18.155, PROBLEM SET 5

Problem 5.1. Let A be a self-adjoint (meaning $A^{*}=A$) compact operator on a separable Hilbert space H. Recall from class that an eigenvalue of A is a complex number λ such that $A-\lambda$ Id has non-trivial null space and that the eigenvalues of A (whether self-adjoint or not) form a discrete subset of $\mathbb{C} \backslash\{0\}$ and that for each λ the space of associated generalized eigenvectors is finite dimensional.
(1) Show that any eigenvalue of A is real.
(2) Show that every generalized eigenvector, that is a solution of $(A-\lambda \mathrm{Id})^{k} u=$ 0 for some k and $\lambda \neq 0$, is actually an eigenvector. Hint:- Show that A acts on the generalized eigenspace E_{λ} corresponding to λ and is a self-adjoint matrix and then apply your knowledge of self-adjoint matrices.
(3) Show that the non-zero eigenvalues of A^{2} are positive and that $t^{2}>0$ is an eigenvalue of A^{2} if and only if either t or $-t$ is an eigenvalue of A and that the eigenspace of t^{2} is the sum of the eigenspaces of A with eigenvalues $\pm t$ (where the eigenspace of s is interpreted as $\{0\}$ if s is not an eigenvalue).
(4) Show that if A is not identically zero then A has an eigenvalue. Hint:- Look at the space of $u \in H$ with $\|u\|=1$ such that $\left\|A^{2} u\right\|^{2}=\left\|A^{2}\right\|$. Then choose a sequence u_{n} with $\left\|u_{n}\right\|=1$ and $\left\|A^{2} u_{n}\right\| \rightarrow\left\|A^{2}\right\|$. Show that u_{n} has a weakly convergent subsequence such that $A u_{n_{k}}$ converges and check that the limit is in the desired space. Conclude that A has a non-zero eigenvalue.
(5) Prove that the space N^{\perp}, the orthocomplement in H of the null space of A, has an orthonormal basis of eigenvectors of A.

Problem 5.2. Let A be a self-adjoint Hilbert-Schmidt operator on a separable Hilbert space H. Using the results of the previous problem, show that the non-zero eigenvalues λ_{j} of A, repeated with the multiplicity (dimension of the associated eigenspace), are such that

$$
\begin{equation*}
\sum_{j} \lambda_{j}^{2}<\infty \tag{1}
\end{equation*}
$$

Problem 5.3. Let T be a self-adjoint operator of trace class on a separable Hilbert space. Show that the eigenvalues, repeated with their multiplicities, satisfy

$$
\begin{equation*}
\sum_{j}\left|\lambda_{j}\right|<\infty \tag{2}
\end{equation*}
$$

and that

$$
\begin{equation*}
\operatorname{Tr}(T)=\sum_{j} \lambda_{j} \tag{3}
\end{equation*}
$$

Problem 5.4. Consider the operator on $L^{2}\left(\mathbb{R}^{n}\right)$, depending on a parameter $s>0$,

$$
\begin{equation*}
A_{s}: L^{2}\left(\mathbb{R}^{n}\right) \ni u \longrightarrow \mathcal{F}^{-1}\left(1+|\xi|^{2}\right)^{-s / 2} \hat{u} \in L^{2}\left(\mathbb{R}^{n}\right) \tag{4}
\end{equation*}
$$

(1) Show that if $s>n / 2$ then A_{s} can be written in the form

$$
\begin{equation*}
A_{s} u(x)=\int_{\mathbb{R}^{n}} K_{s}(x-y) u(y) d y, K_{s}(z) \in L^{2}\left(\mathbb{R}^{n}\right) \tag{5}
\end{equation*}
$$

(2) Show that, again for $s>n / 2$, the operator on $L^{2}(B)$, with B the unit ball in \mathbb{R}^{b}, given by

$$
\begin{equation*}
G_{s} u=\chi\left(A_{s}(\chi u)\right), \tag{6}
\end{equation*}
$$

where χ is the characteristic function of B, is Hilbert-Schmidt.
Problem 5.5. Recall from class the operator A which solves the Dirichlet problem in a bounded open domain $\Omega \subset \mathbb{R}^{n}$. It is the case that A is compact and self-adjoint. Deduce that there is an orthonormal basis of $L^{2}(\Omega)$ composed of eigenvectors of the Dirichlet problem.

