
18.100B TEST 1, 18 MARCH 2004
11:05AM – 12:25PM, WITH SOLUTIONS

Total Marks possible: 10× 6 = 60
Average Mark: 43
Median: 40

You are permitted to bring the book ‘Rudin: Principles of Mathematical Analy-
sis’ with you – just the book, nothing else is permitted (and no notes in your book!)
You may use theorems, lemmas and propositions from the book. Note that where
Rk is mentioned below the standard metric is assumed.

(1) Suppose that {pn} is a sequence in a metric space, X, and p ∈ X. Assuming
that every subsequence of {pn} itself has a subsequence which converges to
p show that pn → p.

Solution:- To say that {pn} converges to p is to say that for every ε > 0
the set {n ∈ N; d(p, pn) > ε} is finite. Thus if {pn} were not to converge
to p then for some ε > 0 this set would be infinite. Then we can take
the subsequence {pnk

} where {nk} is the unique increasing sequence with
range {n ∈ N; d(p, pn) > ε}. Thus sequence cannot have any subsequence
converge to p since for any susbsequence (of the subsequence) {pnkl

} all
points lie outside B(p, ε). This proves the result by contradiction.

(2) Let xn, n = 1, 2, . . . , be a sequence of real numbers with xn → 0. Show
that there is a subsequence xn(k), k = 1, 2, . . . , such that

∑
k

|xn(k)| < ∞.

Solution:- By definition of convergence, give for every k there exists N
such that n ≥ N implies |xn| < 2−k. Thus we can choose a subsequence

{xnk
} with |xnk

| < 2−k for all k. Then
N∑

k=1

|xnk
| <

N∑
k=1

2−k < 1 so the

sequence of partial sums is increasing and bounded above, hence convergent.
(3) Give examples of:

(a) A countable subset of R2 which is infinite and closed.
(b) A subset of the real interval [−2, 2] which contains [0, 1] but is not

compact.
(c) A metric space in which all subsets are compact.
(d) A cover of [0, 1] as a subset of R which has no finite subcover.

Solution:- Note that I did not ask you to prove this, but they do need to
be right. Not just discrete in the third case, etc.
(a) The subset {x = (1/n, 0);n ∈ N} ∪ {0} ⊂ R2 is closed since the only

limit point is 0. It is certainly infinite and countable.
(b) For example (−2, 1] contains [0, 1] but is not compact since it is not

closed.
(c) Any finite metric space has the property that all subsets are finite,

hence compact.
(d) Taking the collection of single-point subsets Vx = {x}, x ∈ [0, 1] is a

cover of [0, 1] but has no finite subcover. (I did not say open).
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(4) Let K be a compact set in a metric space X and suppose p ∈ X \K. Show
that there exists a point q ∈ K such that

d(p, q) = inf{d(p, x);x ∈ K}.
Solution:-

Method A By definition of the infimum, there exists a sequence qn in K such
that d(p, qn) → I = inf{d(p, x);x ∈ K}. Since K us compact, this
has a convergent subsequence. Replacing the original sequence by this
subsequence we may assume that qn → q in K. Now, by the triangle
inquality

|d(p, q)− d(p, qn)| ≤ d(q, qn) → 0

by the definition of convergence. Thus d(p, q) must be the limit of the
sequence d(p, qn) in R, so d(p, q) = I as desired.

Method B Let I = inf{d(p, x);x ∈ K}. If there is no point q ∈ K with d(p, q) = I
then the open sets Eε = {x ∈ X; d(p, x) > I + ε}, ε > 0 cover K.
By compactness there is a finite subcover, so K ⊂ Eε for some ε > 0
which contradicts the definition of I.

Method C (really uses later stuff) Since f : K 3 x 7−→ d(p, x) is continuous
(prove using triangle inequality) and K is compact, f(K) is compact
in R, so contains its infimum. Thus there exists q ∈ K with d(p, q) =
inf{d(p, x);x ∈ K}.

(5) (a) Let X be a (non-empty) metric space with metric d and let q /∈ X be an
external point. Show that there is a unique metric dY one Y = X∪{q}
satisfying

dY (x, x′) = d(x, x′), ∀ x, x′ ∈ X, dY (q, x) = 1, ∀x ∈ X.

(b) Show that with this metric Y is not connected.
Solution:- Unfortunately I got carried away here and this is not true! I

should have said that X is a metric space with d(x, x′) ≤ 2 for all x, x′ ∈ X;
then it works fine. I hope I did not confuse anyone too much by this. I
gave everyone full marks for the whole question.

(6) Let X be a metric space and A ⊂ X. Let A◦ be the union of all those open
sets in X which are subsets of A. Show that the complement of A◦ is the
closure of the complement of A.

Solution:- A set contained in A is exactly one with complement containing the
complement of A. Thus, from the definition, the complement of A◦ is the intersec-
tion of all closed sets which contain the complement of A. This we know to be its
closure.

Or:- A◦ = A\(A{)′ – since a point in A is either an interior point (lies in an open
subset of A or else is a limit point of the complement). Thus (A◦){ = A{ ∪ (A{)′

which is the closure of the complement.


