model at energy λ is the flow defined by W on Σ(λ).

Lemma 2.1. The characteristic surface Σ(λ) is smooth whenever λ is not a critical
value of VY . For regular λ the critical points of the Legendre vector field W on Σ(λ)
are the radial sets
(2.10)
R±(λ) = {(y, τ, µ) ∈ Σ(λ); τ = ±

√
λ− V (p), µ = 0, y = p where dY V (p) = 0}.

Proof. The Legendre vector field is fixed by (2.9) so in any local coordinates y in
the boundary it follows from (2.8) that

(2.11) dµ ∧ dy(·,W )) = −γ(dτ + µdy) + dp.

Given a boundary point q we may choose coordinates Riemannian normal coordi-
nates based at q in the boundary. Thus the boundary metric is Euclidean to second
order, p = τ2 + |µ|2 + O(|y|2) + V (y) − λ and we may easily invert (2.11) to find
that at the fibre above q

(2.12) W = 2µ · ∂y + (−V ′(y) + 2τµ) · ∂µ − 2|µ|2∂τ , γ = 2τ

This can only vanish when µ = 0 and V ′(y) = 0 giving (2.10). �
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We remark that in the Euclidean setting, (2.10) amounts to

(2.13) R±(λ) = {(y, ζ) ∈ Σ(λ); y = ∓ζ/|ζ|, y = p where dY V (p) = 0}.

For the remainder of this section and, unless otherwise stated, for the remainder
of this note we make the hypotheses

(2.14) dim X = 2, V
∣∣
Y

is Morse.

The assumption that V is Morse on the boundary ensures that the radial sets
R±(λ), defined for non-critical λ, are finite sets.

Since each of the boundary components of X is a circle we may assume that
the induced metric is some multiple ( lj

2π )2dθ2 of the standard metric on the circle
on each component Yj of Y. Only the lj ’s distinguish the case of ‘Euclidean ends
with long range (and compact geometric) perturbation’ from the general case of a
two-dimensional scattering metric. Furthermore the formula (2.12) for W is valid
without error in such coordinates.

If Vi = V
∣∣
Yi

is perfect Morse then the component of Σ(λ) above Yi,

(2.15)

{
Σi(λ) is a sphere for κi = min(V

∣∣
Yi

) < λ < Ki = max(V
∣∣
Yi

),
Σi(λ) is a torus for λ > Ki.

In all cases if λ is not a critical value of V
∣∣
Yi

then

(2.16) Ii(λ) = Σi(λ) ∩ {τ = 0}

is a smooth curve (generally with several components) to which W is transversal.
The flow is symmetric under τ → −τ, µ → −µ.

Proposition 2.2. Provided dim X = 2 and V
∣∣
Y

is Morse the critical point P±(λ) =
(q,±

√
λ− V (q), 0) in (2.10) is

(2.17)


a centre if q is a minimum and λ < λHess

a sink/source if q is a minimum and λ ≥ λHess

a saddle if q is a maximum.

Proof. As already noted above, (2.12) is valid locally in geodesic boundary coordi-
nates. If q is a critical point for V then µ = 0 at the corresponding critical points
of W and we may use local coordinates y, µ in the characteristic variety nearby,
since τ = ±

√
λ− V (y)− µ2 is smooth. In these coordinates the linearization of W

at the critical point is

(2.18) L = 2[µ∂y + (−ay + τ̄µ)∂µ], where V ′′(q) = 2a, τ̄ = ±
√

λ− V (q).

The eigenvalues of L are therefore the roots of

(2.19) (
σ

2
)2 − τ̄(

σ

2
) + a = 0.

It is convenient for future reference to write the eigenvalues σj as

(2.20) σj = 2τ̄ rj ;

the rj thus satisfy

(2.21) r2 − r +
a

τ̄2
= 0.
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If a < 0, so q is a local maximum then the eigenvalues of L are real, and are
given by

(2.22) r1 =
1
2
−

√
1
4
− a

τ̄2
< 0 < 1 < r2 =

1
2

+

√
1
4
− a

τ̄2
,

and the critical point is a saddle. If a > 0, so q is a local minimum, then the
discriminant

(2.23) 1− 4a

τ̄2


< 0 if λ < λHess

= 0 if λ = λHess

> 0 if λ > λHess

, λHess = V (q) + 2V ′′(q).

Correspondingly the eigenvalues are of the form 2τ̄ rj , j = 1, 2,

r1 =
1
2

+ i

√
a

τ̄2
− 1

4
, r2 =

1
2
− i

√
a

τ̄2
− 1

4
,

r1 = r2 = 1/2,

0 < r1 =
1
2
−

√
1
4
− a

τ̄2
<

1
2

< r2 =
1
2

+

√
1
4
− a

τ̄2
< 1

(2.24)

and the critical point is a centre, a degenerate center, or a source/sink depending
on the sign of τ̄ . �

The main reason for considering the Legendre vector field W is its relation to
the Hamiltion vector field of the energy function p with respect to the singular
sympletic form in (2.7). Let scHp be x−1 times the Hamilton vector field Hp of p
near the boundary of scT ∗X. Then we find

(2.25) ω̃(·, xscHp) = dp =⇒ scHp = 2τx∂x + W + xU, U ∈ Vb(scT ∗X),

where Vb(scT ∗X) is the set of C∞ vector fields on scT ∗X that are tangent to the
boundary, scT ∗∂XX. Thus this rescaled vector field has critical points at the same
points as W on the energy surface Σ(λ). The appearance of 2τx∂x in (2.25) is the
main reason for introducing rj in (2.21); rj is the ratio of the eigenvalues of W (i.e.
of certain eigenvalues of scHp) to the eigenvalue

(2.26) σ0 = 2τ̄

corresponding to x∂x.
Suppose that f(τ, y, µ) vanishes at P ∈ Σ(λ), and df is an eigenvector for W on

Σ(λ) with eigenvalue σ. Then

(2.27) scHp(xrf) = xr[(2rτ + σ)f + q + O(x)]

where q is smooth and vanishes quadratically at the critical point P. We use this
as a basis for the construction of positive commutators, which we sketch below.

There are some global points of interest in the dynamics of W. In particular,
note that the ∂τ component of scHp is −h ≤ 0, so τ is monotone decreasing along
integral curves of W.

It is also easy to see that every bicharacteristic γ : Rt → Σ(λ) tends to a point
in R+(λ) ∪R−(λ) as t → ±∞. Indeed, limt→±∞ τ(γ(t)) = τ± exists by the mono-
tonicity of τ , and any sequence γk : [0, 1] → Σ(λ), γk(t) = γ(tk + t), tk → +∞, has
a uniformly convergent subsequence, which is then a bicharacteristic γ̃, by standard
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Hamilton flow arguments. But then τ is constant along this bicharacteristic, hence
h is identically 0. In view of the ∂µ components of scHp, ∂yV is identically 0 along
γ̃, hence y is a critical point of V along γ̃. Since the set of critical points of V is
discrete, it now immediately follows that γ̃ is a constant curve, γ̃(t) = q for all t,
q ∈ R+(λ) ∪R−(λ), and indeed limt→+∞ γ(t) = q.

We need a much more precise picture of the bicharacteristic flow at the radial
points, R+(λ) ∪R−(λ); we analyze this in the next section.

3. Resolution of singularities of flows

Suppose that W is a C∞ vector field on a manifold M , and W (o) = 0. Let
Φ : M ×Rt → M denote the flow generated by W , and suppose that o is a sink, so
there exists a neighborhood O of o such that for p ∈ O, limt→+∞Φ(p, t) = o. One
can define the blow-up of o in M along W , which can be alternatively regarded as
a compactification of M \ {o} by W , as follows.

Let S ⊂ O be a closed embedded submanifold of M transversal to W . Then
Φ|S×(0,+∞) is a diffeomorphism of S×(0,+∞) to a punctured neighborhood O′ of o

in M . We compactify S×[0,+∞)t by making ρ = e−t a boundary defining function
of [0,+∞) at +∞, i.e. by identifying S× [e,+∞)t with S× (0, 1]ρ, t = − log ρ, and
using the smooth structure of S×(0, 1)ρ to put a smooth structure on S × [0,+∞)t.
Then the interior of S × [0,+∞)t is diffeomorphic to S × (0,+∞), hence to O′.
The blow-up [M ; {o}]W is then defined as the union of M \ O′ and S × [0,+∞)t,
with ∂O′ = S and S × {0t} identified. The interior of [M ; {o}]W is naturally
diffeomorphic to M \ {o}. The C∞ structure of [M ; {o}]W is independent of the
choice of S. The boundary hypersurface ρ = 0 is called the front face of the blow-up,
and below it is usually denoted by ff, or more precisely by ff([M ; {o}]W ).

In particular, inhomogeneous blow-ups can be constructed this way. Namely,
let X be a 2-dimensional manifold with boundary, and let o ∈ ∂X. Choose local
coordinates (x, y) such that x ≥ 0 is a boundary defining function and o is given
by x = 0, y = 0. Let r ∈ (0, 1) be a given homogeneity. We wish to blow up
o in X so that y is homogeneous of degree 1 and x is homogeneous of degree
1/r. For this purpose, we consider the vector field −W = r−1x∂x + y∂y, and
carry out the above construction. Note that y/xr and x/|y|1/r are homogeneous
of degree 0 where they are bounded, so they can be regarded as variables on the
transversal S. Thus, local coordinates in the lift of the region |y/xr| < C are
given by y/xr and xr, while local coordinates in the lift of the region x/|y|1/r < C ′

are given by x/|y|1/r and y. Although the manifold [X; {o}] a priori depends on
the choice of W , hence on the choice of coordinates (x, y), this is in fact not so
since x has the higher homogeneity. More explicitly, any change of coordinates
takes the form y′ = a(x, y)y + b(x, y)x, x′ = c(x, y)x, c(0, 0) > 0, a(0, 0) 6= 0, so
for example y′/(x′)r = (a/cr)(y/xr) + (b/cr)x1−r which is bounded (in x ≤ x0,
x0 > 0, |y| ≤ y0, y0 > 0) if and only if y/xr is bounded (since r ∈ (0, 1)!).
Such calculations show that the blow-ups using (x, y) and using (x′, y′) agree as
topological manifolds. Their C∞ structure is slightly different as can be seen from
the appearance of x1−r above. However, it is easy to see that both the class of
conormal functions on [X; {o}] and that of polyhomogeneous conormal functions
are well-defined, regardless of the choice of local coordinates, provided that the
orders (homogeneities) are appropriately adjusted. Essentially, [X; {o}] should be
thought of as a ‘conormal manifold’ rather than as a C∞ manifold, i.e. the algebra of
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smooth functions should be replaced by the algebra of polyhomogeneous conormal
functions as the basic object of interest.

As an application, we define the classical scattering relation as follows.

Definition 3.1. We say that ξ ∈ ff+([Σ(λ); ζmin,−, ζmin,+]) is related to ξ′ ∈
ff−([Σ(λ); ζmin,−, ζmin,+]), denoted ξ ∼ ξ′, by the classical scattering relation if
there exists a bicharacteristic γ : Rt → Σ(λ) whose lift to [Σ(λ); ζmin,−, ζmin,+]
tends to ξ (resp. ξ′) as t → +∞ (resp. t → −∞).

This will be used to describe the canonical relation of the scattering matrix in
Section 6.

4. Structure of smooth eigenfunctions

We can now give an oscillatory function description of

(4.1) u± = R(λ± i0)f = (∆ + V − (λ± i0))−1f, f ∈ Ċ∞(X).

This is assembled from microlocal results at the radial points, and hence most of
the statements below, even as stated, do not require the assumption that V |Y is
perfect Morse. Nonetheless we make this assumption in the intersets of simplicity.
We denote the incoming (resp. outgoing) critical points in Σ(λ) over ymax and ymin

by ζmax,+ and ζmin,+ (resp. ζmax,− and ζmin,−); the critical points over ymax are
only present if λ > K.

We recall that Ψm,l
sc (X) is the set of scattering ps.d.o.’s of multiorder (m, l)

defined by Melrose in [9]; for X = Rn this is a well-known space of operators
introduced originally by Shubin [13] and in Hörmander’s Weyl calculus corresponds
to the metric

(4.2)
dz2

〈z〉2
+

dζ2

〈ζ〉2

and weight 〈z〉−l〈ζ〉m. The corresponding wave front set is denoted by WFsc; for
u ∈ C−∞(X) with (P − λ)u ∈ Ċ∞(X), WFsc(u) is contained in Σ(λ) by elliptic
regularity.

The microlocal estimates used in the proof of the limiting absorption principle
also show that τ < 0 on WFsc(u+) and τ > 0 on WFsc(u−). By propagation of
singularities, see [9], WFsc(u+) is a subset of the ‘flow-out’ of R(−λ), i.e. is a subset
of

(4.3) R(−λ)∪{γ(t); t ∈ R, γ is a bicharacteristic in Σ(λ), lim
t′→−∞

γ(t′) ∈ R(−λ)}.

Thus, under the perfect Morse assumptions, WFsc(u+) at most contains ζmin,−,
ζmax,−, and the unique smooth Legendre submanifold Lmax,− through ζmax,− on
which τ ≤ τ(ζmax,−) < 0.

We start with the simplest case, when WFsc(u+) ⊂ {ζmin,−}. Since ζmax,− is
a saddle point, one might expect on semiclassical grounds that these u+ are fairly
typical elements of R−∞ess,+(λ); in particular, they should suffice to parameterize the
essential spectrum in an L2 sense. Note that for λ < K, WFsc(u+) ⊂ {ζmin,−} is
automatically satisfied.

To describe such u+, we need to define inhomogeneous blow-ups of ymin in X
with homogeneity given by the linearization L of W at ζmin,−. More specifically, the
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relevant information is the real part of the smaller eigenvalue, namely r = Re r1 in
Lemma 2.1. Note that r ∈ (0, 1/2] at ζmin,−. The desired blow-up is the r-blow-up

(4.4) [X; ymin]r,

discussed above, of ymin where x has homogeneity 1/r and y has homogeneity 1.
If r < 1/2, let Lmin,− denote the smooth curve in scT ∗Y X through ζmin,− corre-
sponding to the eigenvector with eigenvalue 2τ̄ r2 that is given by the union of
bicharacteristics. (This is a Legendre submanifold of C∂ = scT ∗Y X since the con-
tact form vanishes on it, and it has the correct dimension, namely one.) Since this
is smooth, and near ymin it has a non-degenerate projection to X, it is given by the
graph of a one-form d(Φmin,−/x), where Φmin,− ∈ C∞(X).

Theorem 4.1. Suppose that λ > κ, u+ is given by (4.1), and WFsc(u+) ⊂
{ζmin,−}.

(i) If λ > λHess, so r = r1 ∈ (0, 1/2), then

(4.5) u+ = eiΦmin,−/xxr2/2xiβa + u′+, a ∈ C∞([X; ymin]r),

where a vanishes to infinite order at the lift of ∂X (i.e. everywhere but at
the front face ff of the blow-up), β is a real constant given by the subprin-
cipal symbol of P − λ at ζmin,−, and u′ ∈ x−1/2+δL2(X) for some δ > 0.
In fact, u′+ has a full asymptotic expansion of the same form as the first
term, but with higher powers of x.

Conversely, for any Schwartz function a0 on the front face, there exists
f ∈ Ċ∞(X) such that u+ = R(λ + i0)f is of the form as above with
a|ff = a0.

(ii) If λ < λHess, then

(4.6) u+ = e−iτ̄/xeiτ̄y2/(4x)x1/4
∑
j≥0

xicj aj + u′+, aj ∈ C∞([X; ymin]1/2),

where aj vanishes to infinite order at the lift of ∂X (i.e. everywhere but at
the front face of the blow-up), and u′ ∈ x−1/2+δL2(X) for some δ > 0. In
fact, u′+ has a full asymptotic expansion of the same form as the first term,
but with higher powers of x. The aj are multiples of normalized eigenfunc-
tions of the harmonic oscillator with coefficients that are Schwartz in j
(and this is the only restriction on them). The cj are real, and correspond
to the eigenvalues of the harmonic oscillator.

Remark 4.2. This theorem is microlocal, hence it remains valid with very minor
changes in the notation, if there are several local minima of V |Y .

Remark 4.3. The r-blow-up is related to the vector field 2τ̄(x∂x)+2τ̄ r1(x∂y) mod-
eling the flow ‘along Lmin,−’.

If λ > K, there is a unique C∞ Legendre submanifold Lmax,− of scT ∗Y X which
consists of ζmax,− and the two non-constant bicharacteristics that tend to ζmax,− as
t → −∞. These bicharacteristics correspond to the eigenvectors of the linearization
of the Legendre vector field at ζmax,− with eigenvalue 2τ̄ r2 (recall that r2 > 1). The
closure of Lmax,− is Lmax,− ∪ {ζmin,−} and Lmax,− is singular at ζmin,−. First we
state a result away from this singularity.

Theorem 4.4. Suppose that λ > κ.
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(i) Microlocally away from ζmin,−, u+ is a polyhomogeneous Legendre distribu-
tion associated to Lmax,−. That is, if Q ∈ Ψ0,0

sc (X) and ζmin,− 6∈ WF′sc(Q),
then Qu+ ∈ I

r2−r1
4 (X, Lmax,−). Microlocally near ζmax,−, u+ has the form

(4.7) u+ ∼ eiΦ/xxr2/2xiβ
∑

j

∑
s≤j

xkj (log x)sajs, near ζmax,−,

ajs a C∞ function on Y , 0 = k0 < k1 < k2 < . . ., limj→∞ kj = +∞.
Moreover, the coefficients ajs are determined by aj′s′(ymax), j′ ≤ j. Again
β is a real constant given by the subprincipal symbol of P − λ at ζmin,−.

(ii) There exists f ∈ Ċ∞(X) such that a00 6= 0.

As an immediate corollary we deduce that Qu+ ∈ xsL2(X) for all s < (r2−2)/2.
Since r2 > 1, this is an improvement over Qu+ ∈ x−1/2L2(X). The statement
Qu+ ∈ x−1/2L2(X) can be interpreted as the absence of channels at the maxima of
V |Y and is closely related to the work of Herbst and Skibsted [5]. Thus, on the one
hand, the present theorem strengthens their results in this special case by showing
that u+ has additional decay away from the minima of V |Y , and gives the precise
asymptotic form of u+. On the other hand, part (ii) also shows that the decay is
not rapid. One interpretation of this phenomenon is that the L2-theory does not
see the maxima of the potential (because R(λ + i0)f is too small there), while the
smooth theory (working modulo Ċ∞(X)) does.

We can now turn to the ‘ends’ of Lmax,−. For simplicity we only discuss these
if λ > λHess(ymin). We blow up ζmin,− in Σ(λ) using the Legendre vector field
W , and denote the resulting space by [Σ(λ); ζmin,−]W as before. Since it is given
by an integral curve of W , Lmax,− lifts to a C∞ embedded submanifold L̂max,−
transversal to the front face of the blow-up; it intersects the front face in two
points. Near each of these two points L̂max,− can be parameterized near ζ−,min

using a singular phase function, namely one which is polyhomogeneous conormal
on [X; ymin]r, since L̂max,− has full rank projection to Y nearby. That is the phase
function has the form Φ/x = Φmin,−/x + Φ̃/x, where Φ̃ is a polyhomogeneous
conormal function of y, conormal to y = 0, with leading homogeneity 2 + σ, σ > 0.
Correspondingly, we define Legendre distributions u associated to L̂max,− of order
1
4 [r2(ζmax,−)−r1(ζmax,−)] at Lmax,− and of the same asymptotics as (4.5) at ζmin,−,
by

u = u′ + u′′ + u′′′, u′ ∈ I
1
4 [r2(ζmax,−)−r1(ζmax,−)]
c (X, Lmax,−),

u′′ = eiΦ/xxr2(ζmax,−)/2a, u′′′ as in (4.5),
(4.8)

a polyhomogeneous conormal on [X; ymin]r of symbolic order 0 on the lift of ∂X,
and of symbolic order 1

2 [r2(ζmin,−)−r2(ζmax,−)] on the front face, and I∗c (X, Lmax,−)
refers to Legendre distributions with wave front set in a compact subset of Lmax,−.

Theorem 4.5. Suppose λ > λHess(ymin), λ > K. Then for f ∈ Ċ∞(X), u+ =
R(λ + i0)f has the form (4.8).

This result implies, in particular, that near the interior of the front face of
[X; ymin]r, u+ takes the form eiΦmin,−/xxr2/2xiβa, with a continuous up to the front
face, and its restriction a|ff to the front face is smooth. This restriction in turn
determines u+ modulo Ċ∞(X).
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In the remainder of this section we consider only λ > λHess. By Theorem 4.1,
given any Schwartz function a0 on ff, there exists f ∈ Ċ∞(X) such that the asymp-
totic expansion, as in (4.5), of u− = (∆ + V − (λ− i0))−1f has leading coefficient
a0. The Poisson operator is then the map

(4.9) P (λ) : S(ff) → E−∞
ess (λ), P (λ)a0 = u−−u+, u+ = (∆+V −(λ+i0))−1f.

The scattering matrix S(λ), defined by (1.17), can be thus identified with the map

(4.10) S(λ) : S(ff) → S ′(ff), S(λ)a0 = −a|ff ,

where a|ff is the leading coefficient of the asymptotics of u+ = (∆+V −(λ+i0))−1f .
There is a natural measure ν on the front face induced by the Riemannian

density |dh| on the boundary Y . In local coordinates this is given by the pull-back
of |dh|/xr1 , which gives a smooth density on ff, of the form a|d(y/xr1)|, a a 0th
order classical symbol on the front face. The boundary pairing B of (1.18) shows
that that P (λ) extends to a continuous map P (λ) : L2(ff, ν) → Eess(λ), and S(λ)
extends to a unitary map

(4.11) S(λ) : L2(ff, ν) → L2(ff, ν).

To state its precise structure, it is necessary to discuss a class of pseudodifferential
operators on Rk which we call anisotropic pseudodifferential operators of homogene-
ity r ∈ (0, 1), or r-ps.d.o’s for short. However, first we mention that the paper [1]
of Agmon, Cruz and Herbst uses essentially semiclassical arguments to construct
P (λ) (which can also be thought of as the operator giving rise to a generalized
Fourier transform) in the high energy limit. The precise structure of P (λ), which
is reflected in that of S(λ) is not apparent in these L2-based arguments.

5. The r-anisotropic calculus

For each r ∈ (0, 1) we define a global calculus of pseudodifferential operators
on R and a corresponding calculus of Fourier integral operators. For r = 1

2 this
calculus reduces to the ‘isotropic calculus’ epitomized by the harmonic oscillator.

On R2 = T ∗R, with variables y, η, consider the vector field

(5.1) Rr = ry∂y + (1− r)η∂η.

It generates an R+-action on R2 \ {0},
(5.2) Rr(s)(y, η) = (sry, s1−rη).

Thus, the function y is homogeneous of degree r and η is homogeneous of degree
1 − r. The ‘isotropic’ case occurs when the variables have the same homogeneity
so r = 1

2 . Moreover, note that the symplectic form ω = dη ∧ dy is homogeneous of
degree (1− r) + r = 1.

The choice of radial action gives a compactification of R2 to a ball. Namely

(5.3) r-aiT ∗R = Xr = R2 ∪ Sr, Sr = (R2 \ {0})/R+.

The C∞ structure on Xr, as a compact manifold with boundary, is given by the
standard C∞ structure on R2 together with the product structure near the boundary
where the normal variable is 1/s for a choice of embedding of S as a transversal,
s = 1, to Rr. Thus, smooth functions on R2 which are homogeneous of non-positive
integral degree near infinity under the R+ action are smooth on Xr and generate the
C∞ structure. Let ρ be some choice of defining function for infinity, for instance
a positive smooth function which is Rr-homogeneous of degree −1 near infinity.
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Note that the compactification procedure is analogous to blow-ups, especially if the
latter are regarded as a compactification of a manifold with a submanifold removed!

The constant vector fields ∂y and ∂η extend up to the boundary of Xr to be of
the form

(5.4) ∂y = ρ−rV, ∂η = ρ−(1−r)W

where V and W are smooth vector fields on Xr tangent to the boundary. This
follows from their homogeneity.

Proposition 5.1. The spaces of ‘classical symbols’

(5.5) Ψm
r-ai(R) = ρmC∞(Xr)

form order-filtered algebras of pseudodifferential operators under Weyl quantization.

Proof. These are certainly symbols in an appropriately weak sense, i.e. in the space
S∗ρ,δ(R), in the sense of Hörmander, see for instance [8], for some ρ < 1 and δ > 0.
It follows that their composition can be carried out as ordinary pseudodifferential
operators. For any r it is the case that

(5.6) Ċ∞(Xr) = S(R2)

is the ‘smoothing’ ideal. For finite order symbols the asymptotic composition for-
mula, for Weyl quantization, is

(5.7) a#b(y, η) =
∞∑

k=0

ik

2kk!
(∂y∂η′ − ∂y′∂η)ka(y, η)b(y′, η′)

∣∣
y′=y,η′=η

.

Together with (5.4), this shows that the spaces (5.5) are preserved under composi-
tion. �

This generalizes directly to higher dimensions, but here for the sake of brevity we
restrict the discussion to R. Conjugation by the Fourier transform maps Ψr-ai(R)
onto Ψr′-ai(R) where r′ = 1− r.

The contact ‘phase’ space for the r-calculus is the sphere at infinity in the sense of
the boundary of Xr, the quotient in (5.5). Let p be a boundary point. In microlocal
arguments, one of the variables, either y or η, is elliptic. Since we can pass to the
first case by conjugating by the Fourier transform, we may always assume that in
the some neighbourhood, where y > 0,

(5.8) y−1/r, η/y(1−r)/r

are bounded and are valid coordinates on the compactification Xr.
Let Rr be the compactification of R defined by the R+-action corresponding

ry∂y, which in turn is ‘the first half’ of the vector field in (5.1). Then y−1/r gives a
coordinate in a neighborhood of the projection of p into Rr. The algebra r-aiΨ∗(R)
microlocalizes to open neighborhoods of the boundary, in the sense that linear
space of functions vanishing to infinite order at the boundary in the complement
of a compact subset of such an open set, modulo the smoothing operators, form an
algebra (in fact a sheaf of algebras).

The local coordinates in (5.8) identify these microlocal algebras with the cor-
responding microlocal algebras of scattering pseudodifferential operators on Rr.
Indeed in this microlocal region, where (5.8) are valid coordinates, Xr = r-aiT ∗R
can be identified with scT ∗Rr, or rather a subset of scT ∗Rr with compact closure in
scT ∗Rr. Namely, the latter is spanned by the differentials of functions homogeneous
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of degree −1 (in terms of the smooth structure, i.e. locally in terms of x = y−1/r),
so its elements are of the form −τ d(1/x) = −τy

1−r
r dy, so −τ = η/y

1−r
r . These

microlocal identifications of the r-calculus permit us to define Fourier integral op-
erators and the full structure of microlocal analysis by reduction to the scattering
case discussed extensively in [11]. We also use these identifications to define the
class of r-Legendre functions; an example of these is a function of the form eicy1/r

a,
a ∈ C∞(Rr). Of course, going one step further and using the Fourier transform,
these objects are identified microlocally with the corresponding elements in the
standard theory of Fourier integral operators and Lagrangian distributions on a
manifold without boundary in [7, 3].

Figure 1. The anisotropic and scattering cotangent spaces. All
points but the two marked ones (at which |η|/|y|(1−r)/r → ∞) in
Sr = ∂r-aiT ∗R correspond to points in the left or right side faces
of scT ∗Rr, depending on whether y > 0 or y < 0.

One can also define, either directly, or via the identification, the r-anisotropic
wave front set r-ai WF(u) ⊂ Sr = ∂r-aiT ∗R for u ∈ S ′(R). As usual, this is defined
by p ∈ Sr \ r-ai WF(u) if there exists A ∈ Ψ0

r-ai(R) which is elliptic at p (i.e. its
principal symbol is non-zero there) such that Au ∈ S(R).

6. Structure of the scattering matrices

Here we only consider λ > λHess. Then for each critical point (ζmin,+ and
ζmin,−) of the flow above a minimum, Sr = ∂r-aiT ∗ ff is naturally identified with the
corresponding front face of [Σ(λ); ζmin,+, ζmin,−]W ; we denote the two identification
maps by

(6.1) J± : Sr = ∂r-aiT ∗ ff → ff±([Σ(λ); ζmin,+, ζmin,−]W ).

We do not describe this identification in detail here, but note that a typical r-
Legendre function on ff is eicY 1/r

= eicy1/r/x, c a constant, and multiplying this by
eiΦmin,±/x and taking the differential of the phase, we get a map into a neighborhood
of ζmin,± in scT ∗∂XX, which is singular at y = 0. When performed more carefully (to
reflect the structure of the bicharacteristics), this singularity exactly corresponds
to that of the blow-up, giving rise to the identifications J±. The two points in each
of J−1

± (L̂max,±) play a special role below. This identification induces a relation
on Sr × Sr via the classical scattering relation defined in Section 3. That is, for
(ξ, ξ′) ∈ Sr × Sr, ξ ∼ ξ′ if J+(ξ) ∼ J−(ξ′).

Theorem 6.1. Suppose λ > λHess = λHess(ymin). Then S(λ) extends by continuity
to a ∈ C−∞(ff) satisfying r-ai WF(a) ∩ J−1

+ (L̂max,+) = ∅. Moreover,

(6.2) r-ai WF(S(λ)a) ⊂ J−1
− (L̂max,−) ∪ {ξ ∈ Sr : ∃ ξ′ ∈ r-ai WF(a), ξ ∼ ξ′}.

Note that if λ < K, the statements involving J−1
± (L̂max,±) can be dropped.

This wave front set mapping property corresponds to a canonical relation consist-
ing of Lagrangians singular at J−1

± (L̂max,±). Rather than defining a corresponding
class of singular anisotropic FIO’s, we simply state the precise structure theorem
away from these points.
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Theorem 6.2. Suppose λ > λHess. Let Q± ∈ Ψr-ai(ff) with r-ai WF′(Q±) ∩
J−1
± (L̂max,±) = ∅. Then Q−S(λ)Q+ is an r-anisotropic FIO corresponding to the

classical scattering relation.

7. Sketch of proofs

The results on the structure of R(λ + i0)f , f ∈ Ċ∞(X) are based on positive
commutator estimates, while those on S(λ) by reduction of the operator to model
form microlocally near the radial point, as in the paper of Guillemin and Schaeffer
[4]. Here we briefly discuss the positive commutator arguments.

The first step towards showing that u with

(7.1) (P − λ)u = (∆ + V − λ)u = f ∈ Ċ∞(X)

has a special structure is showing that u ∈ H∞,s
sc (X) remains in this class under

iterated application of certain scattering pseudo-differential operators correspond-
ing to the geometry of the bicharacteristic flow. The ps.d.o.’s we consider always
form a module over Ψ0,0

sc (X). Due to the non-commutativity of the ps.d.o. calcu-
lus, we need to impose a condition on the module in order to make the subsequent
definitions reasonable. Below by Ψ∗,∗

sc (X) we denote polyhomogeneous scattering
pseudo-differential operators.

Definition 7.1. An admissible module M is a Ψ0,0
sc (X)-module which is a subset of

Ψ−∞,−1
sc (X), is closed under commutators, finitely generated as a Ψ0,0

sc (X)-module,
and includes Ψ0,0

sc (X).

Remark 7.2. Since M ⊂ Ψ−∞,−1
sc (X), it follows that A ∈ M , and C ∈ Ψ−∞,0

sc (X) ⊂
M implies that [A,C] ∈ Ψ−∞,0

sc (X).

Recall that Hr,s
sc (X) are the scattering weighted Sobolev spaces; if X is the

radial compactification of Rn, these are the standard weighted Sobolev spaces
〈z〉−sHr(Rn).

Definition 7.3. Let M be a Ψ0,0
sc (X)-module as above. We define I

(s)
sc (X, M) to

be the subset of H∞,s
sc (X) consisting of u ∈ H∞,s

sc (X) such that for all m and for
all Bi ∈ M , i = 1, . . . ,m, we have

∏m
i=1 Biu ∈ H∞,s

sc (X).

We thus prove that, under appropriate microlocal conditions expressing that
there are no incoming singularities, (P − λ)u = f ∈ Ċ∞(X) implies that u ∈
I
(s)
sc (X, M) microlocally near the radial point for all s < −1/2. The specific module

depends on the Legendre flow as follows.
(i) Source/sink: r1, r2 ∈ R, 0 < r1 ≤ r2 < 1. There are unique smooth

canonical Legendre submanifolds Lj corresponding to the eigenvectors of
the linearization. Then, in view of (2.27), we can gain x along Σ(λ), xr1

along L1, xr2 along L2, i.e. more along L2. The relevant chain of inclusions
is thus:

{ζ} ⊂ L2 ⊂ Σ(λ) ⊂ scT ∗∂XX.

Hence we consider the Ψ0,0
sc (X)-submodule M of Ψ0,−1

sc (X) consisting of
operators of the form

B0 + B1 + B2 + B3, B0 ∈ Ψ0,0
sc (X), B1 ∈ Ψ0,−r1

sc (X),

B2 ∈ Ψ0,−r2
sc (X), B3 ∈ Ψ0,−1

sc (X),
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satisfying that the principal symbols of B3, B2, resp. B1, vanish on Σ(λ),
L2, resp. at ζ. The first term, B0, can be skipped, since it can be included
in B3.

(ii) Saddle: r1, r2 ∈ R, r1 < 0, r2 > 1. Again there are unique smooth
canonical Legendre submanifolds Lj corresponding to the eigenvectors of
the linearization. Using (2.27), we can gain x along L2, but nothing along
L1. Hence our module M is simply the subset of Ψ0,−1

sc (X) consisting of
operators with principal symbol vanishing at L2, and the corresponding
distributions are Legendre along L2.

(iii) Center: r1, r2 6∈ R, Re r1 = Re r2 = 1/2, r2 = r1. Now r1 and r2 play a
symmetric role. The relevant module M is the subset of Ψ0,−1

sc (X) gener-
ated by operators in Ψ0,−1/2

sc (X) with principal symbol vanishing at ζ and
by operators in Ψ0,−1

sc (X) with principal symbol vanishing on Σ(λ).

Below we sketch the positive commutator construction for sources/sinks.

Lemma 7.4. Suppose that ζ ∈ R+(λ) ∪ R−(λ) is a source/sink, u ∈ C−∞(X),
(P−λ)u ∈ Ċ∞(X), and there exists a neighborhood U of ζ such that WFsc(u)∩U ⊂
{ζ}. Then u ∈ I

(−1/2−ε)
sc (X, M) for all ε > 0.

Proof. (Sketch.) We can arrange that near ζ, Lj , j = 1, 2, is given by τ = −Φj(y),
µ = Φ′j(y), so inside Σ(λ), µ − Φ′j(y) is a defining function for Lj . We take
A0 = x−1(P − λ), σ∂(A2) = x−r2(µ−Φ′2(y)), σ∂(A1) = x−r1(µ−Φ′1(y)), A3 = Id.
Then M is generated by these over Ψ0,0

sc (X). The operator A0 is special, since it is
closely related to the Hamiltonian P − λ; we ignore it here. Since scHp is tangent
to Lj , and the principal symbol of Aj vanishes on Lj , j = 1, 2, the same holds
for the principal symbol scHpaj of −i[Aj , P − λ]. Moreover, for j = 1, 2, d(xrj aj)
corresponds to an eigenvector of W of eigenvalue 2τrj , hence of scHp, so scHpaj

can be computed up to a term x−rj e, where e vanishes at ζ quadratically. As we
have seen, it also vanishes along L2, so

(7.2) scHpaj = x−rj (2(−rj)τ + 2τrj + f)aj , f(ζ) = 0,

cf. (2.27). Thus, the Aj ‘almost’ commute with P − λ. Note that it is here that
the rj determine the order of gain of decay along the Legendrians Lj .

For s < −1/2, consider

A = x−s−1/2Aα
2 Aβ

1Q

where Q ∈ Ψ0,0
sc (X) and WF′sc(Q) lies in a small neighborhood of ζ but ζ 6∈

WF′sc(Id−Q), i.e. Q is a microlocal cut-off near ζ. Thus, the commutator near
WF′sc(Id−Q) is irrelevant. The key point is that we can also neglect the commu-
tators with A1 and A2.

Here we only make this precise if |α| + |β| = 1, say α = 1, β = 0. Then, away
from WF′sc(Id−Q)

(7.3) −iσ∂([A,P − λ]) = (2τ(−s− 1/2) + f)a2,

where f vanishes at ζ. Hence the principal symbol −iσ∂([A∗A,P − λ]) of the
commutator has a fixed sign microlocally near ζ. We can then apply the standard
positive commutator argument, see e.g. [9], to deduce Au ∈ H∞,s

sc (X). Iterating
this argument proves the lemma. �
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Notice that we may take A1 = x−r1(xDy−Φ′1(y)) and A2 = x−r2(xDy−Φ′2(y)).
Since τ + Φ2(y) also vanishes on L2, it follows that x−r2(x2Dx + Φ2(y))u ∈ M as
well.

Let v = e−iΦ2(y)/xu, so u = eiΦ2(y)/xv. Regularity properties of u then corre-
spond to regularity properties of v under the module e−iΦ2(y)/xMeiΦ2(y)/x. This
conjugation corresponds to the contact map Φ]

2 : (y, τ, µ) 7→ (y, τ+Φ2(y), µ−Φ′2(y)),
under which ζ is mapped to (y(ζ), 0, 0) (we take y(ζ) = 0 for convenience from now
on), and L2 is mapped to the zero section of scT ∗∂XX, i.e. to τ = 0, µ = 0. The
pull-back of p− λ under this map will thus vanish on the zero section, and its dif-
ferential is a multiple of the contact form at (0, 0, 0), namely λ0 dτ . Hence, the pull
back pΦ2 of p−λ is λ0τ + p̃, where p̃ and its first derivatives vanish at (0, 0, 0), and
p̃ vanishes identically on the zero section. Since the conjugate of x−r2(xDy−Φ′2(y))
under eiΦ2(y)/x is x−r2(xDy) = xr1Dy, we deduce that v is stable under the mod-
ule generated by x−1e−iΦ2/x(P − λ)eiΦ2/x, x−r1y and x−r2(xDy) = xr1Dy. Note
that x−r2(x2Dx) is in M since τ also vanishes on the zero section. In particular,
p̃ = τ p̃1 + µp̃2, p̃1 and p̃2 vanish at (0, 0, 0), so

x−1P̃ = x−1e−iΦ2/x(P − λ)eiΦ2/x − x−1(λ0x
2Dx)

preserves the decay of v. Since x−1e−iΦ2/x(P − λ)eiΦ2/x does the same, we deduce
that xDx also preserves the decay of v.

The structure of p̃ can be described more concretely. Namely, ∂y is an eigenvector
of the linearization L(pΦ2) of pΦ2 , of eigenvalue σ2, i.e. dµ is an eigenvector of the
corresponding linearized Hamilton vector field of eigenvalue σ2. Substituting in the
Taylor series of p̃ to calculate L(pΦ2), shows that pΦ2 = σ0τ + (σ0 − σ2)yµ + p2,
where any quantization of p2 improves the decay of v by xmin{2r2,1+r1}, hence by
x1+δ for δ > 0 small, apart from the subprincipal terms. Note that the second
coefficient is σ1.

To demostrate the polyhomogeneous behavior of u, as usual, the subprincipal
term of P − λ must also be taken into account. However, this dependence is quite
simple. Indeed, for P1 ∈ Ψ∞,1

sc (X), P1v − σ∂,1(P1)(0, 0, 0)v ∈ x1/2+r1−εL2
sc(X) for

all ε > 0, so it can be ignored for our purposes. Thus, P1 may be simply replaced
by β1x, β1 = σ∂,1(P1)(0, 0, 0) is a constant.

It is useful to translate the microlocal picture at (0, 0, 0) into conormal statements
on a blown-up space (4.4). Introducing Y = y/xr1 and X = x, so

xDy = X1−r1DY , xDx = XDX − r1Y DY ,

we deduce that v is stable under XDX , DY and Y . This means that v is conormal
on an inhomogeneous blow up of x = 0, y = y(ζ), and it is rapidly decreasing off
the front face.

Moreover,

e−iΦ2/x(P − λ)eiΦ2/xv − (σ0x
2Dx + σ1xyDy + βx)v ∈ x1/2+δL2

sc(X)

δ > 0 small, β appropriately chosen. In fact, Im β = σ0r2/2. Although this again
follows from a direct calculation, note that the conjugate of the self-adjoint operator
P −λ is formally self-adjoint, and x2Dx + ix

2 , xyDy − ix
2 are such, so Im β is in fact

determined by formal self-adjointness. Since (P − λ)u ∈ Ċ∞(X), we deduce that

(XDX + β/σ0)v ∈ x−1/2+δL2
sc(X).
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Writing v = X−iβ/σ0 ṽ, this yields

DX ṽ ∈ x−3/2+δ−r2/2L2
sc(X).

Taking into account the smoothness in Y , and changing the measure, this means
for each Y ,

∂X ṽ ∈ X−3/2+δ−r2/2+(2−r1)/2L2([0, 1)X ; dX) =X−1/2+δL2([0, 1)X ; dX)

⊂ Xδ′L1([0, 1)X ; dX), δ′ > 0.

But that implies that ṽ is continuous to X = 0, and after subtracting ṽ(0, Y ), the
result is bounded by CXδ′ . This shows that, modulo x−1/2+ε′L2, ε′ > 0 small
and microlocally near the critical point u has the form X−iβ/σ0eiΦ2(y)/xu0 with u0

smooth on the blown-up space (4.4) and rapidly vanishing off the front face. A
simple asymptotic series construction then yields the asymptotic series described
before, and standard uniqueness result shows that f is actually given by such a
series. This finishes the proof of the first half of Theorem 4.1.

References

[1] Shmuel Agmon, Jaime Cruz, and Ira Herbst, Generalized Fourier transform for Schrödinger
operators with potentials of order zero, J. Funct. Anal. 167 (1999), 345–369.
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