
CHAPTER 12

The index theorem and formula

Using the earlier results on K-theory and cohomology the families index theo-
rem of Atiyah and Singer is proved using a variant of their ‘embedding’ proof. The
index formula in cohomology (including of course the formula for the numerical
index) is then derived from this.

12.1. Outline

The index theorem of Atiyah and Singer is proved here in K-theory, using the
results from Chapter 10 and then the cohomological version is derived from this.
Here are the main steps carried out below:-

(1) Fibrations of manifolds, M −→ B, are discussed and shown to be embe-
dable in a trivial fibration following Whitney’s embedding theorem.

(2) The notion of a family of pseudodifferential operators on the fibres of a
fibration is introduced and ellipticity is described. The symbol is shown
to define an element of Kc(T ∗(M/B)).

(3) (Optional) Spectral sections for self-adjoint elliptic families are defined,
and shown to exist for perturbatively-invertible families.

(4) (Optional) The group of homotopy classes of sections of the bundleG−∞(M/B;E)
is shown to reduce to Kc(B).

(5) The stabilization of the index bundle is discussed and the analytic index
map Inda : Kc(T ∗(M/B))←→ Kc(B) is defined.

(6) The topological index map is defined using embeddings and the Thom
isomorphism.

(7) The original proof of Atiyah and Singer is outlined
(8) The ‘odd analytic index’ is defined using the semiclassical calculus and

shown to be equal to the analytic index.
(9) A variant of the embedding argument is used to show the equality of odd

analytic and topological index and hence the index theorem

(12.1) Kc(T ∗(M/B))
Inda

=
//

Indt

// Kc(B)

is proved.
Subsequently the special case of Dirac operators is treated and the formula for

the Chern character of the index bundle is deduced.
Maybe other things will go in here, η forms, determinant bundle etc.

12.2. Fibrations

Instead of just considering families of pseudodifferential operators on a manifold
but depending smoothly on parameters in some other manifold we allow ‘twisting
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274 12. THE INDEX THEOREM AND FORMULA

by the diffeomorphism group’ and consider the more general setting of a family of
pseudodifferential operators on the fibres of a fibration, so the parameters are the
variables in the base of the fibration and the operators act on the fibres, which are
diffeomorphic to a fixed manifold. This indeed is the setting for the ‘families index
theorem’ of Atiyah and Singer.

So, first we need a preliminary discussion of fibrations. A map between two
manifolds

(12.2) φ : M −→ B

is a fibration, with typical fibre a manifold Z, if it is smooth, surjective and has the
‘local product’ property:-
(12.3)

Each b ∈ B has an open neighbourhood U ⊂ B
for which there exists a diffeomorphism FU giving a commutative diagramme

φ−1(U)
FU //

φ
##G

GG
GG

GG
GG

Z × U

πU
||yy

yy
yy

yy
y

U.

Here of course, πU is projection onto the second factor. In particular this means
that each fibre φ−1(b) = Zb is diffeomorphic to Z, and in such a way that the
diffeomorphism can be chosen locally to be smooth in b ∈ B. However there is
no chosen diffeomorphism and of course in general the diffeomorphism cannot be
chosen globally smoothly in b – other wise the fibration is trivial in the sense that
there exists a diffeomorphism giving a commutative diagramme

(12.4) M
F //

φ   B
BB

BB
BB

B Z ×B

πB{{wwwwwwww

B.

I use the notation

(12.5) Z M

φ

��
B

to denote a fibration, the headless arrow meaning that there is no chosen diffeo-
morphism onto the fibres; often people put an arrow there.

One standard source of fibrations is the implict function theorem.

Proposition 12.1. 1 If φ : M −→ B is a smooth map between connected
smooth compact manifolds which is a submersion, i.e. the differential φ∗ : TmM −→
Tφ(m)B is surjective for every m ∈M, then φ is a fibration.

It is easy to see that this implication can fail if M is not compact.
We will discuss operators on the fibres of a fibration below. First however

we consider one of the important steps in the proof of the Atiyah-Singer theorem,
namely the embedding of a fibration.

1See Problem 12.1
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Proposition 12.2. Any fibration of compact manifolds can be embedded in a
trivial fibration to give a commutative diagramme

(12.6) M
ι //

φ   A
AA

AA
AA

A RM ×B

πB
zzvvvvvvvvv

B.

Proof. Following Whitney, simply embed M in RM for some M. This is easy
to do, much the same way as vector bundle can be complemented to a trivial
bundle.2 Then let ι be the product of this embedding and φ, giving a map into
RM ×B. �

Vector bundles give particular examples of fibrations. There are various stan-
dard constructions on fibrations, in particular the fibre product.

Lemma 12.1. If φi : Mi −→ B, i = 1, 2 are two fibrations with the same base
and typical fibres Zi, then

M1 ×B M2 = {(m1,m2) ∈M1 ×M2;φ1(m1) = φ2(m2)} ⊂M1 ×M2

is an embedded submanifold and the restriction of φ1 × φ2 to it gives a fibration

(12.7) Z1 × Z2 M1 ×B M2

φ1×φ2

��
B.

Proof. Just look at local trivializations. �

It has become standard to denote ‘relative objects’ for a fibration, meaning
objects on the fibres, using the formal notation M/B for the fibres. Thus T (M/B)
is the fiber tangent bundle. It is a bundle over the total space M with fibre at
m ∈ M the tangent space to the fibre through m, φ−1(φ(m)), at m. To see that
it is a bundle, just look at local trivializations of the fibration. Its dual bundle
is T ∗(M/B), with fibre at m the cotangent space for the fibre. This will play a
significant role in what we do below.

12.3. Smoothing families

Philosophically it is often a good idea to think of a space like C∞(M), the
smooth functions (or more generally sections of some vector bundle) on the total
space of a fibration as an infinite-dimensional bundle over the base. The fibre at
b is just C∞(Zb), the smooth functions on the fibre, and a local trivialization of
the fibration gives a local trivialization of this bundle. To be consistent with the
notation above I suppose this bundle should be denoted C∞(M/B) = C∞(M) (or
C∞c (M/B) = C∞c (M) if M is not compact but B is) thought of as a bundle over B.

Next let us consider smoothing operators on the fibres of a fibration from this
point of view. Recall that the densities on a manifold form a trivial, but not
canonically trivial, real line bundle over the manifold. If this bundle is trivialized

2See Problem 12.2 for more details.
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then the smoothing operators on Z are identified with the smooth functions (their
Schwartz kernels) on Z × Z. Really this is more invariantly written

(12.8) Ψ−∞(Z) = C∞(Z × Z;π∗RΩ(Z))

where π∗RΩ(Z) is the density bundle over Z, pulled back to the product under the
projection onto to the right-hand factor.

Lemma 12.2. For a fibration (12.5) the densities bundles on the fibres form a
trivial bundle, denoted Ω(M/B), over the total space and the bundle of (compactly-
supported) smoothing operators on the fibres may be identified as

(12.9) Ψ−∞c (M/B) = C∞c (M ×B M ;π∗RΩ(M/B))

where πR is the right projection from the total space of the fibre product to the total
space of the fibration.

Proof. Perhaps this is more a definition than a Lemma. The fibre density
bundle is just the density bundle for T (M/B). It is then easy to see that an element
on the right in (12.9) defines a smoothing operator on each fibre of the fibration
and these operators vary smoothly when identified in a local trivialization of the
fibration. This leads to the notation on the left. �

Again Ψ−∞c (M/B) can be thought of as a (big) bundle over B.
So, now to something a little less formal. As noted above, one case of a fibration

is a vector bundle. If we consider a symplectic (or complex) we have discussed the
Thom isomoprhism in K-theory above. In doing this we have used, rather exten-
sively, the projections π(N) onto the first N eigenspaces of the harmonic oscillators.
Since the index theorem is an geometric extension, to a general fibration, of the
Thom isomorphism, we need some replacement for these ‘exhausting projections’ in
the general case. Unfortunately there is nothing3 to take the place of the harmonic
oscillators on the fibres. Of course there are similar objects, such as the Lapla-
cians for some family of fibre metrics, but the eigenvalues of such operators are not
constant. As a result the eigenspaces are not even smooth and there is not simple
replacement for π(N). But we really want these, so we have to construct them a
little more crudely. I will do this using the embedding construction above; this is
a similar argument to the core of the proof of the Atiyah-Singer theorem but in a
much simpler setting.

First we note an extension result using these same π(N)’s, or just π(1), the
projection onto the ground state of the harmonic oscllator.

Proposition 12.3. Let W be a symplectic vector bundle over a compact man-
ifold Z then there is a natural embedding as a subalgebra

(12.10) Ψ−∞(Z) ↪→ Ψ̇−∞(W̄ ; Λ∗),

into the algebra of smoothing operator on the total space of the bundle of radial of
the fibres of W which vanish to infinite order at the boundary, acting on sections
of the exterior algebra, in which an operator on Z is identified with an operator on
the ground state of the bundle of harmonic oscillators.

3As far as I know, please correct me if you know better.
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Proof. The point here is simply that the bundle of ground states of the (bun-
dle of) harmonic oscillators is canonically trivial. Indeed all these functions (and
the projections onto them) are positive, so there is a unique choice of unit length
basis. A smoothing operator on the manifold is then lifted to the same smoothing
operator acting on this line bundle, so as a smoothing operator on the total space
it is projection onto this bundle, followed by the action of the smoothing operator.
Clearly this forms a subalgebra as claimed, since the Schwartz functions correspond
to the functions vanishing at infinity on the radial compactification. �

Now, suppose the total space of W is mapped diffeomorphically to an open
subset of a smooth manifold in such a way that S(W ), the space of functions which
are Schwartz on the fibres, is identified with the smooth functions with support in
the closure of the image set. Then the algebra on the right in (12.10) is identified
as the subalgebra of the smoothing operators on this manifold with supports in the
closure of the image.

12.4. Elliptic families

12.5. Spectral sections

12.6. Analytic index

12.7. Topological index

12.8. Proof of index theorem

12.9. Chern character of the index bundle

Problems

Problem 12.1. Proof of Proposition 12.1.

Problem 12.2. Embedding manifolds.





APPENDIX A

Bounded operators on Hilbert space

Some of the main properties of bounded operators on a complex Hilbert space,
H, are recalled here; they are assumed at various points in the text.

(1) Boundedness equals continuity, B(H).
(2) ‖AB‖ ≤ ‖A‖ ‖B‖
(3) (A− λ)−1 ∈ B(H) if |λ| ≥ ‖A‖.
(4) ‖A∗A‖ = ‖AA∗‖ = ‖A‖2.
(5) Compact operators, defined by requiring the closure of the image of the

unit ball to be compact, form the norm closure of the operators of finite
rank.

(6) Fredholm operators have parametrices up to compact errors.
(7) Fredholm operators have generalized inverses.
(8) Fredholm operators for an open subalgebra.
(9) Hilbert-Schmidt operators?

(10) Operators of trace class?
(11) General Schatten class?
1

1Known as Gerard, my PhD advisor
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Index of Mathematicians

Atiyah, Michael Francis: 1929–, 237

Borel, Félix Édouard Justin Émile: 1871–
1956, 37

Bott, Raoul H.: 1923–2005, 249

Calderón, Alberto Pedro: 1920–1998,
173

Dirac, Paul Adrien Maurice: 1902–
1984, 18

Fourier, Jean Baptiste Joseph: 1768–
1830, 17

Fréchet, Maurice René: 1878–1973,
14

Fredholm, Erik Ivar: 1866–1927, 72
Friedlander, Friedrich Gerhart (or Fred-

erick Gerard):1917–2001, 279

Grothendieck, Alexander: 1928-, 243

Hörmander, Lars: 1931–, 49

Schur, Issai: 1875–1941, 47
Schwartz, Laurent: 1915–2002, 13
Seeley, Robert Thomas: , 64
Singer, Isadore Manual: 1925–, 237
Sobolev, Sergei L’vovich: 1908–1989,

27

Todd, John Arthur: 1908–1994, 253

Whitney, Hassler: 1907-1989, 273
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