
CHAPTER 5

Microlocalization

5.1. Calculus of supports

Recall that we have already defined the support of a tempered distribution in
the slightly round-about way:

(5.1) if u ∈ S ′(Rn), supp(u) = {x ∈ Rn; ∃ φ ∈ S(Rn), φ(x) 6= 0, φu = 0}{.

Now if A : S(Rn) −→ S ′(Rn) is any continuous linear operator we can consider the
support of the kernel:

(5.2) supp(A) = supp(KA) ⊂ Rn × Rn = R2n.

We write out the space as a product here to point to the fact that any subset of
the product defines (is) a relation i.e. a map on subsets:

(5.3)
G ⊂ Rn × Rn, S ⊂ Rn =⇒

G ◦ S =
{
x ∈ Rn; ∃ y ∈ S s.t. (x, y) ∈ G

}
.

One can write this much more geometrically in terms of the two projection maps

(5.4) R2n
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Rn Rn.

Thus πR(x, y) = y, πL(x, y) = x. Then (5.3) can be written in terms of the action
of maps on sets as

(5.5) G ◦ S = πL
(
π−1
R (S) ∩G

)
.

From this it follows that if S is compact and G is closed, then G ◦ S is closed,
since its intersection with any compact set is the image of a compact set under a
continuous map, hence compact. Now, by the calculus of supports we mean the
‘trivial’ result.

Proposition 5.1. If A : S(Rn) −→ S ′(Rn) is a continuous linear map then

(5.6) supp(Aφ) ⊂ supp(A) ◦ supp(φ) ∀ φ ∈ C∞c (Rn).

Proof. Since we want to bound supp(Aφ) we can use (5.1) directly, i.e. show
that

(5.7) x /∈ supp(A) ◦ supp(φ) =⇒ x /∈ supp(Aφ).

Since we know supp(A) ◦ supp(φ) to be closed, the assumption that x is outside
this set means that there exists ψ ∈ C∞c (Rn) with

ψ(x) 6= 0 and supp(ψ) ∩ supp(A) ◦ supp(φ) = ∅.
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118 5. MICROLOCALIZATION

From (5.3) or (5.5) this means

(5.8) supp(A) ∩ (supp(ψ)× supp(φ)) = ∅ in R2n.

But this certainly implies that

(5.9)
KA(x, y)ψ(x)φ(y) = 0

=⇒ ψA(φ) =
∫
KA(x, y)ψ(x)φ(y)dy = 0.

Thus we have proved (5.6) and the lemma. �
Diff ops.

5.2. Singular supports

As well as the support of a tempered distribution we can consider the singular
support:

(5.10) sing supp(u) =
{
x ∈ Rn;∃ φ ∈ S(Rn), φ(x) 6= 0, φu ∈ S(Rn)

}{
.

Again this is a closed set since x /∈ sing supp(u) =⇒ ∃ φ ∈ S(Rn) with φu ∈ S(Rn)
and φ(x) 6= 0 so φ(x′) 6= 0 for |x− x′| < ε, some ε > 0 and hence x′ /∈ sing supp(u)
i.e. the complement of sing supp(u) is open.

Directly from the definition we have

sing supp(u) ⊂ supp(u) ∀ u ∈ S ′(Rn) and(5.11)

sing supp(u) = ∅ ⇐⇒ u ∈ C∞(Rn).(5.12)

Examples

5.3. Pseudolocality

We would like to have a result like (5.6) for singular support, and indeed we can
get one for pseudodifferential operators. First let us work out the singular support
of the kernels of pseudodifferential operators.

Proposition 5.2. If A ∈ Ψm
∞(Rn) then

(5.13) sing supp(A) = sing supp(KA) ⊂
{

(x, y) ∈ R2n;x = y
}
.

Proof. The kernel is defined by an oscillatory integral

(5.14) I(a) = (2π)−n
∫
ei(x−y)·ξa(x, y, ξ)dξ.

If the order m is < −n we can show by integration by parts that

(5.15) (x− y)αI(a) = I ((−Dξ)αa) ,

and then this must hold by continuity for all orders. If a is of order m and |α| >
m+ n then (−Dξ)αa is of order less than −n, so

(5.16) (x− y)αI(a) ∈ C0
∞(Rn), |α| > m+ n.

In fact we can also differentiate under the integral sign:

(5.17) Dβ
xD

γ
y (x− y)αI(a) = I

(
Dβ
xD

γ
y (−Dξ)αa

)
so generalizing (5.16) to

(5.18) (x− y)αI(a) ∈ Ck∞(Rn) if |α| > m+ n+ k.

This implies that I(A) is C∞ on the complement of the diagonal, {x = y}. This
proves (5.13). �
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An operator is said to be pseudolocal if it satisfies the condition

(5.19) sing supp(Au) ⊂ sing supp(u) ∀ u ∈ C−∞(Rn).

Proposition 5.3. Pseudodifferential operators are pseudolocal.

Proof. Suppose u ∈ S ′(Rn) has compact support and x /∈ sing supp(u). Then
we can choose φ ∈ S(Rn) with φ ≡ 1 near x and φu ∈ S(Rn) (by definition). Thus

(5.20) u = u1 + u2, u1 = (1− φ)u, u2 ∈ S(Rn).

Since A : S(Rn) −→ S(Rn), Au2 ∈ S(Rn) so

(5.21) sing supp(Au) = sing supp(Au1) and x /∈ supp(u1).

Choose ψ ∈ S(Rn) with compact support, ψ(x) = 1 and

(5.22) supp(ψ) ∩ supp(1− φ) = ∅.

Thus

(5.23) ψAu1 = ψA(1− φ)u = Ãu

where

(5.24) KÃ(x, y) = ψ(x)KA(x, y)(1− φ(y)).

Combining (5.22) and (5.13) shows that KÃ ∈ Ψ−∞∞ (Rn) so, by Lemma 2.8, Ãu ∈
C∞(Rn) and x /∈ sing supp(Au) by (5.13)(?). This proves the proposition. �

5.4. Coordinate invariance

If Ω ⊂ Rn is an open set, put

(5.25)
C∞c (Ω) =

{
u ∈ S(Rn); supp(u) b Ω

}
C−∞c (Ω) =

{
u ∈ S ′(Rn); supp(u) b Ω

}
respectively the space of C∞ functions of compact support in Ω and of distributions
of compact support in Ω. Here K b Ω indicates that K is a compact subset of Ω.
Notice that if u ∈ C−∞c (Ω) then u defines a continuous linear functional

(5.26) C∞(Ω) 3 φ 7−→ u(φ) = u(ψφ) ∈ C

where if ψ ∈ C∞c (Ω) is chosen to be identically one near supp(u) then (5.26) is
independent of ψ. [Think about what continuity means here!]

Now suppose

(5.27) F : Ω −→ Ω′

is a diffeomorphism between open sets of Rn. The pull-back operation is

(5.28) F ∗ : C∞c (Ω′)←→ C∞c (Ω), F ∗φ = φ ◦ F.

Lemma 5.1. If F is a diffeomorphism, (5.27), between open sets of Rn then
there is an extension by continuity of (5.28) to

(5.29) F ∗ : C−∞c (Ω′)←→ C−∞c (Ω).
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Proof. The density of C∞c (Ω) in C−∞c (Ω), in the weak topology given by the
seminorms from (5.26), can be proved in the same way as the density of S(Rn) in
S ′(Rn) (see Problem 5.5). Thus, we only need to show continuity of (5.29) in this
sense. Suppose u ∈ C∞c (Ω) and φ ∈ C∞c (Ω′) then

(5.30)
(F ∗u)(φ) =

∫
u(F (x))φ(x)dx

=
∫
u(y)φ(G(y))|JG(y)|dy

where JG(y) =
(
∂G(y)
∂y

)
is the Jacobian of G, the inverse of F. Thus (5.28) can be

written

(5.31) F ∗u(φ) = (|JG|u) (G∗φ)

and since G∗ : C∞(Ω) −→ C∞(Ω′) is continuous (!) we conclude that F ∗ is contin-
uous as desired. �

Now suppose that
A : S(Rn) −→ S ′(Rn)

has

(5.32) supp(A) b Ω× Ω ⊂ R2n.

Then

(5.33) A : C∞c (Ω) −→ C−∞c (Ω)

by Proposition 5.1. Applying a diffeomorphism, F, as in (5.27) set

(5.34) AF : C∞c (Ω′) −→ C−∞c (Ω′), AF = G∗ ◦A ◦ F ∗.

Lemma 5.2. If A satisfies (5.32) and F is a diffeomorphism (5.27) then

(5.35) KAF (x, y) = (G×G)∗K · |JG(y)| on Ω′ × Ω′

has compact support in Ω′ × Ω′.

Proof. Essentially the same as that of (5.30). �

Proposition 5.4. Suppose A ∈ Ψm
∞(Rn) has kernel satisfying (5.32) and F is

a diffeomorphism as in (5.27) then AF , defined by (5.34), is an element of Ψm
∞(Rn).

Proof. See Proposition 2.11. �

5.5. Problems

Problem 5.1. Show that Weyl quantization

(5.36) S∞∞(Rn;Rn) 3 a 7−→ qW (a) = (2π)−n
∫
ei(x−y)·ξa(

x+ y

2
, ξ)dξ

is well-defined by continuity from S−∞∞ (Rn;Rn) and induces an isomorphism

(5.37) Sm∞(Rn;Rn)
σW−→←−
qW

Ψm
∞(Rn) ∀ m ∈ R.

Find an asymptotic formula relating qW (A) to qL(A) for any A ∈ Ψm
∞(Rn).

Problem 5.2. Show that if A ∈ Ψm
∞(Rn) then A∗ = A if and only if σW (A) is

real-valued.



5.6. CHARACTERISTIC VARIETY 121

Problem 5.3. Is it true that every E ∈ Ψ−∞∞ (Rn) defines a map from S ′(Rn)
to S(Rn)?

Problem 5.4. Show that S(Rn) is dense in L2(Rn) by proving that if φ ∈
C∞(Rn) has compact support and is identically equal to 1 near the origin then

(5.38) un(x) = (2π)−nφ(
x

n
)
∫
eix·ξφ(ξ/n)û(ξ)dξ ∈ S(Rn) if u ∈ L2(Rn)

and un → u in L2(Rn). Can you see any relation to pseudodifferential operators
here?

Problem 5.5. Check carefully that with the definition

(5.39) Hk(Rn) =

u ∈ S ′(Rn);u =
∑
|α|≤−k

Dαuα, uα ∈ L2(Rn)


for −k ∈ N one does have

(5.40) u ∈ Hk(Rn)⇐⇒ 〈D〉ku ∈ L2(Rn)

as claimed in the text.

Problem 5.6. Suppose that a(x) ∈ C∞∞(Rn) and that a(x) ≥ 0. Show that the
operator

(5.41) A =
n∑
j=1

D2
xj + a(x)

can have no solution which is in L2(Rn).

Problem 5.7. Show that for any open set Ω ⊂ Rn, C∞c (Ω) is dense in C−∞c (Ω)
in the weak topology.

Problem 5.8. Use formula (2.204) to find the principal symbol of AF ; more
precisely show that if F ∗ : T ∗Ω′ −→ T ∗ω is the (co)-differential of F then

σm(AF ) = σm(A) ◦ F ∗.

We have now studied special distributions, the Schwartz kernels of pseudodif-
ferential operators. We shall now apply this knowledge to the study of general
distributions. In particular we shall examine the wavefront set, a refinement of sin-
gular support, of general distributions. This notion is fundamental to the general
idea of ‘microlocalization.’

5.6. Characteristic variety

If A ∈ Ψm
∞(Rn), the left-reduced symbol is elliptic at (x, ξ) ∈ Rn × (Rn\{0}) if

there exists ε > 0 such that

(5.42)

∣∣σL(A)(x, ξ)
∣∣ ≥ ε|ξ|m in{

(x, ξ) ∈ Rn × (Rn\{0}) ; |x− x| ≤ ε,
∣∣ ξ
|ξ|
− ξ

|ξ|
∣∣ ≤ ε, |ξ| ≥ 1

ε

}
.

Directly from the definition, ellipticity at (x, ξ) is actually a property of the
principal symbol, σm(A) and if A is elliptic at (x, ξ) then it is elliptic at (x, tξ) for
any t > 0. Clearly{

(x, ξ) ∈ Rn × (Rn\{0}); A is elliptic (of order m) at (x, ξ)
}
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is an open cone in Rn × (Rn\{0}). The complement

(5.43) Σm(A) =
{

(x, ξ) ∈ Rn × (Rn\{0}) ; A is not elliptic of order m at (x, ξ)
}

is therefore a closed conic subset of Rn × (Rn\{0}) ; it is the characteristic set (or
variety) of A. Since the product of two symbols is only elliptic at (x, ξ) if they are
both elliptic there, if follows from the composition properties of pseudodifferential
operators that

(5.44) Σm+m′(A ◦B) = Σm(A) ∪ Σm′(B).

5.7. Wavefront set

We adopt the following bald definition:

(5.45)
If u ∈ C−∞c (Rn) =

{
u ∈ S ′(Rn); supp(u) b Rn

}
then

WF(u) =
⋂{

Σ0(A); A ∈ Ψ0
∞(Rn) and Au ∈ C∞(Rn)

}
.

Thus WF(u) ⊂ Rn × (Rn\{0}) is always a closed conic set, being the intersection
of such sets. The first thing we wish to show is that WF(u) is a refinement of
sing supp(u). Let

(5.46) π : Rn × (Rn\{0}) 3 (x, ξ) 7−→ x ∈ Rn

be projection onto the first factor.

Proposition 5.5. If u ∈ C−∞c (Rn) then

(5.47) π(WF(u)) = sing supp(u).

Proof. The inclusion π(WF(u)) ⊂ sing supp(w) is straightforward. Indeed,
if x /∈ sing supp(u) then there exists φ ∈ C∞c (Rn) with φ(x) 6= 0 such that φu ∈
C∞(Rn). Of course as a multiplication operator, φ ∈ Ψ0

∞(Rn) and Σ0(φ) 63 (x, ξ)
for any ξ 6= 0. Thus the definition (5.45) shows that (x, ξ) /∈WF(u) for all ξ ∈ Rnr0
proving the inclusion.

Using the calculus of pseudodifferential operators, the opposite inclusion,

(5.48) π(WF(u)) ⊃ sing supp(u)

is only a little more complicated. Thus we have to show that if (x, ξ) /∈WF(u) for
all ξ ∈ Rnr0 then x /∈ sing supp(u). The hypothesis is that for each (x, ξ), ξ ∈ Rnr0,
there exists A ∈ Ψ0

∞(Rn) such that A is elliptic at (x, ξ) and Au ∈ C∞(Rn). The
set of elliptic points is open so there exists ε = ε(ξ) > 0 such that A is elliptic on

(5.49)
{

(x, ξ) ∈ Rn × (Rnr0); |x− x| < ε,
∣∣ ξ
|ξ|
− ξ

|ξ|
∣∣ < ε

}
.

Let Bj , j = 1, . . . , N be a finite set of such operators associated to ξj and such that
the corresponding sets in (5.49) cover {x}× (Rnr0); the finiteness follows from the
compactness of the sphere. Then consider

B =
N∑
j=1

B∗jBj =⇒ Bu ∈ C∞(Rn).
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This operator B is elliptic at (x, ξ), for all ξ 6= 0. Thus if φ ∈ C∞c (Rn), 0 ≤ φ(x) ≤ 1,
has support sufficiently close to x, φ(x) = 1 in |x−x| < ε/2 then, since B has non-
negative principal symbol

(5.50) B + (1− φ) ∈ Ψ0
∞(Rn)

is globally elliptic. Thus, by Lemma 2.7, there exists G ∈ Ψ0
∞(Rn) which is a

parametrix for B + (1− φ) :

(5.51) Id ≡ G ◦B +G(1− φ) mod Ψ−∞∞ (Rn).

Let ψ ∈ C∞c (Rn) be such that supp(ψ) ⊂ {φ = 1} and ψ(x) 6= 0. Then, from the
reduction formula

ψ ◦G ◦ (1− φ) ∈ Ψ−∞∞ (Rn).

Thus from (5.51) we find

ψu = ψG ◦Bu+ ψG(1− φ)u ∈ C∞(Rn).

Thus x /∈ sing supp(u) and the proposition is proved. �

We extend the definition to general tempered distributions by setting

(5.52) WF(u) =
⋃

φ∈C∞c (Rn)

WF(φu), u ∈ S ′(Rn).

Then (5.47) holds for every u ∈ S ′(Rn).

5.8. Essential support

Next we shall consider the notion of the essential support of a pseudodifferential
operator. If a ∈ Sm∞(RN ;Rn) we define the cone support of a by

(5.53)
cone supp(a) =

{
(x, ξ) ∈ RN × (Rnr0);∃ ε > 0 and ∀ M ∈ R,∃ CM s.t.

|a(x, ξ)| ≤ CM 〈ξ〉−M if |x− x| ≤ ε,
∣∣ ξ
|ξ|
− ξ

|ξ|
∣∣ ≤ ε}{

.

This is clearly a closed conic set in RN × (Rnr0). By definition the symbol decays
rapidly outside this cone, in fact even more is true.

Lemma 5.3. If a ∈ S∞∞(RN ;Rn) then

(5.54)

(x, η) /∈ cone supp(a) =⇒
∃ ε > 0 s.t. ∀ M,α, β ∃ CM with∣∣Dα

xD
β
ξ a(x, η)

∣∣ ≤ CM 〈η〉−M if |x− x| < ε,
∣∣ η
|η|
− η

|η|
∣∣ < ε.

Proof. To prove (5.54) it suffices to show it to be valid for Dxja, Dξka and
then use an inductive argument, i.e. to show that

(5.55) cone supp(Dxja), cone supp(Dξka) ⊂ cone supp(a).

Arguing by contradiction suppose that Dx`a does not decay to order M in any cone
around (x, ξ) /∈ cone supp . Then there exists a sequence (xj , ξj) with

(5.56)

{
xj −→ x,

∣∣ ξj
|ξj | −

ξ

|ξ|

∣∣ −→ 0, |ξj | −→ ∞
and

∣∣Dx`a(xj , ξj)
∣∣ > j〈ξj〉M .
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We can assume that M < m, since a ∈ Sm∞
(
Rn;RN

)
. Applying Taylor’s formula

with remainder, and using the symbol bounds on D2
xja, gives

(5.57) a(xj + te`, ξj) = a(xj , ξj) + it(Dxja)(xj , ξj) +O
(
t2〈ξj〉m

)
, (e`)j = δ`j

providing |t| < 1. Taking t = 〈ξj〉M−m −→ 0 as j −→ ∞, the first and third terms
on the right in (5.57) are small compared to the second, so

(5.58)
∣∣a(xj + 〈ξj〉

M−m
2 , ξj

) ∣∣ > 〈ξj〉2M−m,
contradicting the assumption that (x, ξ) /∈ cone supp(a). A similar argument applies
to Dξ`a so (5.54), and hence the lemma, is proved. �

For a pseudodifferential operator we define the essential support by

(5.59) WF′(A) = cone supp (σL(A)) ⊂ Rn × (Rnr0) .

Lemma 5.4. For every A ∈ Ψm
∞(Rn)

(5.60) WF′(A) = cone supp(σR(A)).

Proof. Using (5.54) and the formula relating σR(A) to σL(A) we conclude
that

(5.61) cone supp(σL(A)) = cone supp(σR(A)),

from which (5.60) follows. �

A similar argument shows that

(5.62) WF′(A ◦B) ⊂WF′(A) ∩WF′(B).

Indeed the asymptotic formula for σL(A ◦ B) in terms of σL(A) and σL(B) shows
that

(5.63) cone supp(σL(A ◦B)) ⊂ cone supp (σL(A)) ∩ cone supp (σL(B))

which is the same thing.

5.9. Microlocal parametrices

The concept of essential support allows us to refine the notion of a parametrix
for an elliptic operator to that of a microlocal parametrix.

Lemma 5.5. If A ∈ Ψm
∞(Rn) and z /∈ Σm(A) then there exists a microlocal

parametrix at z, B ∈ Ψ−m∞ (Rn) such that

(5.64) z /∈WF′(Id−AB) and z /∈WF′(Id−BA).

Proof. If z = (x, ξ), ξ 6= 0, consider the symbol

(5.65) γε(x, ξ) = φ

(
x− x
ε

)
(1− φ)(εξ)φ

(
(
ξ

|ξ|
− ξ

|ξ|
)
/
ε

)
where as usual φ ∈ C∞c (Rn), φ(ζ) = 1 in |ζ| ≤ 1

2 , φ(ζ) = 0 in |ζ| ≥ 1. Thus
γε ∈ S0

∞ (Rn;Rn) has support in

(5.66) |x− x| ≤ ε, |ξ| ≥ 1
2ε
,

∣∣∣∣ ξ|ξ| − ξ

|ξ|

∣∣∣∣ ≤ ε
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and is identically equal to one, and hence elliptic, on a similar smaller set

(5.67) |x− x| < ε

2
, |ξ| ≥ 1

ε
,

∣∣∣∣ ξ|ξ| − ξ

|ξ|

∣∣∣∣ ≤ ε

2
.

Define Lε ∈ Ψ0
∞(Rn) by σL(Lε) = γε. Thus, for any ε > 0,

(5.68) z /∈WF′(Id−Lε), WF′(Lε) ⊂
{

(x, ξ); |x− x| ≤ ε and
∣∣∣∣ ξ|ξ| − ξ

|ξ|

∣∣∣∣ ≤ ε} .
Let G2m ∈ Ψ2m

∞ (Rn) be a globally elliptic operator with positive principal
symbol. For example take σL(G2m) = (1 + |ξ|2)m, so Gs ◦ Gt = Gs+t for any s,
t ∈ R. Now consider the operator

(5.69) J = (Id−Lε) ◦G2m +A∗A ∈ Ψ2m
∞ (Rn).

The principal symbol of J is (1−γε)(1 + |ξ|2)m+ |σm(A)|2 which is globally elliptic
if ε > 0 is small enough (so that σm(A) is elliptic on the set (5.66)). According to
Lemma 2.75, J has a global parametrix H ∈ Ψ−2m

∞ (Rn). Then

(5.70) B = H ◦A∗ ∈ Ψ−m∞ (Rn)

is a microlocal right parametrix for A in the sense that B ◦ A − Id = RR with
z /∈WF′(RR) since

(5.71) RR = B ◦A− Id = H ◦A∗ ◦A− Id

= (H ◦ J − Id) +H ◦ (Id−Lε)G2m ◦A

and the first term on the right is in Ψ−∞∞ (Rn) whilst z is not in the operator
wavefront set of (Id−Lε) and hence not in the operator wavefront set of the second
term.

By a completely analogous construction we can find a left microlocal paramet-
rix. Namely (Id−Lε) ◦ G2m + A ◦ A∗ is also globally elliptic with parametrix H ′

and then B′ = A∗ ◦H ′ satisfies

(5.72) B′ ◦A− Id = RL, z /∈WF′(RL).

Then, as usual,

(5.73) B = (B′ ◦A−RL)B = B′ (A ◦B)−RLB = B′ +B′RR −RLB

so z /∈ WF′(B − B′), which implies that B is both a left and right microlocal
parametrix. �

In fact this argument shows that such a left parametrix is essentially unique. See
Problem 5.29.

5.10. Microlocality

Now we can consider the relationship between these two notions of wavefront
set.

Proposition 5.6. Pseudodifferential operators are microlocal in the sense that

(5.74) WF(Au) ⊂WF′(A) ∩WF(u) ∀ A ∈ Ψ∞∞(Rn), u ∈ C−∞c (Rn).
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Proof. We need to show that

(5.75) WF(Au) ⊂WF′(A) and WF(Au) ⊂WF(u).

the second being the usual definition of microlocality. The first inclusion is easy.
Suppose (x, ξ) /∈ cone suppσL(A). If we choose B ∈ Ψ0

∞(Rn) with σL(B) supported
in a small cone around (x, ξ) then we can arrange

(5.76) (x, ξ) /∈ Σ0(B), WF′(B) ∩WF′(A) = ∅.
Then from (5.62), WF′(BA) = ∅ so BA ∈ Ψ−∞∞ (Rn) and BAu ∈ C∞(Rn). Thus
(x, ξ) /∈WF(Au).

Similarly suppose (x, ξ) /∈ WF(u). Then there exists G ∈ Ψ0
∞(Rn) which is

elliptic at (x, ξ) with Gu ∈ C∞(Rn). Let B be a microlocal parametrix for G at
(x, ξ) as in Lemma 5.5. Thus

(5.77) u = BGu+ Su, (x, ξ) /∈WF′(S).

Now apply A to this identity. Since, by assumption, Gu ∈ C∞c (Rn) the first term
on the right in

(5.78) Au = ABGu+ASu

is smooth. Since, by (5.62), (x, ξ) /∈ WF′(AS) it follows from the first part of the
argument above that (x, ξ) /∈WF(ASu) and hence (x, ξ) /∈WF(Au). �

We can deduce from the existence of microlocal parametrices at elliptic points
a partial converse of (8.24).

Proposition 5.7. For any u ∈ C−∞(Rn) and any A ∈ Ψm
∞(Rn)

(5.79) WF(u) ⊂WF(Au) ∪ Σm(A).

Proof. If (x, ξ) /∈ Σm(A) then, by definition, A is elliptic at (x, ξ). Thus, by
Lemma 5.5, A has a microlocal parametrix B, so

(5.80) u = BAu+ Su, (x, ξ) /∈WF′(S).

It follows that (x, ξ) /∈ WF(Au) implies that (x, ξ) /∈ WF(u) proving the Proposi-
tion. �

5.11. Explicit formulations

From this discussion of WF′(A) we can easily find a ‘local coordinate’ formu-
lations of WF(u) in general.

Lemma 5.6. If (x, ξ) ∈ Rn × (Rnr0) and u ∈ S ′(Rn) then (x, ξ) /∈ WF(u) if
and only if there exists φ ∈ C∞c (Rn) with φ(x) 6= 0 such that for some ε > 0, and
for all M there exists CM with

(5.81)
∣∣φ̂u(ξ)

∣∣ ≤ CM 〈ξ〉M in
∣∣ ξ
|ξ|
− ξ̄

|ξ|
∣∣ < ε.

Proof. If ζ ∈ C∞(R), ζ(ξ) ≡ 1 in |ξ| < ε
2 and supp(ζ) ⊂

[−3ε
4 , 3ε

4

]
then

(5.82) γ(ξ) = (1− ζ)(ξ) · ζ
( ξ
|ξ|
− x

|x|
)
∈ S0
∞(Rn)

is elliptic at ξ̄ and from (5.81)

(5.83) γ(ξ) · φ̂u(ξ) ∈ S(Rn).
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Thus if σR(A) = φ1(x)γ(ξ) then A(φ2u) ∈ C∞ where φ1φ2 = φ, φ1(x), φ2(x) 6= 0,
φ1, φ2 ∈ C∞c (Rn). Thus (x, ξ) /∈ WF(u). Conversely if (x, ξ) /∈ WF(u) and A is
chosen as above then A(φ1u) ∈ S(Rn) and Lemma 5.6 holds. �

5.12. Wavefront set of KA

At this stage, a natural thing to look at is the wavefront set of the kernel of a
pseudodifferential operator, since these kernels are certainly an interesting class of
distributions.

Proposition 5.8. If A ∈ Ψm
∞(Rn) then

(5.84)
WF(KA) =

{
(x, y, ξ, η) ∈ R2n ×

(
R2nr0

)
;

x = y, ξ + η = 0 and (x, ξ) ∈WF′(A)
}
.

In particular this shows that WF′(A) determines WF(KA) and conversely.

Proof. Using Proposition 5.5 we know that π (WF(KA)) ⊂
{

(x, x)
}

so

WF(KA) ⊂
{

(x, x; ξ, η)
}
.

To find the wave front set more precisely consider the kernel

KA(x, y) = (2π)−n
∫
ei(x−y)·ξb(x, ξ)dξ

where we can assume |x− y| < 1 on supp(KA). Thus is φ ∈ C∞c (X) then

g(x, y) = KA(x, y) ∈ C−∞c (Rn)

and

ĝ(ζ, η) = (2π)−n
∫
e−iζx−iηyei(x−y)·ζ(φb)(x, ξ)dζdxdy

=
∫
e−i(ζ+η)·x(φb)(x,−η)dx

= φ̂b(ζ + η,−η).

The fact that φb is a symbol of compact support in x means that for every M∣∣φ̂b(ζ + η,−η)
∣∣ ≤ CM (〈ζ + η〉)−M 〈η〉m.

This is rapidly decreasing if ζ 6= −η, so

WF(KA) ⊂
{

(x, x, η,−η)
}

as claimed.

Moreover if (x, η) /∈ WF′(A) then choosing φ to have small support near x makes
φ̂b rapidly decreasing near −η for all ζ. This proves Proposition 5.8. �

5.13. Hypersurfaces and Hamilton vector fields

In the Hamiltonian formulation of classical mechanics the dynamical behaviour
of a ‘particle’ is fixed by the choice of an energy function (‘the Hamiltonian’) h(x, ξ)
depending on the position and momentum vectors (both in R3 you might think,
but maybe in R3N because there are really N particles). In fact one can think
of a system confined to a surface in which case the variables are in the cotangent
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bundle of a manifold. However, in the local coordinate description the motion of
the particle is given by Hamilton’s equations:-

(5.85)
dxi
dt

=
∂h

∂ξi
(x, ξ),

dξi
dt

= − ∂h
∂xi

(x, ξ).

This means that the trajectory (x(t), ξ(t)) of a particle is an integral curve of the
vector field

(5.86) Hh(x, ξ) =
∑
i

(
∂h

∂ξi
(x, ξ)

∂

∂xi
− ∂h

∂xi
(x, ξ)

∂

∂ξi
(x, ξ)

)
.

This, of course, is called the Hamilton vector field of h. The most important basic
fact is that h itself is constant along integral curves of Hh, namely

(5.87) Hhh =
∑
i

(
∂

∂hξi
(x, ξ)

∂h

∂xi
(x, ξ)− ∂h

∂xi
(x, ξ)

∂h

∂ξi
(x, ξ)h(x, ξ)

)
= 0.

More generally the action of Hh on any other function defines the Poisson bracket
between h and g and

(5.88) Hhg = {h, g} = −{g, h} = −Hgh

from which (5.87) again follows. See Problem 5.18.
More invariantly the Hamilton vector can be constructed using the symplectic

form

(5.89) ω =
∑
i

dξi ∧ dxi = dα, α =
∑
i

ξidxi.

Here α is the ‘tautological’ 1-form. If we think of Rnx×Rnξ = (x, ξ)′ as the pull back
under π : (x, ξ) 7−→ x of β as a 1-covector on Rn. In this sense the tautological form
α is well defined on the cotangent bundle of any manifold and has the property
that if one introduces local coordinates in the manifold x and the canonically dual
coordinates in the cotangent bundle (by identifying a 1-covector as ξ · dx) then it
takes the form of α in (5.89). Thus the symplectic form, as dα, is well-defined on
T ∗X for any manifold X.

Returning to the local discussion it follows directly from (5.86) that

(5.90) ω(·, Hh) = dh(·)

and conversely this determines Hh. See Problem 5.19.
Now, we wish to apply this discussion of ‘Hamiltonian mechanics’ to the case

that h = p(x, ξ) is the principal symbol of some pseudodifferential operator. We
shall in fact take p to be homogeneous of degree m (later normalized to 1) in |ξ| > 1.
That is,

(5.91) p(x, sξ) = smp(x, ξ) ∀ x ∈ Rn, |ξ| ≥ 1, s|ξ| ≥ 1, s > 0.

The effect of this is to ensure that

(5.92) Hp is homogeneous of degree m− 1 under (x, ξ) 7−→ (x, sξ)

in the same region. One consequence of this is that

(5.93) Hp : SMc (Rn;Rn) −→ SM−1
c (Rn;Rn).

(where the subscript ‘c’ just means supports are compact in the first variable). To
see this it is convenient to again rewrite the definition of symbol spaces. Since
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supports are compact in x we are just requiring uniform smoothness in those vari-
ables. Thus, we are first requiring that symbols be smooth. Now, consider any
point ξ̄ 6= 0. Thus ξ̄j 6= 0 for some j and we can consider a conic region around ξ̄
of the form

(5.94) ξj/ξ̄j ∈ (0,∞), |ξk/ξj − ξ̄j/ξ̄j | < ε

where ε > 0 is small. Then the symbolic conditions on a ∈ SMc (Rn;Rn) imply

(5.95)
b(x, t, r) = a(x, rt1, . . . , rtj−1, r sgn ξ̄j , rtj , . . . , rtn−1)

satisfies|Dα
xD

γ
tD

k
r b(x, t, r)| ≤ Cα,γ,krM−k in r ≥ 1.

See Problem 5.20.
For the case of a homogeneous function (away from ξ = 0) such as p the surface

Σm(P ) = {p = 0} has already been called the ‘characteristic variety’ above. Corre-
spondingly the integral curves of Hp on Σm(p) (so the ones on which p vanishes) are
called null bicharacteristics, or sometimes just bicharacteristics. Note that Σm(P )
may well have singularities, since dp may vanish somewhere. However this is not a
problem with the general discussion, since Hp vanishes at such points – and it is
only singular in this sense of vanishing. The integral curves through such a point
are necessarily constant.

Now we are in a position to state at least a local form of the propagation
theorem for operators of ‘real principal type’. This means dp 6= 0, and in fact even
more, that dp and α are linearly independent. The theorems below in fact apply
in general when p is real even if there are points where dp is a multiple of α – they
just give no information in those cases.

Theorem 5.1 (Hörmander’s propagation theorem, local version). Suppose P ∈
Ψm
∞(M) has real principal symbol homogeneous of degree m, that c : (a, b) −→

Σm(P ) is an interval of a null bicharacteristic curve (meaning c∗( ddt ) = Hp) and
that u ∈ S ′(Rn) satisfies

(5.96) c(a, b) ∩WF(Pu) = ∅

then

(5.97)

{
either c(a, b) ∩WF(u) = ∅
or c(a, b) ⊂WF(u).

5.14. Relative wavefront set

Although we could proceed directly by induction over the (Sobolev) order of
regularity to prove a result such as Theorem 5.1 it is probably better to divide
up the proof a little. To do this we can introduce a refinement of the notion of
wavefront set, which is actually the wavefront set relative to a Sobolev space. So,
fixing s ∈ R we can simply define by direct analogy with (5.45)

(5.98) WFs(u) =
⋂{

Σ0(A);A ∈ Ψ0
∞(Rn);Au ∈ Hs(Rn)

}
, u ∈ C−∞c (Rn).

Notice that this would not be a very good definition if extended directly to u ∈
S ′(Rn) if we want to think of it as only involving local regularity (because growth
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of u might stop Au from being in Hs(Rn) even if it is smooth). So we will just
localize the definition in general

(5.99) WFs(u) =
⋂{

Σ0(A);A ∈ Ψ0
∞(Rn);A(ψu) ∈ Hs(Rn) ∀ ψ ∈ C∞c (Rn)

}
,

u ∈ C−∞(Rn).

In this sense the regularity is with respect to Hs
loc(Rn) – is purely local.

Lemma 5.7. If u ∈ C−∞(Rn) then WFs(u) = ∅ if and only if u ∈ Hs
loc(Rn).

Proof. The same proof as in the case of the original wavefront set works,
only now we need to use Sobolev boundedness as well. Certainly if u ∈ Hs

loc(Rn)
then ψu ∈ Hs(Rn) for each ψ ∈ C∞c (Rn) and hence A(ψu) ∈ Hs(Rn) for every
A ∈ Ψ0

∞(Rn). Thus WFs(u) = ∅.
Conversely if u ∈ C−∞c (Rn) and WFs(u) = ∅ then for each point (x, ξ) with

x ∈ supp(u) and |ξ| = 1 there exists Ax,ξ ∈ Ψ0
∞(Rn) such that Au ∈ Hs(Rn) with

(x, ξ) /∈ Σ0(Ax,ξ). That is A(x,ξ) is elliptic at (x, ξ). By compactness (given the
conic property of the elliptic set) a finite collection Ai = A(xi,ξi) have the property
that the union of their elliptic sets cover some set K× (Rn \0) where K is compact
and supp(u) is contained in the interior of K. We can then choose φ ∈ C∞c (Rn) with
0 ≤ φ ≤ 1, supp(φ) ⊂ K and φ = 1 on supp(u) and

B = (1− φ) +
∑
i

A∗iAu ∈ Ψ0
∞(Rn)

is globally elliptic in Ψ0
∞(Rn) and Bu ∈ Hs(Rn) by construction (since (1− φ)u =

0). Thus u ∈ Hs(Rn). Applying this argument to ψu for each ψ ∈ C∞c (Rn) for
u ∈ C−∞(Rn) we see that WFs(u) = ∅ implies ψu ∈ Hs(Rn) and hence u ∈
Hs

loc(Rn). �

Of course if u ∈ C−∞c (Rn) then WFs(u) = ∅ is equivalent to u ∈ Hs(Rn).
It also follows directly from this definition that pseudodifferential operators are

‘appropriately’ microlocal given their order.

Lemma 5.8. If u ∈ C−∞(Rn) then

(5.100) WF(u) ⊃
⋃
s

WFs(u).

and coversely if γ ⊂ Rn × (Rn \ 0) is an open cone then

(5.101) γ ∩WFs(u) = ∅ ∀ s =⇒ γ ∩WF(u) = ∅.
The combination of these two statements is that

(5.102) WF(u) =
⋃
s

WFs(u).

Note that there is not in general equality in (5.100).

Proof. If (x̄, ξ̄) ∈ WFs(u) for some s then by definition there exists ψ ∈
C∞c (Rn) with ψ(x̄) 6= 0 and A ∈ Ψ0

∞(Rn) which is elliptic at (x̄, ξ̄) and is such that
A(ψu) /∈ Hs(Rn). This certainly implies that (x̄, ξ̄) ∈WF(u) proving (5.100).

To prove the partial converse if suffices to assume that u ∈ C−∞c (Rn) and to fix
a point (x̄, ξ̄) ∈ γ and deduce from (5.101) that (x̄, ξ̄) /∈WF(u). Since γ is an open
cone we may choose ε > 0 such that G = {(x, ξ); |x− x̄| ≤ ε, | ξ|ξ| −

ξ̄
ξ̄
| ≤ ε} ⊂ γ. Now
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for each s the covering argument in the proof of Lemma 5.7 shows that we may
find As ∈ Ψ0

∞(Rn) such that As(u) ∈ Hs(Rn) and G ∩ Σ0(As) = ∅. Now choose
one A ∈ Ψ0

∞(Rn) which is elliptic at (x̄, ξ̄) and has WF′(A) ⊂ {(x, ξ); |x − x̄| <
ε, | ξ|ξ| −

ξ̄
ξ̄
| < ε}, which is the interior of G. Since As has a microlocal parametrix in

a neighbourhood of G, BsAs = Id +Es, WF′(Es) ∩G = ∅ it follows that

(5.103) Au = A(BsAs − Es)u = (ABs)Asu−AEsu ∈ Hs(Rn) ∀ s,
since AEs ∈ Ψ−∞∞ (Rn). Thus Au ∈ S(Rn) (since u is assumed to have compact
support) so (x̄, ξ̄) /∈WF(u), proving (5.101). �

Lemma 5.9. If u ∈ S ′(Rn) and A ∈ Ψm
∞(Rn) then

(5.104) WFs−m(Au) ⊂WF′(A) ∩WFs(u) ∀ s ∈ R.

Proof. See the proof of the absolute version, Proposition 5.6. This shows
that if (x̄, ξ̄) /∈ WF′(A) then (x̄, ξ̄) /∈ WF(Au), so certainly (x̄, ξ̄) /∈ WFs−m(Au).
Similarly, if (x̄, ξ̄) /∈WFs(u) then there exists B ∈ Ψ0

∞(Rn) which is elliptic at (x̄, ξ̄)
and such that Bu ∈ Hs(Rn). If G ∈ Ψ0

∞(Rn) is a microlocal parametrix for B at
(x̄, ξ̄) then (x̄, ξ̄) /∈WF′(GB−Id) so by the first part (x̄, ξ̄) /∈WFs−m(A(GB−Id)u)
and on the other hand, AGBu ∈ Hs−m(Rn), so (5.104) follows. �

Now, we can state a relative version of Theorem 5.1:-

Theorem 5.2 (Hörmander’s propagation theorem, L2, local version). Suppose
P ∈ Ψ1

∞(M) has real principal symbol, that c : [a, b] −→ Σm(P ) is an interval of a
null bicharacteristic curve (meaning c∗( ddt ) = Hp) and that u ∈ C−∞c (Rn) satisfies

(5.105) c([a, b]) ∩WF 1
2
(Pu) = ∅ (eventually c([a, b]) ∩WF0(Pu) = ∅)

then

(5.106)

{
either c([a, b]) ∩WF0(u) = ∅
or c([a, b]) ⊂WF0(u).

Proof that Theorem 5.1 follows from Theorem 5.2. The basic idea is
to apply (5.101), remembering that there is not equality (in general) in (5.100) –
the necessary uniformity here comes from the geometry so let us check that first.

Lemma 5.10. First, we can act on P on the left with some elliptic operator
with positive principal symbol, such as 〈D〉−m+1 which changes the order of P to
1. This does not change Σ(P ) as the principal symbol changes from p to ap where
a > 0, and only scales the Hamilton vector field on Σ(P ) since

(5.107) Hap = aHp + pHa

and the second term vanishes on Σ(P ). Thus it suffices to consider the case m = 1.
If p is real and homogeneous of degree 1, Γ is an open conic neighbourhood of a

bicharacteristic segment c([a, b]) such that dp and the canonical 1-form α = ξ ·dx are
independent at c(a) and γ is an open conic neighbourhood of c(t) for some t ∈ [a, b]
then there is an open conic neighbourhood G of c([a, b]), G ⊂ Γ such that G∩Σ(P )
is a union of (null) bicharacteristic intervals cq(aq, bq)) which intersect γ.

Proof. If dp and α are linearly dependent at a some point (x̄, ξ̄) ∈ Σ(P ) then
Hp = cξ · ∂ξ is a multiple of the radial vector field at that point. By homogeneity
the same must be true at (x̄, sξ̄) for all s > 0 so the integral curve of Hp through
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(x̄, ξ̄) must be contained in the ray through that point. Thus the condition that
dp and ξ · dx are linearly independent at c(a) implies that this must be true on all
points of c([a, b]) and hence in a neighbourhood of this interval.

Thus it follows that Hp and ξ ·∂ξ are linearly independent near c([a, b]). Since p
is homogeneous of degree 1, Hp is homogeneous of degree 0. It follows that there are
local coordinates Ξ 6= 0 homogeneous of degree 1 and yk, homogeneous of degree 0,
in a neighbourhood of c([a, b]) in terms of which Hp = ∂y1 . These can be obtained
by integrating along Hp to solve

(5.108) Hpy1 = 1, Hpyk = 0, k > 1, HpΞ = 0

with appropriate initial conditions on a conic hypersurface transversal to Hp. Then
the integral curves, including c([a, b]) must just be the y1 lines for which the con-
clusion is obvious, noting that ∂y1 must be tangent to Σ(P ). �

Now, returning to the proof note that we are assuming that Theorem 5.2 has
been proved for all first order pseudodifferential operators with real principal sym-
bol. Suppose we have the same set up but assume that

(5.109) c([a, b]) ∩WFs+ 1
2
(Pu) = ∅ (eventually c([a, b]) ∩WFs(Pu) = ∅)

in place of (5.96). Then we can simply choose a globally invertible elliptic operator
of order s, say Qs = 〈D〉s and rewrite the equation as

(5.110) Psv = Qsf, Ps = QsPQ−s, v = Qsu

Then (5.109) implies that

(5.111) c([a, b]) ∩WF 1
2
(Psv) = ∅

and Ps ∈ Ψ0
∞(Rn) is another operator with real principal symbol – in fact the same

as before, so we get (5.97) which means that for each s we have the alternatives

(5.112)

{
either c([a, b]) ∩WFs(u) = ∅
or c([a, b]) ⊂WFs(u).

Now the hypothesis in (5.96) implies (5.109) for each s and hence for each s we
have the alternatives (5.112). Of course if the second condition holds for any one s
then it holds for all larger s and in particular implies that the second case in (5.97)
(but for the compact interval) holds. So, what we really need to show is that if the
first case in (5.112) holds for all s then

(5.113) c([a, b]) ∩WF(u) = ∅.

This is where we need to get some uniformity. However, consider nearby points
and bicharacteristics. Our assumption is that for some t ∈ [a, b], c(t) /∈ WF(u) –
otherwise we are in the second case. Since the set WF(u) is closed and conic, this
implies that some open cone γ containing c(t) is also disjoint from WF(u). Thus it
follows that γ ∩WFs(u) = ∅ for all s. This is where the geometry comes in to show
that there is a fixed open conic neighbourhood G of c([a, b]) such that

(5.114) G ∩WFs(u) = ∅ ∀ s ∈ R.

Namely we can take G to be a small neighbourhood as in Lemma 5.10. Since
one point on each of the null bicharacteristic intervals forming G ∩ Σ(P ) meets a
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point of γ, the first alternative in (5.112) must hold for all these intervals, for all s.
That is,

(5.115) G ∩WFs(u) = ∅ ∀ s.

Now (5.101) applies to show that G∩WF(u) = ∅ so in particular we are in the first
case in (5.97) and the theorem follows. �

Finally we further simplify Theorem 5.2 to a purely local statement.

Proposition 5.9. Under the hypotheses of Theorem 5.2 if t ∈ (a, b) and
WF0(u) ∩ c((t± ε)) = ∅ for some ε > 0 then c(t) /∈WF0(u).

Derivation of Theorem 5.2 from Proposition 5.9. The dicotomy in (5.97)
amounts to the statement that if c(t) /∈WF0(u) for some t ∈ [a, b] then C = {t′ ∈
[a, b]; c(t) ∈WF0(u)} must be empty. Since WF(u) is closed, C is also closed. Ap-
plying the Proposition to sup(C ∩ [a, t)) shows that it cannot be in C and neither
can inf(C ∩ (t, b]) so both these sets must be empty and hence C itself must be
empty. �

5.15. Proof of Proposition 5.9

Before we finally get down to the analysis let me note some more simiplifica-
tions. We can actually assume that c(t) = a = 0 and that the interval is [0, δ] for
some δ > 0. Indeed this is just changing the parameter in the case of the positive
sign. In the case of the negative sign reversing the sign of P leaves the hypotheses
unchanged but reverses the parameter along the integral curve. Thus our hypothe-
ses are that

(5.116) c([0, δ]) ∩WF 1
2
(Pu) = ∅ (eventually just c([0, δ]) ∩WF0(Pu) = ∅) and

c((0, δ]) ∩WF0(u) = 0

and we wish to conclude that

(5.117) c(0) /∈WF0(u).

We can also assume that

(5.118) c(0) /∈WF− 1
2
(u).

In fact, if (5.118) does not hold, then there is in fact some s < − 1
2 such that

c(0) /∈WFs(u) but c(0) ∈WFt(u) for some t ≤ max(− 1
2 , s+ 1

2 ). Indeed, u itself is in
some Sobolev space. Now we can apply the argument used earlier to deduce (5.112)
from (5.97). Namely, replace P by 〈D〉s+ 1

2P 〈D〉−s− 1
2 and u by u′ = 〈D〉s+ 1

2u. Then
(5.118) is satisfied by u′ and if the argument to prove (5.117) works, we conclude
that c(0) /∈ WFs(u) which is a contradiction. Thus, proving that (5.117) follows
form (5.116) and (5.117) suffices to prove everything.

Okay, now to the construction. What we will first do is find a ‘test’ operator
A ∈ Ψ0

∞(Rn) which has

(5.119) WF′(A) ⊂ N(c(0)), A∗ = A
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for a preassigned conic neighbourhood N(c(0)) of the point of interest. Then we
want in addition to arrange that for a preassigned conic neigbourhood N(c(δ/2)),

(5.120)

1
i
(AP − P ∗A) = B2 + E0 + E1,

B ∈ Ψ0
∞(Rn), B∗ = B is elliptic at c(0),

E0 ∈ Ψ0
∞(Rn), WF′(E0) ⊂ N(c(

δ

2
))

and E1 ∈ Ψ−1
∞ (Rn).

Before checking that we can arrange (5.120) let me comment on why it will
help! In fact there is a flaw in the following argument which will be sorted out
below. Given (5.120) let us apply the identity to u and then take the L2 pairing
with u which would give

(5.121) −2Im〈u,APu〉 = −i〈u,APu〉+ i〈APu, u〉 = ‖Bu‖2 + 〈u,E0〉+ 〈u,E1u〉.

where I have illegally integrated by parts, which is part of the flaw in the argument.
Anyway, the idea is that APu is smooth – at least it would be if we assumed that
N(c(0)) ∩WF(Pu) = ∅ – so the left side is finite. Similarly by the third line of
(5.120), WF′(E0) is confined to a region where u is known to be well-behaved and
the order of E1 allows us to use (5.118). So with a little luck we can show, and
indeed we will, that

(5.122) Bu ∈ L2(Rn) =⇒ c(0) /∈WF0(u)

which is what we are after. The problems with this argument are of the same nature
that are met in discussions of elliptic regularity and the niceties are discussed below.

So, let us now see that we can arrange (5.120). First recall that we have
normalized P to be of order 1 with real principal symbol. So

P ∗ = P + iQ, Q ∈ Ψ0
∞(Rn), Q = Q∗.

Thus the left side of the desired identity in (5.120) can be written

(5.123) −i[A,P ] +QA ∈ Ψ0
∞(Rn), σ0(−i[A,P ] +QA) = −Hpa+ qa

where q is the principal symbol of q etc. Since E1 in (5.120) can include any terms
of order −1 we just need to arrange the principal symbol identity

(5.124) −Hpa+ qa = b2 + e.

Notice that p is by assumption a function which is homogeneous of degree 1 so the
vector field Hp is homogeneous of degree 0. We can further assume that

(5.125) Hp 6= 0 on c([0, δ]).

Indeed, if Hp = 0 at c(0) then the whole integral curve through c(0) consists of the
point and the result is trivial. So we can assume that Hp 6= 0 at c(0) and then
(5.125) follows by shrinking δ. As noted above we can now introduce coordinates t
s ∈ R2n−2 and Θ > 0, homogeneous respectively of degrees 0, 0 and 1, in terms of
which Hp = ∂

∂t , c(0) = (0, 1) so the integral curve is just (t, 0, 1) and the differential
equation (5.124) only involves the t variable and the s variables as parameters (ξj
disappears because of the assumed homogeneity)

(5.126) − d

dt
a+ qa = b2 + e.
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So, simply choose b = φ(t)φ(|s|) for some cut-off function φ(x) ∈ C∞c (R) which is 1
near 0 and has small support in |x| ≤ δ′ which will be chosen small. Then solve

(5.127) − d

dt
ã+ qã = b2 =⇒ ã(t, s) = −φ2(|s|)e−Q(t,s)

∫ t

−∞
eQ(t′,s)φ2(t′, s)dt′

where Q is a primitive of q. Integrating from t << 0 ensures that the support of
a′ is confined to |s| ≤ δ′ and t ≥ −δ′. Now simply choose a function ψ ∈ C∞(R)
which is equal to 1 in t < 1

2δ − δ′ and equal to 0 in t > 1
2δ + δ′. Then setting

a(t, s) = ψ(t)ã(t, s) gives a solution of (5.126) with the desired support properties.
Namely if we simply cut a and b off in Θ near zero to make them into smooth
symbols and select operators B and A self-adjoint and with these principal symbols
then (5.120) follows where the supports behave as we wish when δ′ is made small.

So, what is the problem with the derivation of (5.121). For one thing the
integration by parts, but for another the pairing which we do not know to make
sense. In particular the norm ‖Bu‖ which we wish to show to be finite certainly
has to be for this argument to be possible. The solution to these problems is simply
to regularize the operators.

So, now choose a sequence µn(R) where the variable will be Θ. We want

(5.128) µn ∈ C∞c (R), µn bounded in S0(R) and µn → 1 ∈ Sε(R) ∀ ε > 0.

This is easily arranged, for instance taking µ ∈ C∞c (R) equal to 1 near 0 and setting
µn(Θ) = µ(Θ/n). Since we have arranged that the homogeneous variable Θ is
annihilated by Hp = d

dt we can simply multiply through the equation and get a
similar family of solutions to (5.124)

(5.129) −Hpan + qan = b2n + en

where all terms are bounded in S0
∞(Rn;Rn) (and have compact support in the base

variables). Now if we take operators An, Bn with these full symbols, and then their
self-adjoint parts, we conclude that An, Bn ∈ Ψ0

∞(Rn) have left symbols bounded
in S0 and we get a sequence of solutions to the identity (5.120) with uniformity.
Let’s check that we know precisely what this means. Namely for all ε > 0,
(5.130)
An is bounded in Ψ0

∞(Rn), An → A in Ψε
∞(Rn), WF′(An) ⊂ N(c(δ)) is uniform,

1
i
(AnP − P ∗An) = B2

n + E0,n + E1,n,

B∗n = Bn ∈ Ψ0
∞(Rn) is bounded, Bn → B in Ψε

∞(Rn), Ψ0
∞(Rn) 3 B is elliptic at c(0),

E0,n ∈ Ψ0
∞(Rn) is bounded, WF′(E0,n) ⊂ N(c(

δ

2
)) is uniform

and E1,n ∈ Ψ−1
∞ (Rn) is bounded.

where the boundedness of the sequences means that the symbols estimates on the
left symbols have fixed constants independent of n and uniformity of the essential
support conditions means that for instance

(5.131)
q /∈ N(c(

δ

2
)) =⇒ ∃ R ∈ Ψ0

∞(Rn) elliptic at q

such that RE0,n is bounded in Ψ−∞∞ (Rn).

All this follows from our choice of symbols.
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I leave as an exercise the effect of the uniformity statement on the essential
support.

Lemma 5.11. Suppose An is bounded in Ψm
∞(Rn) for some m and that

(5.132) WF′(An) ⊂ G uniformly

for a closed cone G in the sense of (5.131). Then if u ∈ C−∞c (Rn) is such that

(5.133) WFm(u) ∩G = ∅ then Anu is bounded in L2(Rn).

Now we are in a position to finish! For finite n all the operators in the identity
in (5.130) are smoothing so we can apply the operators to u and pair with u. Then
the integration by parts used to arrive at (5.121) is really justified in giving
(5.134)
−2Im〈u,AnPu〉 = −i〈u,AnPu〉+ i〈AnPu, u〉 = ‖Bnu‖2 + 〈u,E0,nun〉+ 〈u,E1,nu〉.
We have arranged that WF′(An) is uniformly concentrated near (the cone over)
c([0, δ2 ]) and, from (5.116), that WF 1

2
(Pu) does not meet such a set. Thus Lemma 5.11

shows us that AnPu is bounded in H
1
2 (Rn). Since we know that WF− 1

2
(u) does

not meet c([0, δ]) we conclude (always taking the parameter δ′ determining the size
of the supports small enough) that

(5.135) |〈u,AnPu〉| is bounded

as n → ∞. Similarly |〈u,E0,n〉| is bounded since E0,n is bounded in Ψ0
∞(Rn) and

has essential support uniformly in the region where u is known to be in L2(Rn) and
|〈u,E1,n〉| is bounded since E1,n is uniformly of order −1 and has essential sup-
port (uniformly) in the region where u is known to be in H−

1
2 (Rn). Thus indeed,

‖Bnu‖L2 is bounded. Thus Bnu is bounded in L2(Rn), hence has a weakly conver-
gent subsequence, but this must converge to Bu when paired with test functions.
Thus in fact Bu ∈ L2(Rn) and (5.117) follows.

5.16. Hörmander’s propagation theorem

There are still some global issues to settle. Theorem 5.1, which has been proved
above, can be immediately globalized and microlocalized at the same time. It is
also coordinate invariant – see the discussion in Chapter 6, so can be transferred
to any manifold as follows.

Theorem 5.3. If P ∈ Ψm(M) has real principal symbol and is properly sup-
ported then for any distribution u ∈ C−∞(M),

(5.136) WF(u) \WF(Pu) ⊂ Σ(P )

is a union of maximally extended null bicharacteristics in Σ(P ) \WF(Pu).

Some consequences of this in relation to the wave equation are discussed below,
and extension of it in Chapter 7.

As already noted, the strengthened assumption on the regularity of Pu in (5.96)
is not necessary to deduce (5.97), or correspondingly (5.116) for (5.117). This is
not important in the proof of Theorem 5.1 since we are making a much stronger
assumption on the regularity of Pu anyway. However, to get the more refined
version of Theorem 5.2, as stated ‘eventually’ we only need to prove (5.117) using
the corresponding form of (5.116). This in turn involves a more careful choice of
φ(x) using the following sort of division result.
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Lemma 5.12. There exist a function φ ∈ C∞(R) with support in [0,∞) which
is strictly positive in (0,∞) and such that for any 0 < f ∈ C∞(R),

(5.137)
∫ t

−∞
f(t′)φ2(t′)dt′ = φ(t)a(t), a ∈ C∞(R), supp(a) ⊂ [0,∞).

Proof. This is true for φ = exp(−1/t) in t > 0, φ(t) = 0 in t ≤ 0. Indeed the
integral is then bounded by

(5.138) |
∫ t

−∞
f(t′) exp(−2/t′)dt′| ≤ C exp(−2/t), t ≤ 1.

This shows that a(t), defined as the quotient for t > 0 and 0 for t < 0 is bounded
by Cφ(t). A similar argument show that each of the derivatives are also uniformly
bounded by t−Nφ(t) and is therefore also bounded. �

Taking φ to be such a function in the discussion above (near the lower bound
of its support) allows the symbol a defined by integration, and then an, to be
decomposed as

(5.139) an = bngn + a′n

where a′n is uniformly supported in t < δ′/10 and gn is also a uniformly bounded
sequence of symbols of order 0. This results in a similar decomposition for the
operators

(5.140) An = BnGn +A′n +R′n

where R′n is uniformly of order−1, Gn is uniformly of order 0 and A′n, also uniformly
of order 0 is uniformly supported in the region where we already know that u ∈
L2(Rn). The previous estimate (5.135) on the left side of (5.134) can then be
replaced by

(5.141) |〈u,AnPu〉| ≤ |〈Bnu,GnPu〉|+ |〈u,A′nPu〉|+ |〈u,R′nPu〉| ≤ C‖Bnu‖+C ′

using only the ‘eventual’ estimate in (5.116) to control the third term. The other
terms in (5.134) behave as before which results in an estimate

(5.142) ‖Bnu‖2 ≤ C ′‖Bnu‖+ C ′′

which still implies that ‖Bnu‖ is bounded, so the argument can be completed
as before. This then proves the ‘eventual’ form of Theorem 5.2 and hence, after
reinterpretation, Theorem 5.3.

5.17. Elementary calculus of wavefront sets

We want to achieve a reasonable understanding, in terms of wavefront sets, of
three fundamental operations. These are

Pull-back: F ∗u(5.143)

Push-forward: F∗u and(5.144)

Multiplication: u1 · u2.(5.145)
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In order to begin to analyze these three operations we shall first introduce and
discuss some other more “elementary” operations:

Pairing: (u, v) −→ 〈u, v〉 =
∫
u(x)v(x)dx(5.146)

Projection: u(x, y) 7−→
∫
u(x, y)dy(5.147)

Restriction: u(x, y) 7−→ u(x, 0)(5.148)

Exterior product: (u, v) 7−→ (u� v)(x, y) = u(x)v(y)(5.149)

Invariance: F ∗u, for F a diffeomorphism.(5.150)

Here (5.148) and (5.150) are special cases of (5.143), (5.147) of (5.144) and (5.149) is
a combination of (5.145) and (5.143). Conversely the three fundamental operations
can be expressed in terms of these elementary ones. We can give direct definitions
of the latter which we then use to analyze the former. We shall start with the
pairing in (5.146).

5.18. Pairing

We know how to ‘pair’ a distribution and a C∞ function. If both are C∞ and
have compact supports then

(5.151) 〈u1, u2〉 =
∫
u1(x)u2(x)dx

and in general this pairing extends by continuity to either C−∞c (Rn) × C∞(Rn) or
C∞(Rn) × C−∞c (Rn) Suppose both u1 and u2 are distributions, when can we pair
them?

Proposition 5.10. Suppose u1, u2 ∈ C−∞c (Rn) satisfy

(5.152) WF(u1) ∩WF(u2) = ∅
then if A ∈ Ψ0

∞(Rn) has

(5.153) WF(u1) ∩WF′(A) = ∅, WF(u2) ∩WF′(Id−A) = ∅
the bilinear form

(5.154) 〈u1, u2〉 = 〈Au1, u2〉+ 〈u1, (Id−A∗)u2〉
is independent of the choice of A.

Notice that A satisfying (5.153) does indeed exist, just choose a ∈ S0
∞ (Rn;Rn)

to be identically 1 on WF(u2), but to have cone supp(a) ∩WF(u1) = ∅, possible
because of (5.152), and set A = qL(a).

Proof. Of course (5.154) makes sense because Au1, (Id−A∗)u2 ∈ C∞(Rn) by
microlocality and the fact that WF′(A) = WF′(A∗). To prove that this definition
is independent of the choice of A, suppose A′ also satisfies (5.153). Set

(5.155) 〈u1, u2〉′ = 〈A′u1, u2〉+ 〈u1, (Id−A′)∗u2〉.
Then

(5.156) WF′(A−A′) ∩WF(u1) = WF′((A−A′)∗) ∩WF(u2) = ∅.
The difference can be written

(5.157) 〈u1, u2〉′ − 〈u1, u2〉 = 〈(A−A′)u1, u2〉 − 〈u1, (A−A′)∗u2〉.
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Naturally we expect this to be zero, but this is not quite obvious since u1 and u2

are both distributions. We need an approximation argument to finish the proof.
Choose B ∈ Ψ0

∞(Rn) with

(5.158)
WF′(B) ∩WF(u1) = WF′(B) ∩WF(u2) = ∅

WF′(Id−B) ∩WF(A−A′) = ∅

If vn −→ u2, in C−∞c (Rn), vn ∈ C∞c (Rn) then

(5.159) wn = φ
[
(Id−B) vn +Bu2

]
−→ u2

if φ ≡ 1 in a neighbourhood of supp(u2), φ ∈ C∞c (Rn). Here Bu2 ∈ C∞(Rn), so
(5.160)
(A−A′)wn = (A−A′)φ(Id−B) · vn + (A−A′)φBu2 −→ (A−A′)u2 in C∞(Rn),

since (A−A′)φ(Id−B) ∈ Ψ−∞∞ (Rn). Thus

〈(A−A′)u1, u2〉 −→ 〈(A−A′)u1, u2〉
〈u1, (A−A′)

∗
wn〉 −→ 〈u1, (A−A′)

∗
u2〉,

since wn −→ u2 in C−∞c (Rn) and (A−A′)∗wn −→ (A−A′)∗ u2 in C∞(Rn). Thus

(5.161) 〈u1, u2〉′ − 〈u1, u2〉 = lim
n→∞

[
〈(A−A′)u1, wn〉 − 〈u1, (A−A′)

∗
wn
]

= 0.

�

Here we are using the complex pairing. If we define the real pairing by

(5.162) (u1, u2) = 〈u1, u2〉

then we find

Proposition 5.11. If u1, u2 ∈ C−∞c (Rn) satisfy

(5.163) (x, ξ) ∈WF(u1) =⇒ (x,−ξ) /∈WF(u2)

then the real pairing, defined by

(5.164) (u1, u2) = (Au1, u2) + (u1, (Id−At)u2),

where A satisfies (5.153), is independent of A.

Proof. Notice that

(5.165) WF(u) =
{

(x,−ξ) ∈ Rn × (Rnr0); (x, ξ) ∈WF(u)
}
.

We can write (5.163), using (5.162), as

(5.166) (u1, u2) = 〈Au1, u2〉+ 〈u1, (Id−At)u2〉.

Since, by definition, Atu2 = A∗u2,

(5.167) (u1, u2) = 〈Au1, u2〉+ 〈u1, (Id−A∗)u2〉 = 〈u1, u2〉

is defined by (5.154), since (5.163) translates to (5.152). �
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5.19. Multiplication of distributions

The pairing result (5.164) can be used to define the product of two distributions
under the same hypotheses, (5.163).

Proposition 5.12. If u1, u2 ∈ C−∞c (Rn) satisfy

(5.168) (x, ξ) ∈WF(u1) =⇒ (x,−ξ) /∈WF(u2)

then the product of u1 and u2 ∈ C−∞c (Rn) is well-defined by

(5.169) u1u2(φ) = (u1, φu2) = (φu1, u2) ∀ φ ∈ C∞c (Rn)

using (5.164).

Proof. We only need to observe that if u ∈ C−∞c (Rn) and A ∈ Ψm
∞(Rn) has

WF′(A) ∩WF(u) = ∅ then for any fixed ψ ∈ C∞c (Rn)

(5.170) ‖ψAφu‖Ck ≤ C‖φ‖Cp p = k +N

for some N, depending on m. This implies the continuity of φ 7−→ u1u2(φ) defined
by (5.169). �

5.20. Projection

Here we write Rnz = Rpx × Rky and define a continuous linear map, which we
write rather formally as an integral

(5.171) C−∞c (Rn) 3 u 7−→
∫
u(x, y)dy ∈ C−∞c (Rp)

by pairing. If φ ∈ C∞(Rp) then

(5.172) π∗1φ ∈ C∞(Rn), π1 : Rn 3 (x, y) 7−→ x ∈ Rp

and for u ∈ C−∞c (Rn) we define the formal ‘integral’ in (5.171) by

(5.173) (
∫
u(x, y)dy, φ) = ((π1)∗u, φ) := u(π∗1φ).

In this sense we see that the projection is dual to pull-back (on functions) under
π1, so is “push-forward under π1,” a special case of (5.144). The support of the
projection satisfies

(5.174) supp ((π1)∗u) ⊂ π1 (supp(u)) ∀ u ∈ C−∞c (Rn),

as follows by duality from

(5.175) supp(π∗1φ) ⊂ π−1
1 (suppφ) .

Proposition 5.13. Let π1 : Rp+k −→ Rp be projection, then for every u ∈
C−∞c (Rp+k)

(5.176)
WF ((π1)∗u) ⊂

{
(x, ξ) ∈ Rp × (Rp\0) ;

∃ y ∈ Rk with (x, y, ξ, 0) ∈WF(u)
}
.

Proof. First notice that

(5.177) (π1)∗ : C∞c (Rn) −→ C∞c (Rp).

Combining this with (5.174) we see that

(5.178) sing supp ((π1)∗u) ⊂ π1 (sing suppu)
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which is at least consistent with Proposition 5.13. To prove the proposition in full
let me restate the local characterization of the wavefront set, in terms of the Fourier
transform:

Lemma 5.13. Suppose K ⊂⊂ Rn and Γ ⊂ Rnr0 is a closed cone, then

(5.179)
u ∈ C−∞c (Rn), WF(u) ∩ (K × Γ) = ∅, A ∈ Ψm

∞(Rn), WF′(A) ⊂ K × Γ

=⇒ Au ∈ S(Rn).

In particular

(5.180)
u ∈ C−∞c (Rn), WF(u) ∩ (K × Γ) = ∅, φ ∈ C∞c (Rn), supp(φ) ⊂ K

=⇒ φ̂u(ξ) is rapidly decreasing in Γ.

Conversely suppose Γ ⊂ Rnr0 is a closed cone and u ∈ S ′(Rn) is such that for
some φ ∈ C∞c (Rn)

(5.181) φ̂u(ξ) is rapidly decreasing in Γ

then

(5.182) WF(u) ∩
{
x ∈ Rn;φ(x) 6= 0

}
× int(Γ) = ∅.

With these local tools at our disposal, let us attack (5.176). We need to show
that

(5.183)
(x, ξ) ∈ Rp × (Rp\0) s.t. (x, y, ξ, 0) /∈WF(u) ∀ y ∈ Rn

=⇒ (x, ξ) /∈WF ((π1)∗u) .

Notice that, WF(u) being conic and π(WF(u)) being compact, WF(u)∩(Rn×Sn−1)
is compact. The hypothesis (5.183) is the statement that

(5.184) {x} × Rk × Sn−1 × {0} ∩WF(u) = ∅.
Thus x has an open neighbourhood, W, in Rp, and (ξ, 0) a conic neighbourhood γ1

in (Rn\0) such that

(5.185) (W × Rk × γ1) ∩WF(u) = ∅.
Now if φ ∈ C∞c (Rp) is chosen to have support in W

(5.186) ̂(π∗1φ)u(ξ, η) is rapidly decreasing in γ1.

Set v = φ(π1)∗u. From the definition of projection and the identity

(5.187) v = φ(π1)∗u = (π1)∗[(π∗1φ)u],

we have

(5.188) v̂(ξ) = v(e−ix·ξ) = ̂((π∗1φ)u)(ξ, 0).

Now (5.186) shows that v̂(ξ) is rapidly decreasing in γ1 ∩ (Rp × {0}), which is a
cone around ξ in Rp. Since v = φ(π1)∗u this shows that (x, ξ) /∈ WF ((π1)∗u) , as
claimed. �

Before going on to talk about the other operations, let me note a corollary of
this which is useful and, even more, helps to explain what is going on:

Corollary 5.1. If u ∈ C−∞c (Rn) and

(5.189) WF(u) ∩
{

(x, y, ξ, 0);x ∈ Rp, y ∈ Rk, ξ ∈ Rp\0
}

= ∅
then (π1)∗(u) ∈ C∞c (Rn).
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Proof. Indeed, (5.176) says WF ((π1)∗u) = ∅. �

Here, the vectors (x, y, ξ, 0) are the ones “normal” (as we shall see, really conor-
mal) to the surfaces over which we are integrating. Thus Lemma 5.13 and Corol-
lary 5.1 both state that the only singularities that survive integration are the ones
which are conormal to the surface along which we integrating; the ones even par-
tially in the direction of integration are wiped out. This in particular fits with the
fact that if we integrate in all variables then there are no singularities left.

5.21. Restriction

Next we wish to consider the restriction of a distribution to a subspace

(5.190) C−∞c (Rn) 3 u 7−→ u � {y = 0} ∈ C−∞c (Rp).

This is not always defined, i.e. no reasonable map (5.190) exists for all distributions.
However under an appropriate condition on the wavefront set we can interpret
(5.190) in terms of pairing, using our definition of products. Thus let

(5.191) ι : Rp 3 x 7−→ (x, 0) ∈ Rn

be the inclusion map. We want to think of u � {y = 0} as ι∗u. If u ∈ C∞c (Rn) then
for any φ′ ∈ C∞c (Rn) the identity

(5.192) ι∗u(ι∗φ′) = u (φ′δ(y))

holds.
The restriction map ι∗ : C∞c (Rn) −→ C∞c (Rp) is surjective. If u ∈ C−∞c (Rn)

satisfies the condition

(5.193) WF(u) ∩
{

(x, 0, 0, η);x ∈ Rp, η ∈ Rn−p
}

= ∅
then we can interpret the pairing

(5.194)
ι∗u(φ) = u (φ′δ(y)) ∀ φ ∈ C∞c (Rp)
where φ′ ∈ C∞c (Rn) and ι∗φ′ = φ

to define ι∗u. Indeed, the right side makes sense by Proposition 5.12.
Thus we have directly proved the first part of

Proposition 5.14. Set R =
{
u ∈ C−∞c (Rn); (5.193) holds

}
then (5.194) de-

fines a linear restriction map ι∗ : R −→ C−∞c (Rp) and

(5.195) WF(ι∗u) ⊂
{

(x, ξ) ∈ Rp × (Rpr0); ∃ η ∈ Rn with (x, 0, ξ, η) ∈WF(u)
}
.

Proof. First note that (5.193) means precisely that

(5.196) û(ξ, η) is rapidly decreasing in a cone around {0} × Rk\0.
When u ∈ C∞c (Rn) taking Fourier transforms in (5.192) gives

(5.197) ι̂∗u(ξ) =
1

(2π)k

∫
û(ξ, η)dη.

In general (5.196) ensures that the integral in (5.197) converges, it will then hold
by continuity.

We actually apply (5.197) to a localized version of u; if ψ ∈ C∞c (Rp) then

(5.198) ψ̂ι∗(u)(ξ) = (2π)−k
∫
ψ̂(ξ)û(ξ, η)dη.
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Thus suppose (x, ξ) ∈ Rp × (Rp\0) is such that (x, 0, ξ, η) /∈WF(u) for any η. If ψ
has support close to x and ζ ∈ C∞c (Rn−p) has support close to 0 this means

(5.199) ψ̂ζu(ξ, η) is rapidly decreasing in a cone around each (ξ, η).

We also have rapid decrease around (0, η) from (5.196) (make sure you understand
this point) as

(5.200) ψ̂ζu(ξ, η) is rapidly decreasing in γ × Rp

for a cone, γ, around ξ. From (5.197)

(5.201) ψ̂ι∗(ζu)(ξ) is rapidly decreasing in γ.

Thus (x, ξ) /∈ WF(ι∗(ζu)). Of course if we choose ζ(y) = 1 near 0, ι∗(ζu) = ι∗(u)
so (x, ξ) /∈ WF(u), provided (x, 0, ξ, η) /∈ WF(u), for all η. This is what (5.195)
says. �

Try to picture what is going on here. We can restate the main conclusion of
Proposition 5.14 as follows.

Take WF(u) ∩
{

(x, 0, ξ, η) ∈ Rp × {0} × (Rn\0)
}

and let Z denote projection
off the η variable:

(5.202) Rp × {0} × Rp × Rk Z−→ Rp × Rp

then

(5.203) WF(ι∗u) ⊂ Z(WF(u) ∩ {y = 0}).

We will want to think more about these operations later.

5.22. Exterior product

This is maybe the easiest of the elementary operators. It is always defined

(5.204) (u1 � u2)(φ) = u1 (u2(φ(x, ·)) = u2(u1(φ(·, y)).

Moreover we can easily compute the Fourier transform:

(5.205) û1 � u2(ξ, η) = û1(ξ)û2(η).

Proposition 5.15. The (exterior) product

(5.206) C−∞c (Rp)× C−∞c (Rk)←− C−∞c (Rp+k)

is a bilinear map such that

(5.207)
WF(u1 � u2) ⊂ [(supp(u1)× {0})×WF(u2)]

∪ [WF(u1)× (supp(u2)× {0})] ∪ [WF(u1)×WF(u2)].

Proof. We can localize near any point (x, y) with φ1(x)φ2(y), where φ1 is
supported near x and φ2 is supported near y. Thus we only need examine the
decay of

(5.208) ̂φ1u1 � φ2u2 = φ̂1u1(ξ) · φ̂2u2(η).

Notice that if φ̂1u1(ξ) is rapidly decreasing around ξ 6= 0 then the product is rapidly
decreasing around any (ξ, η). This gives (5.207). �
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5.23. Diffeomorphisms

We next turn to the question of the extension of F ∗, where F : Ω1 −→ Ω2 is
a C∞ map, from C∞(Ω2) to some elements of C−∞(Ω2). The simplest example of
pull-back is that of transformation by a diffeomorphism.

We have already noted how pseudodifferential operators behave under a diffeo-
morphism: F : Ω1 −→ Ω2 between open sets of Rn. Suppose A ∈ Ψm

∞(Rn) has
Schwartz kernel of compact support in Ω1 × Ω1 then we define

(5.209) AF : C∞c (Ω2) −→ C∞c (Ω2)

by AF = G∗ ·A · F ∗, G = F−1. In § 5.4 we showed that AF ∈ Ψm
∞(Rn). In fact we

showed much more, namely we computed a (very complicated) formula for the full
symbols. Recall the definition of the cotangent bundle of Rn

(5.210) T ∗Rn ' Rn × Rn

identified as pairs of points (x, ξ), where x ∈ Rn and

(5.211) ξ = df(x) for some f ∈ C∞(Rn).

The differential df(x) of f at x ∈ Rn is just the equivalence class of f(x)−f(x) ∈ Ix
modulo I2

x. Here

(5.212)

Ix =
{
g ∈ C∞(Rn); g(x) = 0

}
I2
x =

{ ∑
finite

gihi, gi, hi ∈ Ix
}
.

The identification of ξ, given by (5.210) and (5.211), with a point in Rn is obtained
using Taylor’s formula. Thus if f ∈ C∞(Rn)

(5.213) f(x) = f(x) +
n∑
i=1

∂f

∂xj
(x)(x− x)j +

∑
i,j=1

gij(x)xixj .

The double sum here is in I2
x, so the residue class of f(x) − f(x) in Ix

/
I2
x is the

same as that of

(5.214)
n∑
i=1

∂f

∂xj
(x)(x− x)j .

That is, d(x − x)j = dxj , j = 1, . . . , n form a basis for T ∗xRn and in terms of this
basis

(5.215) df(x) =
n∑
i=1

∂f

∂xj
(x)dxj .

Thus the entries of ξ are just
(
∂f
∂x1

, . . . ∂f∂xn

)
for some f. Another way of saying this

is that the linear functions ξ · x = ξ1x1 + ξ2x2 · · · ξnxn have differentials spanning
T ∗xRn.

So suppose F : Ω1 −→ Ω2 is a C∞ map. Then

(5.216) F ∗ : T ∗yΩ2 −→ T ∗xΩ1, y = F (x)
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is defined by F ∗df(y) = d(F ∗f)(x) since F ∗ : Iy −→ Ix, F ∗ : I2
y −→ I2

x. In
coordinates F (x) = y =⇒

(5.217)
∂

∂xj
(F ∗f(x)) =

∂

∂y
f(F (x)) =

n∑
k=1

∂f

∂xk
(y)

∂Fk
∂xj

i.e. F ∗(η · dy) = ξ · dx if

(5.218) ξj =
n∑
k=1

∂Fk
∂xj

(x) · ηk.

Of course if F is a diffeomorphism then the Jacobian matrix ∂F
∂x is invertible

and (5.218) is a linear isomorphism. In this case

(5.219)
F ∗ : T ∗Ω2

Rn ←→ T ∗Ω1
Rn

(x, ξ)←→ (F (x), η)

with ξ and η connected by (5.218). Thus (F ∗)∗ : C∞(T ∗Ω1) −→ C∞(T ∗Ω2).

Proposition 5.16. If F : Ω1 −→ Ω2 is a diffeomorphism of open sets of Rn
and A ∈ Ψm

∞(Rn) has Schwartz kernel with compact support in Ω1 × Ω2 then

(5.220) σm(AF ) = (F ∗)∗σm(A)

and

(5.221) F ∗
(
WF′(AF )

)
= WF′(A).

It follows that symbol σm(A) of A is well-defined as an element of Sm−[1]
∞ (T ∗Rn)

independent of coordinates and WF′(A) ⊂ T ∗Rn\0 is a well-defined closed conic
set, independent of coordinates. The elliptic set and the characteristic set Σm are
therefore also well-defined complementary conic subsets of T ∗Ω\0.

Proof. Look at the formulae. �

The main use we make of this invariance result is the freedom it gives us to
choose local coordinates adapted to a particular problem. It also suggests that
there should be neater ways to write various formulae, e.g. the wavefront sets of
push-forward and pull-backs.

Proposition 5.17. If u ∈ C−∞c (Rn) has supp(u) ⊂ Ω2 and F : Ω1 −→ Ω2 is a
diffeomorphism then
(5.222)

WF(F ∗u) ⊂
{

(x, ξ) ∈ Rn × (Rn\0); (F (x), η) ∈WF(u), ηj =
∑
i

∂Fi
∂xj

(x)ξi
}
.

Proof. Just use the standard definition

(5.223) WF(F ∗u) =
⋂{

Σ(A); A(F ∗u) ∈ C∞
}
.

To test the wavefront set of F ∗u it suffices to consider A’s with kernels supported
in Ω1 × Ω1 since supp(F ∗u b Ω1 and for a general pseudodifferential operator A′
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there exists A with kernel supported in Ω1 such that A′u − Au ∈ C∞(Rn). Then
AF ∗u ∈ C∞c (Ω1)⇐⇒ AFu ∈ C∞c (Ω2). Thus

WF(F ∗u) =
⋂{

Σ(A); AFu ∈ C∞
}

(5.224)

=
⋂{

F ∗(Σ(AF ));AFu ∈ C∞
}

(5.225)

= F ∗WF(u)(5.226)

since, for u, it is enough to consider operators with kernels supported in Ω2×Ω2. �

5.24. Products

Although we have discussed the definition of the product of two distributions
we have not yet analyzed the wavefront set of the result.

Proposition 5.18. If u1, u2 ∈ C−∞c (Rn) are such that

(5.227) (x, ξ) ∈WF(u1) =⇒ (x,−ξ) /∈WF(u2)

then the product u1u2 ∈ C−∞c (Rn), defined by Proposition 5.12 satisfies

(5.228)

WF(u1u2) ⊂
{

(x, ξ);x ∈ supp(u1) and (x, ξ) ∈WF(u2)
}

∪
{

(x, ξ);x ∈ supp(u2) and (x, ξ) ∈WF(u1)
}

∪
{

(x, ξ); ξ = η1 + η2, (x, ηi) ∈WF(ui), i = 1, 2
}
.

Proof. We can represent the product in terms of three ‘elementary’ opera-
tions.

(5.229) u1u2(x) = ι∗
[
F ∗(u1 � u2)

]
where F : R2n −→ R2n is the linear transformation

(5.230) F (x, y) = (x+ y, x− y)

and ι : Rn ↪→ Rn × {0} ⊂ R2n is inclusion as the first factor. Thus (5.229)
corresponds to the ‘informal’ notation

(5.231) u1u2(x) = u1(x+ y)u2(x− y) � {y = 0}
and will follow by continuity once we analyse the wavefront set properties.

We know from Proposition 5.15 that

(5.232)

WF (u1 � u2) ⊂
{

(X,Y,Ξ, H) ;X ∈ supp(u1),Ξ = 0, (Y,H) ∈WF(u2)
}

∪
{

(X,Y,Ξ, H) ; (X,Ξ) ∈WF(u1), Y ∈ supp(u2), H = 0
}

∪
{

(X,Y,Ξ, H) ; (X,Ξ) ∈WF(u1), (Y,H) ∈WF(u2)
}
.

Since F is a diffeomorphism, by Proposition 5.17,

WF(F ∗(u1 � u2)) =
{

(x, y, ξ, η); (F t(x, y),Ξ, H) ∈WF(u1 � u2),

(ξ, η) = At(Ξ, H)
}
.

where F t is the transpose of F as a linear map. In fact F t = F, so

WF(F ∗(u1 � u2)) ⊂{
(x, y, ξ, η);x+ y ∈ supp(u1), ξ + η = 0, (x− y, 1

2
(ξ − η)) ∈WF(u2)

}
∪
{

(x, y, ξ, η); (x+ y,
1
2

(ξ + η)) ∈WF(u1), (x− y, 1
2

(ξ − η)) ∈WF(u2)
}
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and so using Proposition 5.14

WF(F ∗(u1 � u2)) � {y = 0}
⊂
{

(x, 0, ξ,−ξ);x ∈ supp(u1), (x, ξ) ∈WF(u2)
}

∪
{

(x, 0, ξ, η); (x ∈ supp(u2), (x, ξ) ∈WF(u2)
}

∪
{

(x, 0, ξ, η); (x,
1
2

(ξ + η)) ∈WF(u2), (x,
1
2

(ξ − η)) ∈WF(u1)
}

Notice that
(5.233)

(x, 0, 0, η) ∈WF (F ∗(u1 � u2)) =⇒ (x,
1
2
η) ∈WF(u1) and (x,

1
2
η) WF(u2)

which introduces the assumption under which u1u2 is defined. Finally then we see
that
(5.234)

WF(u1u2) ⊂
{

(x,ξ);x ∈ supp(u1), (x, ξ) ∈WF(u2)
}

∪
{

(x, ξ);x ∈ supp(u2), (x, ξ) ∈WF(u1)
}

∪
{

(x, ξ); (x, η1) ∈WF(u1), (x, η2) ∈WF(u2) and ξ = η1 + η2

}
.

which is another way of writing the conclusion of Proposition 5.18. �

5.25. Pull-back

Now let us consider a general C∞ map

(5.235) F : Ω1 −→ Ω2, Ω1 ⊂ Rn,Ω2 ⊂ Rm.

Thus even the dimension of domain and range spaces can be different. When can
we define F ∗u, for u ∈ C−∞c (Ω2) and what can we say about WF(F ∗u)? For a
general map F it is not possible to give a sensible, i.e. consistent, definition of F ∗u
for all distributions u ∈ C−∞(Ω2).

For smooth functions we have defined

(5.236) F ∗ : C∞c (Ω2) −→ C∞(Ω1)

but in general F ∗φ does not have compact support, even if φ does. We therefore
impose the condition that F be proper

(5.237) F−1(K) b Ω2 ∀ K b Ω2,

(mostly just for convenience). In fact if we want to understand F ∗u near x1 ∈ Ω1

we only need to consider u near F (x1) ∈ Ω2.
The problem is that the map (5.235) may be rather complicated. However any

smooth map can be decomposed into a product of simpler maps, which we can
analyze locally. Set

(5.238) graph(F ) =
{

(x, y) ∈ Ω1 × Ω2; y = F (x)
} ιF−→ Ω1 × Ω2.

This is always an embedded submanifold of Ω1 × Ω2 the functions yi − Fi(x),
i = 1, . . . , N are independent defining functions for graph(F ) and x1, . . . , xn are
coordinates on it. Now we can write

(5.239) F = π2 ◦ ιF ◦ g
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where g : Ω1 ←→ graph(F ) is the diffeomorphism onto its range x 7−→ (x, F (x)).
This decomposes F as a projection, an inclusion and a diffeomorphism. Now con-
sider

(5.240) F ∗φ = g∗ · ι∗F · π∗2φ

i.e. F ∗φ is obtained by pulling φ back from Ω2 to Ω1 ×Ω2, restricting to graph(F )
and then introducing the xi as coordinates. We have directly discussed (π∗2φ) but
we can actually write it as

(5.241) π∗2φ = 1� φ(y),

so the result we have proved can be applied to it. So let us see what writing (5.240)
as

(5.242) F ∗φ = g∗ ◦ ι∗F (1� φ)

tells us. If u ∈ C−∞c (Ω2) then

(5.243) WF(1� u) ⊂
{

(x, y, 0, η); (y, η) ∈WF(u)
}

by Proposition 5.15. So we have to discuss ι∗F (1 � u), i.e. restriction to y = F (x).
We can do this by making a diffeomorphism:

(5.244) TF (x, y) = (x, y + F (x))

so that T−1
F (graph(F )) = {(x, 0)}. Notice that g ◦ TF = π1, so

(5.245) F ∗φ = ι∗{y=0} (T ∗F (1� u)) .

Now from Proposition 5.17 we know that

(5.246) WF(T ∗F (1� u)) = T ∗F (WF(1� u))

=
{

(X,Y,Ξ, H); (X,Y + F (X), ξ, η) ∈WF(1� u),

η = H, ξi = Ξi + Σ
∂Fj
∂xi

Hj

}
i.e.

(5.247) WF(T ∗F (1� u)) =
{

(x, y, ξ, η); ξi =
∑
j

∂Fj
∂xj

(x)ηj , (F (x), η) ∈WF(u)
}
.

So consider our existence condition for restriction to y = 0, that ξ 6= 0 on WF(T ∗F (1�
u)) i.e.

(5.248) (F (x), η) ∈WF(u) =⇒
∑
j

∂Fj
∂xi

(x)ηj 6= 0.

If (5.248) holds then, from (5.246) and Proposition 5.14

(5.249) WF(F ∗u) ⊂
{

(x, ξ); ∃ (F (x), η) ∈WF(u) and ξj =
∑
j

∂Fj
∂xi

(x)ηj
}
.

We can reinterpret (5.248) and (5.249) more geometrically. The differential of
F gives a map

(5.250)
F ∗ : T ∗F (x)Ω2 −→ T ∗xΩ1 ∀ x ∈ Ω1

(F (x), η) 7−→ (x, ξ) where ξi = Σ
∂Fj
∂xi

ηj .
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Thus (5.248) can be restated as:

(5.251)
∀ x ∈ Ω1, the null space of F ∗x : T ∗F (x)Ω2 −→ T ∗xΩ1

does not meet WF(u)

and then (5.249) becomes

(5.252) WF(F ∗u) ⊂
⋃
x∈Ω1

F ∗x [WF(u) ∩ T ∗F (x)Ω2] = F ∗(WF(u))

(proved we are a little careful in that F ∗ is not a map; it is a relation between
T ∗Ω2 and T ∗Ω1) and in this sense (5.251) holds. Notice that (5.249) is a sensi-
ble “consequence” of (5.251), since otherwise WF(F ∗u) would contain some zero
directions.

Proposition 5.19. If F : Ω1 −→ Ω2 is a proper C∞ map then F ∗ extends (by
continuity) from C∞c (Ω2) to

(5.253)
{
u ∈ C−∞c (Ω2);F ∗(WF(u)) ∩ (Ω1 × 0) = ∅ in T ∗Ω1

}
and (5.252) holds.

5.26. The operation F∗

Next we will look at the dual operation, that of push-forward. Notice the basic
properties of pull-back:

Maps C∞c to C∞c (if F is proper)(5.254)

Not always defined on distributions.(5.255)

Dually we find

Proposition 5.20. If F : Ω1 −→ Ω2 is a C∞ map of an open subset of Rn
into an open subset of Rn then for any u ∈ C−∞c (Ω1)

(5.256) F∗(u)(φ) = u(F ∗φ)

is a distribution of compact support and

(5.257) F∗ : C−∞c (Ω1) −→ C−∞c (Ω2)

has the property:

(5.258)
WF(F∗u) ⊂

{
(y, η);y ∈ F (supp(u)), y = F (x), F ∗xη = 0

}
∪{

(y, η); y = F (x), (x, F ∗xη) ∈WF(u)
}
.

Proof. Notice that the ‘opposite ’ of (5.254) and (5.255) hold, i.e. F∗ is always
defined but even if u ∈ C∞c (Ω1) in general F∗u /∈ C∞c (Ω2). All we really have to
prove is (5.258). As usual we look for a formula in terms of elementary operations.
So suppose u ∈ C∞c (Ω1)

(5.259)

F∗u(φ) = u(F ∗φ) φ ∈ C∞c (Ω2)

=
∫
u(x) φ(F (x)) dx

=
∫
u(x)δ(y − F (x)) φ(y) dydx.

Thus, we see that

(5.260) F∗u = π∗H
∗(u� δ)
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where δ = δ(y) ∈ C−∞c (Rm), H is the diffeomorphism

(5.261) H(x, y) = (x, y − F (x))

and π : Rn+m −→ Rm is projection off the first factor.
Thus (5.260) is the desired decomposition into elementary operations, since

u�δ ∈ C−∞c (Rn+m), π∗H∗(u�δ) is always defined and indeed the map is continuous,
which actually proves (5.260).

So all we need to do is estimate the wavefront set using our earlier results.
From Proposition 5.15 it follows that

(5.262)
WF(u� δ) ⊂

{
(x, 0, ξ, η);x ∈ supp(u), ξ = 0

}
∪
{

(x, 0, ξ, 0); (x, ξ) ∈WF(u)
}

∪
{

(x, 0, ξ, η); (x, ξ) ∈WF(u)
}

=
{

(x, 0, ξ, η);x ∈ supp(u), ξ = 0
}
∪
{

(x, 0, ξ, η); (x, ξ) ∈WF(u)
}
.

Then consider what happens under H∗. This is a diffeomorphism so the wavefront
set transforms under the pull-back:

(5.263)

WF(H∗(u� δ)) = WF(u(x)δ(y − F (x))

=
{

(x, F (x),Ξ, η); Ξi = ξi −
∑
j

∂Fj
∂xi

(x)ηj , (x, 0, ξ, η) ∈WF(u� δ)
}

=
{

(x, F (x),Ξ, η);x ∈ supp(u),Ξi = −
∑
j

∂Fj
∂xi

(x)ηj)
}

∪
{

(x, F (x),Ξ, η); η ∈ Rm, (x, ξ) ∈WF(u)),Ξi = ξi −
∑
j

∂Fi
∂xj

ηj
}
.

Finally recall the behaviour of wavefront sets under projection, to see that

WF(F∗u) ⊂
{

(y, η); ∃ (x, y, 0, η) ∈WF(H∗(u� δ))
}

=
{

(y, η); y = F (x) for some x ∈ supp(u) and∑
j

∂Fj
∂xi

ηj = 0, i = 1, . . . , n
}

∪
{

(y, η); y = F (x) for some (x, ξ) ∈WF(u) and

ξi =
∑
j

∂Fi
∂xi

ηj , i = 1, . . . , n)
}
.

This says

WF(F∗u) ⊂
{

(y, η); y ∈ F (supp(u)) and F ∗x (η) = 0
}

(5.264)

∪
{

(y, η); y = F (x) with (x, F ∗xη) ∈WF(u)
}

(5.265)

which is just (5.258). �

As usual one should note that the two terms here are “really the same”.
Now let us look at F∗ as a linear map,

(5.266) F∗ : C∞c (Ω1) −→ C−∞c (Ω2).
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As such it has a Schwartz kernel, indeed (5.260) is just the usual formula for an
operator in terms of its kernel:

(5.267) F∗u(y) =
∫
K(y, x)u(x)dx, K(y, x) = δ(y − F (x)).

So consider the wavefront set of the kernel:

(5.268) WF(δ(y − F (x)) = WF(H∗δ(y)) =
{

(y, x; η, ξ); y = F (x), ξ = F ∗xη
}
.

Now changing the order of the factors we can regard this as a subset

(5.269) WF′(K) =
{

((y, η), (x, ξ)); y = F (x), ξ = F ∗η
}
⊂ (Ω2×Rm)× (Ω1×Rn).

As a subset of the product we can regard WF′(K) as a relation: if Γ ⊂ Ω2 ×
(Rn\0) set

WF′(K) ◦ Γ ={
(y, η) ∈ Ω2 × (Rm\0); ∃ ((y, η)), (x, ξ)) ∈WF′(K) and (x, ξ) ∈ Γ

}
Indeed with this definition

(5.270) WF(F∗u) ⊂WF′(K) ◦WF(u), K = kernel of F∗.

5.27. Wavefront relation

One serious application of our results to date is:

Theorem 5.4. Suppose Ω1 ⊂ Rn, Ω2 ⊂ Rm are open and A ∈ C−∞(Ω1 × Ω2)
has proper support, in the sense that the two projections

(5.271) supp(A)

π1
{{vv

vv
vv

vv
v

π2
##H

HH
HH

HH
HH

Ω1 Ω2

are proper, then A defines a linear map

(5.272) A : C∞c (Ω2) −→ C−∞c (Ω1)

and extends by continuity to a linear map

A :
{
u ∈ C−∞c (X); WF(u) ∩

{
(y, η) ∈ Ω2 × (Rn\0);(5.273)

∃ (x, 0, y,−η) ∈WF(K)
}

= ∅
}
−→ C−∞c (Ω1)(5.274)

for which

(5.275) WF(Au) ⊂WF′(A) ◦WF(u),

where

(5.276)
WF′(A) =

{
((x, ξ), (y, η)) ∈(Ω1 × Rn)× (Ω2 × Rm); (ξ, η) 6= 0

and (x, y, ξ,−η) ∈WF(K)
}
.

Proof. The action of the map A can be written in terms of its Schwartz kernel
as

(5.277) Au(x) =
∫
K(x, y)u(y)dy = (π1)∗(K · (1� u)).

Here 1� u is always defined and

(5.278) WF(1� u) ⊂
{

(x, y, 0, η); (y, η) ∈WF(u)
}
.
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So the main question is, when is the product defined? Our sufficient condition for
this is:

(5.279) (x, y, ξ, η) ∈WF(K) =⇒ (x, y,−ξ,−η) /∈WF(1� u)

which is

(5.280) (x, y, 0, η) ∈WF(K) =⇒ (x, y, 0,−η) /∈WF(1� u)

(5.281) i.e. (y,−η) /∈WF(u)

This of course is (5.274):

(5.282) Au is defined (by continuity) if

(5.283)
{

(y, η) ∈WF(u); ∃ (x, 0, y,−η) ∈WF(A)
}

= ∅.
Then from our bound on the wavefront set of a product

(5.284)

WF (K · (1� u)) ⊂{
(x, y, ξ, η); (ξ, η) =(ξ′, η′) + (0, η′′) with

(x, y, ξ′, η′) ∈WF(K) and (x, η′′) ∈WF(u)
}

∪
{

(x, y, ξ, η); (x,y, ξ, η) ∈WF(K), y ∈ supp(u)
}

∪
{

(x, y, 0, η);(x, y) ∈ supp(A)(y, η) ∈WF(u)
}
.

This gives the bound

WF (π∗(K · (1� u))) ⊂
{

(x, ξ); (x, y, ξ, 0) ∈WF(K · (1� u)) for some y
}

(5.285)

⊂WF′(A) ◦WF(u).(5.286)

�

5.28. Applications

Having proved this rather general theorem, let us note some examples and
applications.

First, for pseudodifferential operators we know that

(5.287) WF′(A) ⊂ {(x, x, ξ, ξ)}
i.e. corresponds to the identity relation (which is a map). Then (5.275) is the
microlocality of pseudodifferential operators. The next result also applies to all
pseudodifferential operators.

Corollary 5.2. If K ∈ C−∞(Ω1 × Ω2) has proper support and

(5.288) WF′(K) ∩ {(x, y, ξ, 0)} = ∅
then the operator with Schwartz kernel K defines a continuous linear map

(5.289) A : C∞c (Ω2) −→ C∞c (Ω1).

If

(5.290) WF′(K) ∩ {(x, y, 0, η)} = ∅
then A extends by continuity to

(5.291) A : C−∞c (Ω2) −→ C−∞c (Ω1).

Proof. Immediate from (5.272)-(5.291). �
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5.29. Problems

Problem 5.9. Show that the general definition (5.52) reduces to

(5.292) WF(u) =
⋂{

Σ0(A); A ∈ Ψ0
∞(Rn) and Au ∈ C∞(Rn)

}
, u ∈ S ′(Rn)

and prove the basic result of ‘microlocal elliptic regularity:’

(5.293)
If u ∈ S ′(Rn) and A ∈ Ψm

∞(Rn) then

WF(u) ⊂ Σ(A) ∪WF(Au).

Problem 5.10. Compute the wavefront set of the following distributions:

(5.294)

δ(x) ∈ S ′(Rn), |x| ∈ S ′(Rn) and

χBn(x) =

{
1 |x| ≤ 1
0 |x| > 1.

Problem 5.11. Let Γ ⊂ Rn × (Rnr0) be an open cone and define

C−∞c,Γ (Rn) =
{
u ∈ C−∞c (Rn);Au ∈ C∞(Rn)(5.295)

∀ A ∈ Ψ0
∞(Rn) with WF′(A) ∩ Γ = ∅

}
.(5.296)

Describe a complete topology on this space with respect to which C∞c (Rn) is a dense
subspace.

Problem 5.12. Show that, for any pseudodifferential operator A ∈ Ψm
∞(Rn),

WF′(A) = WF′(A∗).

Problem 5.13. Give an alternative proof to Lemma 5.5 along the following
lines (rather than using Lemma 2.75). If σL(A) is the left reduced symbol then for
ε > 0 small enough

(5.297) b0 = γε
/
σL(A) ∈ S−m∞ (Rn;Rn) .

If we choose B0 ∈ Ψ−m∞ (Rn) with σL(B0) = b0 then

(5.298) Id−A ◦B0 = G ∈ Ψ0
∞(Rn)

has principal symbol

(5.299) σ0(G) = 1− σL(A) · b0.

From (5.67)

(5.300) γε/4σ0(G) = γε/4.

Thus we conclude that if σL(C) = γε/4 then

(5.301) G = (Id−C)G+ CG with CG ∈ Ψ−1
∞ (Rn).

Thus (5.298) becomes

(5.302) Id−AB0 = CG+R1 WF′(R1) 63 z.

Let B1 ∼
∑
j≥1

(CG)j , B1 ∈ Ψ−1 and set

(5.303) B = B0 (Id +B1) ∈ Ψ−m∞ (Rn).
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From (5.302)

AB = AB0(I +B1)(5.304)

= (Id−CG) (I +B1)−R1 (Id +B1)(5.305)

= Id +R2, WF′(R2) 63 z.(5.306)

Thus B is a right microlocal parametrix as desired. Write out the construction of
a left parametrix using the same method, or by finding a right parametrix for the
adjoint of A and then taking adjoints using Problem 5.12.

Problem 5.14. Essential uniqueness of left and right parametrices.

Problem 5.15. If (x̄, ξ̄) ∈ Rn×(Rnr0) is a given point, construct a distribution
u ∈ C−∞c (Rn) which has

(5.307) WF(u) =
{

(x̄, tξ̄); t > 0
}
⊂ Rn × (Rnr0).

Problem 5.16. Suppose that A ∈ Ψm
∞(Rn) has Schwartz kernel of compact

support. If u ∈ C−∞c (Rn) use the four ‘elementary operations’ (and an earlier
result on the wavefront set of kernels) to investigate under what conditions

(5.308) κ(x, y) = KA(x, y)u(y) and then γ(x) = (π1)∗κ

make sense. What can you say about WF(γ)?

Problem 5.17. Consider the projection operation under π1 : Rp ×Rk −→ Rp.
Show that (π1)∗ can be extended to some distributions which do not have compact
support, for example

(5.309)
{
u ∈ S ′(Rn); supp(u) ∩K × Rk is compact for each K ⊂⊂ Rn

}
.

Problem 5.18. As an exercise, check the Jacobi identify for the Poisson bracket

(5.310) {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 ∀ f, g, h ∈ C∞(R2n).

Problem 5.19. The fact that (5.90) determines Hh uniquely is equivalent to
the non-degeneracy of ω, that

(5.311) ω(v, w) = 0 ∀ w =⇒ v = 0.

Show that if ω is a non-degenerate form and (5.90) is used to define the Poisson
bracket by

(5.312) {f, g} = ω(Hf , Hg) = dg(Hf ) = Hfg

then the Jacobi identity (5.310) holds if and only if ω is closed as a 2-form.

Problem 5.20. Check that a finite number of regions (5.94) cover the comple-
ment of a neighbourhood of 0 in Rn and that if a is smooth and has compact support
in x then the estimates (5.95) is such neighbourhoods imply that a ∈ SMc (Rn;Rn)
and conversely.


