18.100B TEST 2 PRACTIVE, 27 APRIL 2004 11:05AM - 12:25PM

This test is closed book, no books, papers or notes are permitted. You may use theorems, lemmas and propositions from the class and book. Note that where \mathbb{R}^k is mentioned below the standard metric is assumed.

There are 5 questions on the actual test, I think they are mostly easier than these ones.

(1) Consider the function $\alpha : [0,1] \longrightarrow \mathbb{R}$ defined by

$$\alpha(x) = \begin{cases} \frac{1}{2}x & 0 \le x \le \frac{1}{2}\\ \frac{1}{2}(x+1) & \frac{1}{2} \le x \le 1 \end{cases}$$

Show carefully, using results from class, that any monotonic increasing function $f:[0,1] \longrightarrow \mathbb{R}$ which is continuous at $x = \frac{1}{2}$ is Riemann-Stieltjes integrable with respect to α .

Solution: Write $\alpha = \alpha_1 + \alpha_2$ where $\alpha_1 = \frac{1}{2}x$ and $\alpha_2 = 0$ in $x \leq \frac{1}{2}2$, $\alpha_2 = \frac{1}{2}$ in $\frac{1}{2} < x \leq 1$. Then a_1 is continuous and as f is monotonic, $f \in \mathcal{R}(\alpha_1)$ by a result in the book. Since $\alpha_2 = \frac{1}{2}I(x-\frac{1}{2})$ and f is continuous at $\frac{1}{2}$ combinging two results from the books shows that $f \in \mathcal{R}(\alpha_2)$. From this it follows that $f \in \mathcal{R}(\alpha)$.

- (2) Let f be a continuous function on [a, b]. Explain whether each of the following statements is always true, with brief but precise reasoning.
 - (a) The function $g(x) = \int_x^b f(y) dy$ is well defined. Yes, $f \in \mathcal{R}$ for any subinterval.
 - (b) The function g is continuous.
 - Yes, the integral is a continous function of the lower limit.
 - (c) The function g is decreasing.
 - No, not unless $f \ge 0$.
 - (d) The function g is uniformly continuous.
 - Yes, continuous on a compact set implies uniformly continuous. (e) The function g is differentiable.
 - Yes, g is differentiable since f is continuous.
 - (f) The derivative g' = f on [a, b].
 - No, you fiend, it is q' = -f since it is the lower limit!
- (3) If $f : \mathbb{R} \longrightarrow \mathbb{R}$ is differntiable and satisfies f(-10) = 10, f(0) = 0, f(10) = 10 show that there is a point where f'(x) = 1/2.

Solution: Applying the mean value theorem twice, there are points $z \in (-10,0)$ where f'(z) = -1 and $y \in (0,10)$ where f(y) = 1. From the intermediate value theorem for derivatives there must exist a point $x \in (z, y)$ at which $f'(x) = \frac{1}{2}$.

(4) If f is a strictly positive continuous function on [-1, 1], meaning $\inf_{[-1,1]} f > 0$, show that $g(x) = \sqrt{f(x)}$ is continuous.

Solution: The function $\sqrt{:}(0,\infty) \longrightarrow (0,\infty)$ is continuous since if x, y > t > 0, t < 1, then

$$|\sqrt{x} - \sqrt{y}| = \frac{|x - y|}{\sqrt{x} + \sqrt{y}} < \epsilon$$

if $|x - y| \le \epsilon t$ (since $\sqrt{t} > t$). The composite of two continuous functions is continuous so $\sqrt{f} : [-1, 1] \longrightarrow (0, \infty)$ is continuous.

(5) (This is basically Rudin Problem 4.14)

Let $f: [0,1] \longrightarrow [0,1]$ be continuous.

- (a) State why the the map g(x) = f(x) x, from [0, 1] to \mathbb{R} is continuous.
- (b) Using this, or otherwise, show that $L = \{x \in [0, 1]; f(x) \le x\}$ is closed and $\{x \in [0, 1]; f(x) < x\}$ is open.
- (c) Show that L is not empty.
- (d) Suppose that $f(x) \neq x$ for all $x \in [0, 1]$ and conclude that L is open in [0, 1] and that $L \neq [0, 1]$.
- (e) Conclude from this, or otherwise, that there must in fact be a point $x \in [0, 1]$ such that f(x) = x.
- (6) Consider the function

$$f(x) = \frac{-x(x+1)(x-100)}{x^{44} + x^{34} + 1}$$

for $x \in [0, 100]$.

- (a) Explain why f is differentiable.
- (b) Compute f'(0).
- (c) Show that there exists $\epsilon > 0$ such that f(x) > 0 for $0 < x < \epsilon$.
- (d) Show that there must exist a point x with f'(x) = 0 and 0 < x < 100.