Real blow ups Introduction to Analysis on Singular Spaces MSRI, Sept 2,3, and 4, 2008

Richard Melrose

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY *E-mail address*: rbm@math.mit.edu

0.2C; Revised: 6-2-2009; Run: March 17, 2009

ABSTRACT. These are notes based on (and at least in part for) three lectures on real blow up that were given as part of the Introductory workshop for the program at the Mathematical Sciences Research Institue on Analysis on (or is it of?) Singular Spaces, Fall 2008.

Contents

Introduction	4
Lecture 1. Why blow things up? – And the definition	5
1. Polar coordinates	6
2. Change of coordinates	8
3. Projective coordinates	9
4. Vector bundles	10
5. Embedded submanifolds	11
6. Projective blow up	11
7. Parabolic blow up	12
8. What does this buy us?	12
9. A list of theorems!	13
Lecture 2. Iterated blow ups and manifolds with corners	15
1. Manifolds with corners	15
2. Examples again	16
3. Commutation	17
4. Tangent vector fields again	18
5. Another commutation result	19
6. Fibrations and b-fibrations	19
7. Examples of resolution of a vector fields	23
8. Morse case again	28
9. b-calculus	28
10. Duality and distributions	28
11. Pull-back and push-forward	28
12. Smoothness under blow-up	28
13. Conormal distributions	28
14. Examples	28
15. More theorems!	28
Lecture 3. Resolutions and compactifications	29
1. Cones again	29
2. The b-, conic and scattering structures	29
3. Group actions	29
4. Transversality of vector fields	29
5. Compactifications of vector spaces	29
6. Lots more examples!	29
Bibliography	31

CONTENTS

Introduction

In these three lectures I want to discuss real blow up as it relates to resolution of singular spaces and other analytic objects, especially Lie algebras of vector fields. Since this is quite a large subject, and other people will talk on certain aspects of it, I will concentrate on the geometric part – the definition and properties of blow up. Otherwise, as far as things I will use and also applications, I will simply summarize.