
LECTURE 1

Why blow things up? { And the de�nition

Today I want to de�ne the basic process of `blowing up' a manifold around a
submanifold. What I will describe is the real version of a procedure that is well
known to algebraic geometers in the complex setting. In fact there are several
variants, the main one is radial blow up which is what I will talk about almost
exclusively. There is also the closely related projective blow up which is very similar,
except one trades o� the non-introduction of boundaries for a loss of orientability. I
will indicate at some point why there are some reasons to prefer the radial procedure
but in essence they are equivalent. There is also the notion of parabolic blow up
which is similar but di�erent { I will indicate what this is about but will probably
not have time to go through it in any detail.

So, the basic question is:- Why blow up at all? If one is working in a genuinely
smooth and uniform analytic setting there is not much reason to blow anything
up. However, there are three closely related circumstances in which blow up can
be very helpful. These correspond to trying to `resolve'

(1) A singular function, e.g. f(x; y; z) =
p
x2 + y2 + z2:

(2) A singular space, e.g. C = ft2 = x2 + y2; t � 0g
(3) Degenerate vector �elds, e.g. the span of zj@zj j = 1; 2; 3 on R3:

In all three cases these can be resolved by the introduction of polar coordinates {
which is what I want to discuss today.

If one is constrained to work on a singular space { for instance the (one-sided)
cone in Euclidean space C pictured above then one has a problem doing anything
much right at the singular point. One can choose to work in small neighbourhoods
away from, in some appropriate sense uniformly up to, the singular point but it is
di�cult to work directly around the singular point. A basic question for instance
is: What is the space of smooth functions on C? In fact it is fair to say that there
is no single answer to this but that the most obvious one is not very good. Namely
one could say that a function on C is smooth if it is the restriction to C of a
smooth function on R3: Then however, the usual properties of coordinate systems
and Taylor series and so on fail, or get much more complicated.
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In real blow up, the idea is simply to work in polar coordinates around the
singular point. That is, we lift everything up to a manifold with boundary by using
the polar map

(1.1) � : [0;1)� C1 3 (r; �) �! r� 2 C:
Here C1 is the circle in S

2 given by the intersection of C with the sphere of radius
1 in R2 :

(1.2) C1 = C \ ft2 + x2 + y2 = 1g = f(t; x; y) = (
1p
2
;
�p
2
); � 2 R2; j�j = 1g:

It is a (normalized) cross-section of the cone.
Now, r > 0 on the left in (1.1) is mapped di�eomorphically onto the smooth

part of the cone; this is clear enough since it is immediate for the restriction to
r = 1 and scaling in r on the left corresponds to radial scaling on the right. Thus
the cone is `blown up' to a manifold with boundary, where the whole boundary
is mapped to the conic point under the `blow down map' �: In fact we are really
blowing up the ambient space, R3; and seeing what happens to the singular subset
C: Notice most of all that the blow-down map � is itself smooth, it is the inverse
of � which is singular { to the extent that it is unde�ned near r = 0:

So, what we are doing here is blowing up the origin in R3 and `lifting' the
previously singular subset to a smooth manifold with boundary. This is a procedure
that works with great generality, when applied with su�cient diligence and care {
as in Hironaka's remarkable result which asserts that by appropriate iteration of
the complex version of this construction one can render any projective algebraic
variety smooth.

1. Polar coordinates

The basic example of blow up then is to introduce polar coordinates around
the origin in Rn: Thus the model blow-down map in codimension n is

(1.3) � : [0;1)� Sn�1 3 (r; !) 7�! r! 2 Rn:

Here Sn�1 is the unit sphere in Rn: This map is smooth! It is a di�eomorphism
from (0;1)� Sn�1 onto the complement of the centre 0; i.e. onto Rn n f0g: On the
other hand, the whole of the `front face' r = 0 is mapped into the centre f0g: What
other interesting features does this map have? Of course, it is not 1-1 so does not
have an inverse but it is surjective.

For smooth maps there is a general notion of `related vector �elds'. Namely if
f : X �! Y is a smooth map between manifolds (or open sets in Euclidean space if
you prefer) then the di�erential F� : TxX �! Tf(x)Y is well-de�ned at each point.
A vector �eld V on X and a vector �eld W on Y are f -related if f�(Vx) = Wf(x)

for all x 2 X:
Lemma 1. For every smooth vector �eld on Rn which vanishes at the origin,

there is a unique smooth vector �eld on [0;1)� Sn�1 with is �-related to it.

Proof. Computing on the sphere is a bit tricky so I will not try to do it here!
In fact this result is really a consequence of the homogeneity of � so let me give a
full proof which involves little work. First, what is a smooth vector �eld on Rn?
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It is a smooth section of the tangent bundle, and hence a combination of the basic
vector �elds @=@zj ; j = 1; : : : ; n with smooth coe�cients

(1.4) W =
X
j

aj(z)
@

@zj
:

So, what does it mean for W to vanish at the origin? It means that each of the
coe�cients aj(z) must vanish at z = 0: By Taylor's theorem this means exactly
that there are smooth functions aij ; i; j = 1; : : : ; n such that aj(z) =

P
i

aij(z)zi:

Thus if W vanishes at the origin it can be written as a linear combination with
smooth coe�cients of the n2 vector �elds zi@zj :

(1.5) W =
X
ij

aij(z)zi
@

@zj
:

Now, it is a general fact that if a is a smooth function on the image space of
f : X �! Y and V and W are f -related then (f�a)V and aW are f -related. This
just comes from the fact that f� is the transpose of f� which is the pull-back on
di�erential 1-forms.

Thus we only need to show that each of the vector �elds Wij = zi@zj is �-

related to some smooth vector �eld Vij on [0;1) � Sn�1: Such a vector �eld is of
the form

(1.6) Vij = bij(r; �)@r + Tij(r)

where bij 2 C1([0;1)�Sn�1) and the Tij(r) are smooth vector �elds on the sphere
depending smoothly on r as a parameter. Now � is a di�eomorphism in r > 0 so Vij
exists and is unique in r > 0: This is where the homogeneity completes the proof.
Under the scaling di�eomorphism r 7�! �r; � > 0 the vector �eld Vij changes to

(1.7) Vij = bij(�r; �)�
�1@r + Tij(�r)

but on the image this is the scaling z 7�! �z under which Wij is invariant. Thus
from the uniqueness of the Vij in r > 0 we see that

(1.8) bij(�r; �) = �bij(r; �); Tij(�r) = Tij(r) 8 �; r > 0:

Thus the Tij(r) = Tij(1) are independent of r and bij(r; �) = rbij(�) is linear in r
and hence

(1.9) Vij = bij(�)r@r + Tij ; bij 2 C1(Sn�1)

with the Tij smooth vector �elds on the sphere. Since r@r is certainly a smooth
vector �eld, the Vij are smooth down to r = 0 as claimed. �

In fact we conclude a little more from this proof than just the lifting. Namely we
can say that the smooth vector �elds on Rn which vanish at the origin lift to unique
smooth vector �elds on [0;1) � Sn�1 and that the lifted vector �elds span, over
C1([0;1)� Sn�1) all the smooth vector �elds on [0;1)� Sn�1 which are tangent
to the boundary. Why is this so? Well a smooth vector �eld on [0;1)� Sn�1 is of
the form (1.6) as already noted. To be tangent to r = 0 the coe�cient of @r must
vanish at r = 0 and hence it must be of the form

(1.10) bij(r; �)r@r + Tij(r):
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As is well-known, or can be proved directly, z �@z =
P
i

zi@zi lifts to r@r { since these

are the generators of the respective radial actions. Thus the �rst term in (1.10)
is in the span of the lift over C1([0;1) � Sn�1): It also follows from this that all
the constant (in r) vector �elds on the sphere, Tij are in the span of the lift. Now,
these must span the smooth vector �elds on the sphere, since � is a di�eomorphism
for r > 0 and this �nishes the proof.

2. Change of coordinates

So, this blow-up and smooth blow-down map (1.3) have nice properties which
can be stated invariantly { the lifting of vector �elds vanishing at the centre and
for instance that the inverse image of the centre is the boundary with a smooth
de�ning function r: What about coordinate invariance? Really it is coordinate-
invariance which makes blow up important and separates it from `just introducing
polar coordinates' (although that is precisely what we are doing).

Lemma 2. If U1 and U2 are open neighourhoods of 0 2 Rn and F : U1 �! U2
is a di�eomorphism such that F (0) = 0 then there is a di�eomorphism

(1.11) ~F : ~U1 = f(r; �) 2 [0;1)� Sn�1; r� 2 U1g �!
~U2 = f(r; �) 2 [0;1)� Sn�1; r� 2 U2g

giving a commutative diagram

(1.12) ~U1
~F
//

�

��

~U2

�

��

U1
F
// U2:

Clearly ~F is unique if it exists, since it is determined by continuity from r > 0:

Proof. If F is an orthogonal transformation then ~O is just the restriction of
O to Sn�1 acting trivially on r: In particular this means that we can replace F by
OF if necessary to arrange that L = F�(0) 2 GL(n;R) is orientation-preserving
and so is connected to the identity by a smooth curve Lt; t 2 [0; 1] so L0 = Id;
L1 = F�(0): The vector �eld, Wt; de�ned by di�erentiating this family,

(1.13)
d

dt
L�t g = L�t (Wtg)

is a smooth curve of linear vector �elds { i.e. is a combination of the zi@zj
with coe�cients depending smoothly on t: Thus we can lift Lt to a family of
di�eomorhisms, ~Lt; `upstairs' generated in the same way by the lifts Vt of the
Wt:

Thus we are reduced to the case that F�(0) = Id as well as F (0) = 0: Then, in
a possibly smaller neighbourhood U of 0; F itself is connected to the identity by a
curve of di�eomorphisms (onto their images) �xing 0 and with di�erential Id their.
Namely,

(1.14) F (z)i = zi +
X
jk

aijk(z)zjzk; Ft(z) = zi + t
X
jk

aijk(z)zjzk; t 2 [0; 1]:
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Now the same argument applies, showing that d
dt
F �t (g) = F �t (Vtg) where Vt vanishes

at 0 (and in fact vanishes to second order at 0) so lifts to a curve of di�eomorphisms

with end point ~F : Of course away from r = 0 ~F is unique and known to exist
anyway. �

So, one reason to say `blow up the origin' instead of `introduce polar coordinates
around the origin' is that it draws attention to this coordinate invariance. In fact
another way of saying this is that the blow-up of a point p in a manifold M is well
de�ned { it is a new manifold with a blow down map which is smooth

(1.15) � : [M; fpg] �!M:

Invariantly one can take [M ; fpg] { which is M with p blown up { to be (M nfpg)[
(TpM n f0g)=R+: The claim is that this has a unique C1 structure as a manifold
with boundary, where the �rst part is the interior and the second part, which is just
a sphere, (written out invariantly as the quotient of the complement of the origin in
a vector space by the radial action { if you like it is the space of half-lines through
the origin) is the boundary, such that in local coordinates near p this reduces to
exactly the local picture we had above. To see this, just think how the di�erential
F� acts on the sphere.

3. Projective coordinates

There are other ways of looking at the blow up of a point which are helpful,
especially in computations. I did not do this in the lectures but here is a brief
description. First of all, what are coordinates on the sphere { clearly this is involved
here. Well, if we introduce the homogeneous functions on the sphere (Rn nf0g)=R+
which are the

(1.16) !j =
zj
r
; r =

�
z21 + � � �+ z2n

� 1
2

then
P
j

!2j = 1 and

(1.17)
X
j

!jd!j = 0 on Sn�1:

So, we can get local coordinates at any point on the sphere by choosing n � 1 of
these provided we abide by two rules. First, don't choose one with !j = �1 at the
point, since its di�erential is zero and it cannot be a coordinate. Secondly, choose
all of the !j which vanish at the point, since their di�erentials are not dependent
on any of the others! Apart from this you are free to choose as you can easily check.

So r and appropriate choice of the !i's give coordinates on the blown up space
near each point. However, such `polar coordinates' are not so easy to compute
with. Instead one can use the corresponding projective coordinates at the point.
At least one of the !j 's is non-zero (not limiting yourself to the ones you chose as
coordinates). Choose one of the corresponding zj 's, (if one !j = �1 of course it has
to be that one,) as a `radial variable' { it might be negative nearby, but no matter.
Then as projective coordinates we can use zj and the tk = zk=zj for k 6= j: As a
little exercise you can check that

Lemma 3. Near any (boundary is the only interesting case) point of [0;1) �
Sn�1 the tk and one zj described above give local coordinates in terms of which the
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lifts of the linear vector �elds are

(1.18) zl@zs 7�!

8>>>>><
>>>>>:

tl@ts l; s 6= j

@ts l = j; s 6= j

tk(zl@zl �
P
r

tr@tr ) l 6= j; s = l

zl@zl �
P
r

tr@tr l = s = j:

So one can certainly cover the blow-up by patches in which such projective
coordinates are valid.

4. Vector bundles

The blow up of a point in a manifold, as described above, is coordinate invariant.
For a real vector bundle E �! M over a manifold M the zero section is a
submanifold of E which is di�eomorphic to M but is just given by a point in
each �bre. It follows that we can blow up each point `of M ' (thought of as the
zero section) in the corresponding �bre and more signi�cantly that the �bres will
�t together smoothly as the point varies.

Proposition 1. For a real vector bundle E �! M the set [M ; 0E ] = (E n
0E) [ (SE) where SE �! M is the bundle of spheres (E n 0E)=R+; has a natural
structure as a manifold with boundary and smooth blow-down map

(1.19) � : [E; 0E ] �! E

which restricts to the blow-down map for [Ep; fpg] for each p 2M; and is consistent
with local trivializations of E over open sets of M:

Proof. I will not dwell too much on this although it is important. Taking
a trivialization of E over an open set U identi�es everything with a product U �
[Rn; f0g] and everything is seen to make sense as stated. A change of trivialization
is, on the overlap in the bases, a smooth family of linear maps on the �bres. The
discussion above shows that this lifts to a smooth family of maps on the �bres of
the blown up spaces proving the result, but one should do it more carefully than I
am. �

The preimage of 0E under the blow-down map is the `front fact' of the blown
up space { in this case it is di�eomorphic to the sphere bundle of E:

Note that bundle isomorphisms E �! F lift to di�eomorphisms of the blown
up spaces [E; 0E ] �! [F ; 0F ] by the same arguments as above (although general
smooth bundle maps do not { they do not `know where to go'). What is more
important in the sequel is that general smooth di�eomorphisms preserving the zero
section also lift smoothly.

Lemma 4. If E �!M is a vector bundle and U1; U2 � 0E are open neighbourhoods
of the zero section with F : U1 �! U2 a di�eomorphism such that F (0E) = 0E ; then
F lifts to a di�eomorphism between neighbourhoods of the front face of [M ; 0E ]:

Proof. Time is short so I will not go through this in detail. It can be proved
in a way that is quite close in spirit to the proof of Lemma 2 above proceeding in
steps. First, a di�eormorphism of M lifts to a di�eomorphism of E which is the
identity on the �bres. These di�eomorphisms lift to the blown up space and hence
we can assume that F is actually the identity on 0E : The di�erential of F at the
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zero section is then the identity on tangent vectors to 0E and hence projects to a
bundle isomorphism of E: Again this lifts, so this projection can also be arranged
to be the identity. It then follows by a partition of unity argument that F can be
connected to the identity through a smooth family of di�eomorphisms which all
have these two properties. Again these are given by integration of a one-parameter
family of vector �elds which vanishes at 0E : In local trivializations it is easy to
see that such a vector �eld lifts to be smooth { using the arguments above { and
then the integration can be done on the blown-up space to construct the lifted
di�eomorphism.

Alternatively you can sit down and compute the lift in local coordinates. It is
not all that hard. �

5. Embedded submanifolds

Now the �nal step, for the moment, is to show that if Y �M is an embedded
submanifold of another manifold then there is a well de�ned blown-up manifold
with boundary [M ;Y ] which is such that in local coordinates in which Y is given
by the vanishing of the �rst k coordinates then [M ;Y ] is just the product of the
blow up of the origin in these variables with the coordinate space in the other
variables. One way to see this without doing too much work is to use Lemma 4
and the collar neighbourhood theorem. The latter shows that for an embedded
submanifold there is always a di�eomorphism of a neighbourhood of Y in M to the
total space E of a vector bundle over M such that Y is mapped to the zero section.
This in fact characterizes the condition that the submanifold be embedded. The
vector bundle in question is the normal bundle to Y in M; the quotient TYM=TY:
From this the existence of the blown up manifold with boundary, as [M ;Y ] =
(M n Y ) [ (TY n 0Y )=R+ with a natural C1 structure and blow-down map

(1.20) � : [M ;Y ] �!M

follows. It has the `obvious properties' being a di�eomorphism of the interior onto
M nY and restricting to the boundary, which is the front face SY = (TY n0TY )=R+
as the projection to Y:

The generalization of the discussion above of vector �elds is

Proposition 2. Under the blow up of an embedded submanifold Y of a manifold
M the smooth vector �elds on M which are tangent to Y lift under the blow down
map (are related under it) to unique smooth vector �elds on [M ;Y ]: The lifted vector
�elds span, over C1([M ;Y ]) all smooth vector �elds on [M ;Y ] which are tangent
to the boundary { the front face produced by the blow up of Y:

6. Projective blow up

In projective blow up, we simply use `two-sided' polar coordinates. In other
words instead of the polar coordinate map (1.3) we use the closely related map

(1.21) �P : R� P2 3 (�; �) 7�! �� 2 R2; P2 = S
2=� :

This is still smooth and surjective and is locally near each point `the same map'.
The advantage is that there is no boundary on the left. The disadvantage (not
very serious generally) is that P2 is not orientable. One can go ahead and check
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that projective blow up is indeed globally well-de�ned as for the radial case. The
relationship between them is pictured here:

(1.22) [M ;Y ] � [[M ;Y ]P;H]
�(H)

//

�(Y )

((R
RR

RR
RR

RR
RR

RR
RR

[M ;Y ]P

�P(Y )

��

M:

Here H is the hypersurface f� = 0g � [M ;Y ]P which is the inverse image of Y
under the projective blow up. Thus, radial blow up factors through projective blow
up and in that sense the latter is more `fundamental'.

Why not use projective blow up? There are at least two reasons. One is that
the functions we deal with often do not lift to be smooth across H under projective
blow up, but `smooth up to it from both sides' so the simiplication is only apparent.
The other is that we are often dealing with boundaries in the �rst place and then
the projective blow up does not really make sense anyway, or rather reduces to the
same thing.

7. Parabolic blow up

I did not talk about this in the end. It is discussed extensively in the book on
the C.L. Epstein, [?].

8. What does this buy us?

So what can we do with this blow up? We can resolve orbifolds and other
manifolds which look like bundles of cones over a smooth manifold. We can also
`resolve' Morse functions. Suppose that M is a compact manifold, then it always
carries a Morse function, a smooth function u 2 C1(M) with the property that
at every point of M either the function is non-stationary, du(p) 6= 0; or else if
du(p) = 0 then the Hessian is invertible, where the Hessian is the map

(1.23) TpM 3 v 7�! Huv(p) 2 T �pM
which is induced by taking a smooth vector �eld V on M with V (p) = v and
considering d(V u)(p) 2 T �pM { which can be seen not do depend on the particular
choice of V: A Morse function only has �nitely many critical points fp1; : : : ; pNg;
and if these are blown up then near each of the new front faces it takes the form

(1.24) u = u(pi) + r2iUi

were Ui is smooth and has dUi 6= 0 on Ui = 0: In particular this means that the level
sets of u are all unions of smooth manifolds which meet transversally { they are
resolved to normal crossings. The level set for a critical value has been `resolved'
to ri = 0; the new front face, plus Ui = 0 which is a smooth hypersurface which is
transversal to ri = 0:

[Picture please!]
Let me try at this stage to anticipate some of what I will show later about

such a `resolution'. Why should such a blow up help? One thing to look at is the
Lie algebra of smooth vector �elds which annihilate the function u: Where du 6= 0
on a level set, this is just the Lie algebra of vector �elds tangent to the �bres. At
the singular point, on the singular stratum, it becomes much more complicated.
However, after the single blow up of the critical point, as described above, the
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smooth vector �elds annihilating u; i.e. pairing to zero with du; are locally the ones
tangent to ri = 0 or Ui = 0 away from the intersection but at the intersection we
can take Ui = s to be one of the coordinates, yk the others and then the vector
�elds are locally spanned by

(1.25) r@r � 2s@s; @yk :

So, this is rather degenerate, but what I want to show later is that we can `resolve'
such vector �elds and as a result discuss the properties of di�erential operators
which are in the enveloping algebra.

If we want to do more than this { resolve more complicated singular objects or
objects more complicated than spaces { for instance Lie algebras of vector �elds {
then we need to do two things. We need to iterate blow ups, and we need to blow up
submanifolds of manifolds with corners. The latter obviously will arise on iteration
of blow ups since each time we blow up a new boundary hypersurface emerges and
the simplest case is when these meet transversally. I will talk about both these
things tomorrow, but just suppose it works out well! Then we can resolve arbitrary
projective algebraic varieties (courtesy of Hironaka), we can resolve smooth actions
of compact Lie groups on compact manifolds (or proper actions of compact groups).
I cannot cover all these things but I will try to describe some of them and also try
to give an idea of what I really mean by resolution.

9. A list of theorems!

Still to come!




