
CHAPTER 3

Residual, or Schwartz, algebra

The standard algebra of operators discussed in the previous chapter is not really
representative, in its global behaviour, of the algebra of pseudodifferential operators
on a compact manifold. Of course this can be attributed to the non-compactness
of Rn. However, as we shall see below in the discussion of the isotropic algebra, and
then again in the later discussion of the scattering algebra, there are closely related
global algebras of pseudodifferential operators on Rn which behave much more as
in the compact case.

The ‘non-compactness’ of the algebra Ψ∞∞(Rn) is evidenced by the fact the
the elements of the ‘residual’ algebra Ψ−∞∞ (Rn) are not all compact as operators
on L2(Rn), or any other interesting space on which they act. In this chapter we
consider a smaller algebra of operators in place of Ψ−∞∞ (Rn). Namely

(3.1) A ∈ Ψ−∞iso (Rn)⇐⇒ A : S(Rn) −→ S(Rn),

Aφ(x) =
∫

Rn
A(x, y)φ(y)dy, A ∈ S(R2n).

The notation here, as the residual part of the isotropic algebra – which has not
yet been defined – is rather arbitrary. However it seems better than introducing a
notation which will be retired later.

By definition then, Ψ−∞iso (Rn) is the algebra which corresponds to the non-
commutative product on S(R2n) given by

(3.2) A ◦B(x, y) =
∫

Rn
A(x, z)B(z, y)dz.

The properties we discuss here have little direct relation to the ‘microlocal’ concepts
which are the central point of these notes. Rather they are more elementary, or at
least familiar, results which are needed (and in particular are generalized) later in
the discussion of global properties. In this sense this chapter could be considered
more as an appendix.

3.1. The residual algebra

The residual algebra in both the isotropic and scattering calculi, discussed
below, has two important properties not shared by the residual algebra Ψ−∞∞ (Rn),
of which it is a subalgebra (and in fact in which it is an ideal). The first is that as
operators on L2(Rn) the residual isotropic operators are compact.

Proposition 3.1. Elements of Ψ−∞iso (Rn) are characterized amongst continu-
ous operators on S(Rn) by the fact that they extend by continuity to define contin-
uous linear maps

(3.3) A : S ′(Rn) −→ S(Rn).
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70 3. RESIDUAL, OR SCHWARTZ, ALGEBRA

In particular the image of a bounded subset of L2(Rn) under an element of Ψ−∞iso (Rn)
is contained in a compact subset.

Proof. The kernels of elements of Ψ−∞iso (Rn) are in S(R2n) so the mapping
property (3.3) follows.

The norm sup|α|≤1 |〈x〉n+1Dαu(x)| is continuous on S(Rn). Thus if S ⊂ L2(Rn)
is bounded and A ∈ Ψ−∞iso (Rn) the continuity of A : L2(Rn) −→ S(Rn) implies that
A(S) is bounded with respect to this norm. The theorem of Arzela-Ascoli shows
that any sequence in A(S) has a strongly convergent subsequence in 〈x〉nC0

∞(Rn)
and such a sequence converges in L2(Rn). Thus A(S) has compact closure in L2(Rn)
which means that A is compact. �

The second important property of the residual algebra is that it is ‘bi-ideal’ or
a ‘corner’ in the bounded operators on L2(Rn). Note that it is not an ideal.

Lemma 3.1. If A1, A2 ∈ Ψ−∞iso (Rn) and B is a bounded operator on L2(Rn)
then A1BA2 ∈ Ψ−∞iso (Rn).

Proof. The kernel of the composite C = A1BA2 can be written as a distri-
butional pairing
(3.4)

C(x, y) =
∫

R2n
B(x′, y′)A1(x, x′)A2(y′, y)dx′dy′ = (B,A1(x, ·)A2(·, y)) ∈ S(R2n).

Thus the result follows from the continuity of the exterior product, S(R2n) ×
S(R2n) −→ S(R4n). �

In fact the same conclusion, with essentially the same proof, holds for any
continuous linear operator B from S(Rn) to S ′(Rn).

3.2. The augmented residual algebra

Recall that a bounded operator is said to have finite rank if its range is finite
dimensional. If we consider a bounded operator B on L2(Rn) which is of finite rank
then we may choose an orthonormal basis fj , j = 1, . . . , N of the range BL2(Rn).
The functionals u 7−→ 〈Bu, fj〉 are continuous and so define non-vanishing elements
gj ∈ L2(Rn). It follows that the Schwartz kernel of B is

(3.5) B =
N∑
j=1

fj(x)gj(y).

If B ∈ Ψ−∞iso (Rn) then the range must lie in S(Rn) and similarly for the range of
the adjoint, so the functions fj are linearly dependent on some finite collection of
functions f ′j ∈ S(Rn) and similarly for the gj . Thus it can be arranged that the fj
and gj are in S(Rn).

Proposition 3.2. If A ∈ Ψ−∞iso (Rn) then Id +A has, as an operator on L2(Rn),
finite dimensional null space and closed range which is the orthocomplement of the
null space of Id +A∗. There is an element B ∈ Ψ−∞iso (Rn) such that

(3.6) (Id +A)(Id +B) = Id−Π1, (Id +B)(Id +A) = Id−Π0

where Π0, Π1 ∈ Ψ−∞iso (Rn) are the orthogonal projections onto the null spaces of
Id +A and Id +A∗ and furthermore, there is an element A′ ∈ Ψ−∞iso (Rn) of rank
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equal to the dimension of the null space such that Id +A + sA′ is an invertible
operator on L2(Rn) for all s 6= 0.

Proof. Most of these properties are a direct consequence of the fact that A
is compact as an operator on L2(Rn).

We have shown, in Proposition 3.1 that each A ∈ Ψ−∞iso (Rn) is compact. It
follows that

(3.7) N0 = Nul(Id +A) ⊂ L2(Rn)

has compact unit ball. Indeed the unit ball, B = {u ∈ Nul(Id +A)} satisfies
B = A(B), since u = −Au on B. Thus B is closed (as the null space of a continuous
operator) and precompact, hence compact. Any Hilbert space with a compact unit
ball is finite dimensional, so Nul(Id +A) is finite dimensional.

Now, let R1 = Ran(Id +A) be the range of Id +A; we wish to show that this is a
closed subspace of L2(Rn). Let fk → f be a sequence in R1, converging in L2(Rn).
For each k there exists a unique uk ∈ L2(Rn) with uk ⊥ N0 and (Id +A)uk = fk. We
wish to show that uk → u. First we show that ‖uk‖ is bounded. If not, then along
a subsequent vj = uk(j), ‖vj‖ → ∞. Set wj = vj/‖vj‖. Using the compactness
of A, wj = −Awj + fk(j)/‖vj‖ must have a convergent subsequence, wj → w.
Then (Id +A)w = 0 but w ⊥ N0 and ‖w‖ = 1 which are contradictory. Thus the
sequence uk is bounded in L2(Rn). Then again uk = −Auk + fk has a convergent
subsequence with limit u which is a solution of (Id +A)u = f ; hence R1 is closed.
The orthocomplement of the range of a bounded operator is always the null space
of its adjoint, so R1 has a finite-dimensional complement N1 = Nul(Id +A∗). The
same argument applies to Id +A∗ so gives the orthogonal decompositions

(3.8)
L2(Rn) = N0 ⊕R0, N0 = Nul(Id +A), R0 = Ran(Id +A∗)

L2(Rn) = N1 ⊕R1, N1 = Nul(Id +A∗), R1 = Ran(Id +A).

Thus we have shown that Id +A induces a continuous bijection Ã : R0 −→ R1.
From the closed graph theorem the inverse is a bounded operator B̃ : R1 −→ R0.
In this case continuity also follows from the argument above.1 Thus B̃ is the
generalized inverse of Id +A in the sense that B = B̃ − Id satisfies (3.6). It only
remains to show that B ∈ Ψ−∞iso (Rn). This follows from (3.6), the identities in which
show that

(3.9) B = −A−AB −Π1, −B = A+BA+ Π0

=⇒ B = −A+A2 +ABA−Π1 +AΠ0.

All terms here are in Ψ−∞iso (Rn); for ABA this follows from Proposition 3.1.
It remains to show the existence of the finite rank perturbation A′. This is

equivalent to the vanishing of the index, that is

(3.10) Ind(Id +A) = dim Nul(Id +A)− dim Nul(Id +A∗) = 0.

Indeed, let fj and gj , j = 1, . . . , N, be respective bases of the two finite dimensional
spaces Nul(Id +A) and Nul(Id +A∗). Then

(3.11) A′ =
N∑
j=1

gj(x)fj(y)

1We need to show that ‖B̃f‖ is bounded when f ∈ R1 and ‖f‖ = 1. This is just the

boundedness of u ∈ R0 when f = (Id +A)u is bounded in R1.
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is an isomorphism of N0 onto N1 which vanishes on R0. Thus Id +A + sA′ is the
direct sum of Id +A as an operator from R0 to R1 and sA′ as an operator from N0

to N1, invertible when s 6= 0.
There is a very simple proof2 of the equality (3.10) if we use the trace func-

tional discussed in Section 3.5 below; this however is logically suspect as we use
(although not crucially) approximation by finite rank operators in the discussion of
the trace and this in turn might appear to use the present result via the discussion
of ellipticity and the harmonic oscillator. Even though this is not really the case
we give a clearly independent, but less elegant proof.

Consider the one-parameter family of operators Id +tA, A ∈ Ψ−∞iso (Rn). We
shall see that the index, the difference in dimension between Nul(Id +tA) and
Nul(Id +tA∗) is locally constant. To see this it is enough to consider a general
A near the point t = 1. Consider the pieces of A with respect to the decompositions
L2(Rn) = Ni ⊕Ri, i = 0, 1, of domain and range. Thus A is the sum of four terms
which we write as a 2× 2 matrix

A =
[
A00 A01

A10 A11

]
.

Since Id +A has only one term in such a decomposition, Ã in the lower right, the
solution of the equation (Id +tA)u = f can be written

(3.12) (t− 1)A00u0 + (t− 1)A01u⊥ = f1, (t− 1)A10u0 + (A′+ (t− 1)A11)u⊥ = f⊥

Since Ã is invertible, for t − 1 small enough the second equation can be solved
uniquely for u⊥. Inserted into the first equation this gives

(3.13) G(t)u0 = f1 +H(t)f⊥,

G(t) = (t− 1)A00 − (t− 1)2A01(A′ + (t− 1)A11)−1A10,

H(t) = −(t− 1)A01(A′ + (t− 1)A11)−1.

The null space is therefore isomorphic to the null space of G(t) and a complement
to the range is isomorphic to a complement to the range of G(t). Since G(t) is
a finite rank operator acting from N0 to N1 the difference of these dimensions is
constant in t, namely equal to dimN0 − dimN1, near t = 1 where it is defined.

This argument can be applied to tA so the index is actually constant in t ∈ [0, 1]
and since it certainly vanishes at t = 0 it vanishes for all t. In fact, as we shall note
below, Id +tA is invertible outside a discrete set of t ∈ C. �

Corollary 3.1. If Id +A, A ∈ Ψ−∞iso (Rn) is injective or surjective on L2(Rn),
in particular if it is invertible as a bounded operator, then it has an inverse of the
form Id +Ψ−∞iso (Rn).

Corollary 3.2. If A ∈ Ψ−∞iso (Rn) then as an operator on S(Rn) or S ′(Rn),
Id +A is Fredholm in the sense that its null space is finite dimensional and its range
is closed with a finite dimensional complement.

2Namely the trace of a finite rank projection, such as either Π0 or Π1, is its rank, hence
the dimension of the space onto which it projects. From the identity satisfied by the generalized

inverse we see that

Ind(Id +A) = Tr(Π0)− Tr(Π1) = Tr ((Id +B)(Id +A)− (Id +A)(Id +B)) = Tr([B,A]) = 0

from the basic property of the trace.



3.4. THE RESIDUAL GROUP 73

Proof. This follows from the existence of the generalized inverse of the form
Id +B, B ∈ Ψ−∞iso (Rn). �

3.3. Exponential and logarithm

Proposition 3.3. The exponential

(3.14) exp(A) =
∑
j

1
j!
Aj : Ψ−∞iso (Rn) −→ Id +Ψ−∞iso (Rn)

is a globally defined, entire, function with range containing a neighbourhood of the
identity and with inverse on such a neighbourhood given by the analytic function

(3.15) log(Id +A) =
∑
j

(−1)j

j
Aj , A ∈ Ψ−∞iso (Rn), ‖A‖L2 < 1

3.4. The residual group

By definition, G−∞iso (Rn) is the set (if you want to be concrete you can think of
them as operators on L2(Rn)) of invertible operators in Id +Ψ−∞iso (Rn). If we identify
this topologically with Ψ−∞iso (Rn) then, as follows from Corollary 3.1, G−∞iso (Rn) is
open. We will think of it as an infinite-dimensional manifold modeled, of course, on
the linear space Ψ−∞iso (Rn) ' S(R2n). Since I have no desire to get too deeply into
the general theory of such Fréchet manifolds I will keep the discussion as elementary
as possible.

The dual space of S(Rp) is S ′(Rp). If we want to think of S(Rp) as a manifold
we need to consider smooth functions and forms on it. In the finite-dimensional
case, the exterior bundles are the antisymmetric parts of the tensor powers of the
dual. Since we are in infinite dimensions the tensor power needs to be completed
and the usual choice is the ‘projective’ tensor product. In our case this is something
quite simple, namely the k-fold completed tensor power of S ′(Rp) is just S ′(Rkp).
Thus we set

(3.16) ΛkS(Rp) = {u ∈ S ′(Rkp); for any permutation

e, u(xe(1), . . . xe(h)) = sgn(e)u(x1, . . . xk)} .
In view of this it is enough for us to consider smooth functions on open sets

F ⊂ S(Rp) with values in S ′(Rp) for general p. Thus

(3.17) v : F −→ S ′(Rp), F ⊂ S(Rn) open

is continuously differentiable on F if there exists a continuous map

v′ : F −→ S ′(Rn+p) and each u ∈ F has a neighbourhood U

such that for each N ∃ M with

‖v(u+ u′)− v(u)− v′(u;u′)‖N ≤ C‖u′‖2M , ∀ u, u+ u′ ∈ U.
Then, as usual we define smoothness as infinite differentiability by iterating this
definition. The smoothness of v in this sense certainly implies that if f : X −→
S(Rn) is a smooth from a finite dimensional manifold then v ◦ F is smooth.

Thus we define the notion of a smooth form on F ⊂ S(Rn), an open set, as a
smooth map

(3.18) α : F → ΛkS(Rp) ⊂ S ′(Rkp) .
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In particular we know what smooth forms are on G−∞iso (Rn).
The de Rham differential acts on forms as usual. If v : F → C is a function

then its differential at f ∈ F is dv : F −→ S ′(Rn) = Λ1S(Rn), just the derivative.
As in the finite-dimensional case d extends to forms by enforcing the condition that
dv = 0 for constant forms and the distribution identity over exterior products

(3.19) d(α ∧ β) = (dα) ∧ β + (−1)degαα ∧ dβ .

3.5. Traces on the residual algebra

The algebras we are studying are topological algebras, so it makes sense to
consider continuous linear functionals on them. The most important of these is the
trace. To remind you what it is we consider first its properties for matrix algebras.

Let M(N ;C) denote the algebra of N × N complex matrices. We can simply
define

(3.20) Tr : M(N ;C)→ C, Tr(A) =
N∑
i=1

Aii

as the sum of the diagonal entries. The fundamental property of this functional is
that

(3.21) Tr([A,B]) = 0 ∀ A,B ∈M(N ;C) .

To check this it is only necessary to write down the definition of the composition
in the algebra. Thus

(AB)ij =
N∑
k=1

AikBkj .

It follows that

Tr(AB) =
N∑
i=1

(AB)ii =
N∑

i,k=1

AikBki

=
N∑
k=1

N∑
i=1

BkiAik =
N∑
k=1

(BA)kk = Tr(BA)

which is just (3.21).
Of course any multiple of Tr has the same property (3.21) but the normalization

condition

(3.22) Tr(Id) = N

distinguishes it from its multiples. In fact (3.21) and (3.22) together distinguish
Tr ∈ M(N ;C)′ as a point in the N2 dimensional linear space which is the dual of
M(N ;C).

Lemma 3.2. If F : M(N ;C) → C is a linear functional satisfying (3.21) and
B ∈M(N ;C) is any matrix such that F (B) 6= 0 then F (A) = F (B)

Tr(B) Tr(A).

Proof. Consider the basis of M(N ;C) given by the elementary matrices Ejk,
where Ejk has jk-th entry 1 and all others zero. Thus

EjkEpq = δkpEjq.
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If j 6= k it follows that
EjjEjk = Ejk, EjkEjj = 0.

Thus
F ([Ejj , Ejk]) = F (Ejk) = 0 if j 6= k.

On the other hand, for any i and j

EjiEij = Ejj , EijEji = Eii

so
F (Ejj) = F (E11) ∀ j.

Since the Ejk are a basis,

F (A) = F (
N∑

j,k=1

AijEij)

=
N∑

j,l=1

AjjF (Eij)

= F (E11)
N∑
j=1

Ajj = F (E11) Tr(A).

This proves the lemma. �

For the isotropic smoothing algebra we have a similar result.

Proposition 3.4. If F : Ψ−∞iso (Rn) ' S(R2n) −→ C is a continuous linear
functional satisfying

(3.23) F ([A,B]) = 0 ∀ A,B ∈ Ψ−∞iso (Rn)

then F is a constant multiple of the functional

(3.24) Tr(A) =
∫

Rn
A(x, x) dx.

Proof. Recall that Ψ−∞iso (Rn) ⊂ Ψ∞iso(Rn) is an ideal so A ∈ Ψ−∞iso (Rn) and
B ∈ Ψ∞iso(Rn) implies that AB, BA ∈ Ψ−∞iso (Rn) and it follows that the equality
F (AB) = F (BA), or F ([A,B]) = 0, is meaningful. To see that it holds we just
use the continuity of F. We know that if B ∈ Ψ∞iso(Rn) then there is a sequence
Bn → B in the topology of Ψm

iso(Rn) for some m. Since this implies ABn → AB,
BnA→ BA in Ψ−∞iso (Rn) we see that

F ([A,B]) = lim
n→∞

F ([A,Bn]) = 0 .

We use this identity to prove (3.24). Take B = xj or Dj , j = 1, . . . , n. Thus
for any A ∈ Ψ−∞iso (Rn)

F ([A, xj ]) = F ([A,Dj ]) = 0 .

Now consider F as a distribution acting on the kernel A ∈ S(R2n). Since the kernel
of [A, xj ] is A(x, y)(yj − xj) and the kernel of (A,Dj) is −(Dyj + Dxj )A(x, y) we
conclude that, as an element of S ′(R2n), F satisfies

(xj − yj)F (x, y) = 0, (Dxj +Dyj )F (x, y) = 0.



76 3. RESIDUAL, OR SCHWARTZ, ALGEBRA

If we make the linear change of variables to pi = xi+yi
2 , qi = xi − yi and set

F̃ (p, q) = F (x, y) these conditions become

Dqi F̃ = 0, piF̃ = 0, i = 1, . . . , N.

As we know from Lemmas 1.2 and 1.3, this implies that F̃ = cδ(p) so

F (x, y) = cδ(x− y)

as a distribution. Clearly δ(x− y) gives the functional Tr defined by (3.24), so the
proposition is proved. �

We still need to justify the use of the same notation, Tr, for these two func-
tionals. However, if L ⊂ S(Rn) is any finite dimensional subspace we may choose
an orthonal basis ϕi ∈ L, i = 1, . . . , l,∫

Rn
|ϕi(x)|2 dx = 0,

∫
Rn
ϕi(x)ϕj(x) dx = 0, i 6= j .

Then if aij is an l × l matrix,

A =
∑̀
i,j=1

aijϕi(x)ϕj(y) ∈ Ψ−∞iso (Rn) .

From (3.24) we see that

Tr(A) =
∑
ij

aij Tr(ϕiϕ̄j)

=
∑
ij

aij

∫
Rn
ϕi(x)ϕj(x) dx

=
n∑
i=1

aii = Tr(a) .

Thus the two notions of trace coincide. In any case this already follows, up to a
constant, from the uniqueness in Lemma 3.2.

3.6. Fredholm determinant

For N ×N matrices, the determinant is a multiplicative polynomial map

(3.25) det : M(N ;C) −→ C, det(AB) = det(A) det(B), det(Id) = 1.

It is not quite determined by these conditions, since det(A)k also satisfies then. The
fundamental property of the determinant is that it defines the group of invertible
elements

(3.26) GL(N,C) = {A ∈M(N ;C); det(A) 6= 0}.
A reminder of a direct definition is given in Problem 4.7.

The Fredholm determinant is an extension of this definition to a function on
the ring Id +Ψ−∞iso (Rn). This can be done in several ways using the density of finite
rank operators, as shown in Corollary 4.2. We proceed by generalizing the formula
relating the determinant to the trace. Thus, for any smooth curve with values in
GL(N ;C) for any N,

(3.27)
d

ds
det(As) = det(As) tr(A−1

s

As
ds

).
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In particular if (3.25) is augmented by the normalization condition

(3.28)
d

ds
det(Id +sA)

∣∣
s=0

= tr(A) ∀ A ∈M(N ;C)

then it is determined.
A branch of the logarithm can be introduced along any curve, smoothly in the

parameter, and then (3.27) can be rewritten

(3.29) d log det(A) = tr(A−1dA).

Here GL(N ;C) is regarded as a subset of the linear space M(N ;C) and dA is
the canonical identification, at the point A, of the tangent space to M(N,C) with
M(N,C) itself. This just arises from the fact that M(N,C) is a linear space.
Thus dA( dds (A + sB)

∣∣
s=0

= B. This allows the expression on the right in (3.29)
to be interpreted as a smooth 1-form on the manifold GL(N ;C). Note that it is
independent of the local choice of logarithm.

To define the Fredholm determinant we shall extend the 1-form

(3.30) α = Tr(A−1dA)

to the group G−∞iso (Rn) ↪→ Id +Ψ−∞iso (Rn). Here dA has essentially the same meaning
as before, given that Id is fixed. Thus at any point A = Id +B ∈ Id +Ψ−∞iso (Rn) it
is the identification of the tangent space with Ψ−∞iso (Rn) using the linear structure:

dA(
d

ds
(Id +B + sE)

∣∣
s=0

) = E, E ∈ Ψ−∞iso (Rn).

Since dA takes values in Ψ−∞iso (Rn), the trace functional in (3.30) is well defined.
The 1-form α is closed. In the finite-dimensional case this follows from (3.29).

For (3.30) we can compute directly. Since d(dA) = 0, essentially by definition, and

(3.31) dA−1 = −A−1dAA−1

we see that

(3.32) dα = −Tr(A−1(dA)A−1(dA)) = 0.

Here we have used the trace identity, and the antisymmetry of the implicit wedge
product in (3.32), to conlcude that dα = 0. For a more detailed discussion of this
point see Problem 4.8.

From the fact that dα = 0 we can be confident that there is, locally near any
point of G−∞iso (Rn), a function f such that df = α; then we will define the Fredholm
determinant by detFr(A) = exp(f). To define detFr globally we need to see that this
is well defined.

Lemma 3.3. For any smooth closed curve γ : S1 −→ G−∞iso (Rn) the integral

(3.33)
∫
γ

α =
∫

S1
γ∗α ∈ 2πiZ.

That is, α defines an integral cohomology class, [ α2πi ] ∈ H
1(G−∞iso (Rn);Z).

Proof. This is where we use the approximability by finite rank operators.
If πN is the orthogonal projection onto the span of the eigenspaces of the small-
est N eigenvalues of the harmonic oscillator then we know from Section 4.3 that
πNEπN → E in Ψ−∞iso (Rn) for any element. In fact it follows that for the smooth
curve that γ(s) = Id +E(s) and EN (s) = πNE(s)πN converges uniformly with all
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s derivatives. Thus, for some N0 and all N > N0, Id +EN (s) is a smooth curve in
G−∞iso (Rn) and hence γN (s) = IdN +EN (s) is a smooth curve in GL(N ;C). Clearly

(3.34)
∫
γN

α −→
∫
γ

α as N →∞,

and for finite N it follows from the identity of the trace with the matrix trace (see
Section 3.5) that

∫
N
γ∗Nα is the variation of arg log det(γN ) around the curve. This

gives (3.33). �

Now, once we have (3.33) and the connectedness of G−∞iso (Rn) we may define

(3.35) detFr(A) = exp(
∫
γ

α), γ : [0, 1] −→ G−∞iso (Rn), γ(0) = Id, γ(1) = A.

Indeed, Lemma 3.3 shows that this is independent of the path chosen from the
identity to A. Notice that the connectedness of G−∞iso (Rn) follows from the connect-
edness of the GL(N,C) and the density argument above.

The same arguments and results apply to G−2n−ε
∞−iso (Rn) using the fact that the

trace functional extends continuously to Ψ−2n−ε
∞−iso (Rn) for any ε > 0.

Proposition 3.5. The Fredholm determinant, defined by (3.35) on G−∞iso (Rn)
(or G−2n−ε

iso (Rn) for ε > 0) and to be zero on the complement in Id +Ψ−∞iso (Rn) (or
Id +Ψ−2n−ε

iso (Rn)) is an entire function satisfying

(3.36) detFr(AB) = detFr(A) detFr(B), A,B ∈ Id +Ψ−∞iso (Rn)

(or Id +Ψ−2n−ε
iso (Rn)), detFr(Id) = 1.

Proof. We start with the multiplicative property of detFr on G−∞iso (Rn). Thus
is γ1(s) is a smooth curve from Id to A1 and γ2(s) is a smooth curve from Id to A2

then γ(s) = γ1(s)γ2(s) is a smooth curve from Id to A1A2. Consider the differential
on this curve. Since

d(A1(s)A2(s))
ds

=
dA1(s)
ds

A2(s) +A1(s)
dA2(s)
ds

the 1-form becomes

(3.37) γ∗(s)α(s) = Tr(A2(s)−1 dA2(s)
ds

) + Tr(A2(s)−1A1(s)−1 dA2(s)
ds

A2(s)).

In the second term on the right we can use the trace identity, since Tr(GA) =
Tr(AG) if G ∈ ΨZ

iso(Rn) and A ∈ Ψ−∞iso (Rn). Thus (3.37) becomes

γ∗(s)α(s) = γ∗1α+ γ∗2α.

Inserting this into the definition of detFr gives (3.36) when both factors are in
G−∞iso (Rn). Of course if either factor is not invertible, then so is the product and
hence both detFr(AB) and at least one of detFr(A) and detFr(B) vanishes. Thus
(3.36) holds in general when detFr is extended to be zero on the non-invertible
elements.

Thus it remains to establish the smoothness. That detFr(A) is smooth in any
real parameters in which A ∈ G−∞iso (Rn) depends, or indeed is holomorphic in holo-
morphic parameters, follows from the definition since α clearly depends smoothly,
or holomorphically, on parameters. In fact the same follows if holomorphy is exam-
ined as a function of E, A = Id +E, for E ∈ Ψ−∞iso (Rn). Thus it is only smoothness
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across the non-invertibles that is at issue. To prove this we use the multiplicativity
just established.

If A = Id +E is not invertible, E ∈ Ψ−∞iso (Rn) then it has a generalized inverse
Id +E′ as in Proposition 4.3. Since A has index zero, we may actually replace E′ by
E′+E′′, where E′′ is an invertible linear map from the orthocomplement of the range
of A to its null space. Then Id +E′+E′′ ∈ G−∞iso (Rn) and (Id +E′+E′′)A = Id−Π0.
To prove the smoothness of detFr on a neighbourhood of A it is enough to prove the
smoothness on a neighbourhood of Id−Π0 since Id +E′+E′′ maps a neighbourhood
of the first to a neighbourhood of the second and detFr is multiplicative. Thus
consider detFr on a set Id−Π0 + E where E is near 0 in Ψ−∞iso (Rn), in particular
we may assume that Id +E ∈ G−∞iso (Rn). Thus

detFr(Id +E −Π0) = det(Id +E) det(Id−Π0 + (GE − Id)Π0)

were GE = (Id +E)−1 depends holomorphically on E. Thus it suffices to prove the
smoothness of detFr(Id−Π0 +HΠ0) where H ∈ Ψ−∞iso (Rn)

Consider the deformation Hs = Π0HΠ0 +s(Id−Π0)HΠ0, s ∈ [0, 1]. If Id−Π0 +
Hs is invertible for one value of s it is invertible for all, since its range is always
the range of Id−Π0 plus the range of Π0HΠ0. It follows that detFr(Id−Π0 + Hs)
is smooth in s; in fact it is constant. If the family is not invertible this follows
immediately and if it is invertible then

ddetFr(Id−Π0 +Hs)
ds

= detFr(Id−Π0 +Hs) Tr
(
(Id−Π0 +Hs)−1(Id−Pi0)HΠ0)

)
= 0

since the argument of the trace is finite rank and off-diagonal with respect to the
decomposition by Π0.

Thus finally it is enough to consider the smoothness of detFr(Id−Π0 +Π0HΠ0)
as a function of H ∈ Ψ−∞iso (Rn). Since this is just det(Π0HΠ0), interpreted as a
finite rank map on the range of Π0 the result follows from the finite dimensional
case. �

3.7. Fredholm alternative

Since we have shown that detFr : Id +Ψ−∞iso (Rn) −→ C is an entire function,
we see that G−∞iso (Rn) is the complement of a (singular) holomorphic hypersurface,
namely the surface {Id +E; detFr(Id +E) = 0}. This has the following consequence,
which is sometimes call the ‘Fredholm alternative’ and also part of ‘analytic Fred-
holm theory’.

Lemma 3.4. If Ω ⊂ C is an open, connected set and A : Ω −→ Ψ−∞iso (Rn) is a
holomorphic function then either Id +A(z) is invertible on all but a discrete subset
of Ω and (Id +A(z)) is meromorphic on Ω with all residues of finite rank, or else
it is invertible at no point of Ω.

Proof. Of course the point here is that detFr(Id +A(z)) is a holomorphic
function on Ω. Thus, either detFr(A(z)) = 0 is a discrete set, D ⊂ Ω or else
detFr(Id +A(z)) ≡ 0 on Ω; this uses the connectedness of Ω. Since this corresponds
exactly to the invertibility of Id +A(z) the main part of the lemma is proved. It
remains only to show that, in the former case, (Id +A(z))−1 is meromorphic. Thus
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consider a point p ∈ D. Thus the claim is that near p

(3.38) (Id +A(z))−1 = Id +E(z) +
N∑
j=1

z−jEj , Ej ∈ Ψ−∞iso (Rn) of finite rank

and where E(z) is locally holomorphic with values in Ψ−∞iso (Rn).
If N is sufficiently large and ΠN is the projection onto the first N eigenspaces

of the harmonic oscillator then B(z) = Id +E(z)−ΠNE(z)ΠN is invertible near p
with the inverse being of the form Id +F (z) with F (z) locally holomorphic. Now

(Id +F (z))(Id +E(z)) = Id +(Id +F (z))ΠNE(z)ΠN

= (Id−ΠN ) + ΠNM(z)ΠN + (Id−ΠN )M ′(z)ΠN .

It follows that this is invertible if and only if M(z) is invertible as a matrix on
the range of ΠN . Since it must be invertible near, but not at, p, its inverse is a
meromorphic matrix K(z). It follows that the inverse of the product above can be
written

(3.39) Id−ΠN + ΠNK(z)ΠN − (Id−ΠN )M ′(z)ΠNK(z)ΠN .

This is meromorphic and has finite rank residues, so it follows that the same is true
of A(z)−1. �


