18.155, PROBLEM SET 5

Problem 5.1. Let A be a self-adjoint (meaning $A^* = A$) compact operator on a separable Hilbert space H. Recall from class that an eigenvalue of A is a complex number λ such that $A - \lambda$ Id has non-trivial null space and that the eigenvalues of A (whether self-adjoint or not) form a discrete subset of $\mathbb{C} \setminus \{0\}$ and that for each λ the space of associated generalized eigenvectors is finite dimensional.

- (1) Show that any eigenvalue of A is real.
- (2) Show that every generalized eigenvector, that is a solution of $(A \lambda \operatorname{Id})^k u = 0$ for some k and $\lambda \neq 0$, is actually an eigenvector. Hint:- Show that A acts on the generalized eigenspace E_{λ} corresponding to λ and is a self-adjoint matrix and then apply your knowledge of self-adjoint matrices.
- (3) Show that the non-zero eigenvalues of A^2 are positive and that $t^2 > 0$ is an eigenvalue of A^2 if and only if either t or -t is an eigenvalue of A and that the eigenspace of t^2 is the sum of the eigenspaces of A with eigenvalues $\pm t$ (where the eigenspace of s is interpreted as $\{0\}$ if s is not an eigenvalue).
- (4) Show that if A is not identically zero then A has an eigenvalue. Hint:- Look at the space of $u \in H$ with ||u|| = 1 such that $||A^2u||^2 = ||A^2||$. Then choose a sequence u_n with $||u_n|| = 1$ and $||A^2u_n|| \to ||A^2||$. Show that u_n has a weakly convergent subsequence such that Au_{n_k} converges and check that the limit is in the desired space. Conclude that A has a non-zero eigenvalue.
- (5) Prove that the space N^{\perp} , the orthocomplement in H of the null space of A, has an orthonormal basis of eigenvectors of A.

Problem 5.2. Let A be a self-adjoint Hilbert-Schmidt operator on a separable Hilbert space H. Using the results of the previous problem, show that the non-zero eigenvalues λ_j of A, repeated with the multiplicity (dimension of the associated eigenspace), are such that

(1)
$$\sum_{j} \lambda_j^2 < \infty.$$

Problem 5.3. Let T be a self-adjoint operator of trace class on a separable Hilbert space. Show that the eigenvalues, repeated with their multiplicities, satisfy

(2)
$$\sum_{j} |\lambda_j| < \infty$$

and that

(3)
$$\operatorname{Tr}(T) = \sum_{j} \lambda_{j}$$

Problem 5.4. Consider the operator on $L^2(\mathbb{R}^n)$, depending on a parameter s > 0,

(4)
$$A_s: L^2(\mathbb{R}^n) \ni u \longrightarrow \mathcal{F}^{-1}(1+|\xi|^2)^{-s/2} \hat{u} \in L^2(\mathbb{R}^n).$$

PROBLEMS 5

(1) Show that if s > n/2 then A_s can be written in the form

(5)
$$A_s u(x) = \int_{\mathbb{R}^n} K_s(x-y)u(y)dy, \ K_s(z) \in L^2(\mathbb{R}^n).$$

(2) Show that, again for s > n/2, the operator on $L^2(B)$, with B the unit ball in \mathbb{R}^b , given by

(6)
$$G_s u = \chi(A_s(\chi u)),$$

where χ is the characteristic function of B, is Hilbert-Schmidt.

Problem 5.5. Recall from class the operator A which solves the Dirichlet problem in a bounded open domain $\Omega \subset \mathbb{R}^n$. It is the case that A is compact and self-adjoint. Deduce that there is an orthonormal basis of $L^2(\Omega)$ composed of eigenvectors of the Dirichlet problem.

 $\mathbf{2}$