This is the 'discrete metric' on a set. Certainly $d : X \times X \longrightarrow [0, \infty)$ is well defined and d(x, y) = 0 iff x = y. Symmetry, d(x, y) = d(y, x), is immediate from the definition and the triangle inequality

(1)
$$d(x,y) \le d(x,z) + d(z,y) \ \forall \ x,y,x \in X$$

follows from the fact that the right hand side is always equal to 0, 1 or 2 and the LHS is 0 or 1 and if the LHS vanishes then x = y = z and the RHS also vanishes.

All subsets are open, since if $E \subset X$ and $p \in E$ then $x \in X$ and d(x,p) < 1implies x = p and hence $x \in E$. Since the complements of open sets are closed it follows that all subsets are closed. The only compact subsets are finite. Indeed if $E \subset X$ is compact then the open balls of radius 1 with centers in E cover E and each contains only one point of E so the existence of a finite subcover implies that E itself is finite.

CHAPTER 2: PROBLEM 12

We are to show that $K = \{1/n; n \in \mathbb{N}\} \cup \{0\}$ is compact as a subset of \mathbb{R} directly from the definition of compactness. So, let U_a , $a \in A$, be an open cover of K. It follows that $0 \in U_{a_0}$ for some $a_0 \in A$. But since U_{a_0} is open it contains some ball of radius 1/n around 0. Thus all the points $1/m \in U_{a_0}$ for m > n. For each $m \leq n$ we can find some $a_m \in A$ such that $1/m \in U_{a_m}$, since the U_a cover K. Thus we have found a finite subcover

(2)
$$K \subset U_{a_0} \cup U_{a_1} \cup \dots \cup U_{a_n}$$

and if follows that K is compact.

CHAPTER 2: PROBLEM 16

Here \mathbb{Q} is the metric space, with d(p,q) = |p-q|, the 'usual' metric. Set

(3)
$$E = \{ p \in \mathbb{Q}; 2 < p^2 < 3 \}$$

Suppose x is a limit point of E as a subset of the rationals. Then we know that $(x - \epsilon, x + \epsilon) \cap E$ is infinite for each $\epsilon > 0$. Regarding x as a real number it follows that $x \in [2^{\frac{1}{2}}, 3^{\frac{1}{2}}]$. Since we know the end points are not rational and by assumption $x \in \mathbb{Q}$ it follows that $x \in E$. Thus E is closed. Certainly E is bounded since $p \in E$ implies |p| < 3.

To see that E is not compact, recall that if it were compact as a subset of \mathbb{Q} it would be compact as a subset of \mathbb{R} by Theorem 2.33. Since it is not closed as a subset of \mathbb{R} it cannot be compact. Alternatively, for a direct proof of non-compactness, take the open cover given by the open sets $\{x \in \mathbb{Q}; |p-2^{\frac{1}{2}}| > 1/n\}$. This can have no finite subcover since E contains points arbitrarily close to the real point $\sqrt{2}$.

Yes E is open in \mathbb{Q} since it is of the form $(\sqrt{2}, \sqrt{3}) \cap \mathbb{Q}$ where $G = (\sqrt{2}, \sqrt{3}) \subset \mathbb{R}$ is open, so Theorem 2.30 applies.

CHAPTER 2: PROBLEM 22

We need to show that the set of rational points, \mathbb{Q}^k is dense in \mathbb{R}^k . We can use the fact that $\mathbb{Q} \subset \mathbb{R}$ is dense. Thus, given $\epsilon > 0$ and $x = (x_1, \ldots, x_k) \in \mathbb{R}^k$ there exists $p_l \in \mathbb{Q}$ such that $|x_l - p_l| \leq \epsilon/k$ for each $l = 1, \ldots, k$. Thus, as points in \mathbb{R}^k ,

(4)
$$|x-p| \leq \sum_{l=1}^{k} |x_l - p_l| < \epsilon.$$

This shows that \mathbb{R}^k is separable since we know that \mathbb{Q}^k is countable.

Chapter 2: Problem 23

We are to show that a given separable metric space, X, has a countable base. The hint is to choose a countable dense subset $E \in X$ and then to consider the collection, \mathcal{B} , of all open subsets of X of the form B(x, 1/n) where $x \in E$ and $n \in \mathbb{N}$. This is a countable union, over \mathbb{N} , of countable sets so is countable. Now, we need to show that this is a base. So, suppose $U \subset X$ is a given open set. If $x \in U$ then for some $m = m_x > 0$, $B(x, 1/m) \subset U$, since it is open. Also, by the density of E in X there exists some $e_x \in E$ with $|x - e_x| < 1/2m$ But then $y \in B(e_x, 1/2m)$ implies $d(x, y) < d(x, e_x) + d(e_x, y) < 1/2m + 1/2m = 1/m$. Thus $B(e_x, 1/2m) \subset U$. It follows that

(5)
$$U = \bigcup_{x \in U} B(e_x, 1/2m_x).$$

Thus U is written as a union of the elements of \mathcal{B} which is therefore an open base.

Chapter 2: Problem 25

We wish to show that a given compact metric space K has a countable base. As the hint says, for each $n \in \mathbb{N}$ consider the balls of radius 1/n around each of the points of K:

(6)
$$K \subset \bigcup_{x \in K} B(x, 1/n)$$

since each $x \in K$ is in one of these balls at least. Now the compactness of K implies that there is a finite subcover, that is there is a finite subset $C_n \subset K$, for each n, such that

(7)
$$K \subset \bigcup_{p \in C_n} B(p, 1/n)$$

Now, set $E = \bigcup_{n \in \mathbb{N}} C_n$. This is countable, being a countable union of finite sets. Now it follows that C is dense in K. Indeed given $x \in K$ and $\epsilon > 0$ there exists $n \in \mathbb{N}$ with $1/n < \epsilon$ and from (7) a point in $p \in C_n \subset C$ with $|x - p| < 1/n < \epsilon$. Thus $K = \overline{C}$ and it follows that K is separable; from #23 it follows that K has a countable open base.

Alternatively one can see directly that the $B(p, 1/n), p \in C_n$, form an open base.

Department of Mathematics, Massachusetts Institute of Technology $E\text{-}mail\ address:\ \texttt{rbmQmath.mit.edu}$