18.100B PRACTICE TEST 1, FOR ACTUAL TEST ON 18 MARCH 2004

The test on Thursday will be open book – just the book, nothing else is permitted (and no notes in your book!) Note that where \mathbb{R}^k is mentioned below the standard metric is assumed.

- (1) Let $C \subset \mathbb{R}^n$ be closed. Show that there is a point $p \in C$ such that $|p| = \inf\{|x|; x \in X\}$.
- (2) Give a counterexample to each of the following statements:
 - (a) Subsets of $\mathbb R$ are either open or closed
 - (b) A closed and bounded subset of a metric space is compact.
 - (c) In any metric space the complement of a connected set is connected.
 - (d) Given a sequence in a metric space, if every subsequence of that sequence itself has a convergent subsequence then the original sequence converges.
- (3) Suppose A and B are connected subsets of a metric space X and that $A \cap B \neq \emptyset$, show that $A \cup B$ is connected.
- (4) Let K_i , i = 1, ..., N, be a finite number of compact sets in a metric space X. Show that $\bigcup_{i=1}^{N} K_i$ is compact.
- (5) Let G_i ⊂ X, i ∈ N be a countable collection of open subsets of a complete metric space, X. Suppose that for each N ∈ N, ∩_{i=1}^N G_i ≠ X and that for each n, x, y ∈ X \ G_n ⇒ d(x, y) < 1/n. Show that ⋃_{i∈N} G_i ≠ X.
 (6) Let x_n be a bounded sequence in R. Show that there exists x ∈ R and a
- (6) Let x_n be a bounded sequence in \mathbb{R} . Show that there exists $x \in \mathbb{R}$ and a subsequence $x_{n(k)}$ such that $\sum_{k=1}^{\infty} x_{n(k)} x$ converges absolutely.