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This is the ‘discrete metric’ on a set. Certainly d : X x X — [0,00) is well
defined and d(z,y) = 0 iff x = y. Symmetry, d(z,y) = d(y,x), is immediate from
the definition and the triangle inequality

(1) d(e,y) < d(x,2) +d(z,y) ¥ 2.y,2 € X

follows from the fact that the right hand side is always equal to 0, 1 or 2 and the
LHS is 0 or 1 and if the LHS vanishes then z = y = z and the RHS also vanishes.

All subsets are open, since if E C X and p € E then z € X and d(z,p) < 1
implies z = p and hence z € E. Since the complements of open sets are closed it
follows that all subsets are closed. The only compact subsets are finite. Indeed if
FE C X is compact then the open balls of radius 1 with centers in F cover F and
each contains only one point of E so the existence of a finite subcover implies that
F itself is finite.
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We are to show that K = {1/n;n € N}U{0} is compact as a subset of R directly
from the definition of compactness. So, let U,, a € A, be an open cover of K. It
follows that 0 € U,, for some ag € A. But since U,, is open it contains some ball
of radius 1/n around 0. Thus all the points 1/m € Uy, for m > n. For each m <n
we can find some a,, € A such that 1/m € U,, , since the U, cover K. Thus we
have found a finite subcover

m )

(2) K CUgqUUy U---UU,,

and if follows that K is compact.
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Here Q is the metric space, with d(p,q) = |p — ¢|, the ‘usual’ metric. Set
(3) E={pecQ2<p?<3}

Suppose z is a limit point of E as a subset of the rationals. Then we know that
(x — e,x + €) N E is infinite for each € > 0. Regarding = as a real number it follows
that z € [2% , 3%]. Since we know the end points are not rational and by assumption
x € Q it follows that x € E. Thus E is closed. Certainly E is bounded since p € E
implies |p| < 3.

To see that E is not compact, recall that if it were compact as a subset of Q
it would be compact as a subset of R by Theorem 2.33. Since it is not closed
as a subset of R it cannot be compact. Alternatively, for a direct proof of non-
compactness, take the open cover given by the open sets {z € Q;|p — 22| > 1/n}.
This can have no finite subcover since E contains points arbitrarily close to the real
point /2.

Yes E is open in Q since it is of the form (v/2,1/3) N Q where G = (v/2,v/3) C R
is open, so Theorem 2.30 applies.



CHAPTER 2: PROBLEM 22

We need to show that the set of rational points, QF is dense in R*. We can use
the fact that Q C R is dense. Thus, given ¢ > 0 and = = (x1,...,2;) € R* there
exists p; € Q such that |z; — p;| < €/k for each [ = 1,..., k. Thus, as points in R¥,

k
(4) |x—p\§2|xl—pl|<e.
1=1

This shows that R¥ is separable since we know that QF is countable.
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We are to show that a given separable metric space, X, has a countable base.
The hint is to choose a countable dense subset € X and then to consider the
collection, B, of all open subsets of X of the form B(z,1/n) where x € E and n € N.
This is a countable union, over N, of countable sets so is countable. Now, we need
to show that this is a base. So, suppose U C X is a given open set. If x € U then
for some m = m, > 0, B(xz,1/m) C U, since it is open. Also, by the density of E
in X there exists some e, € E with |v — ey| < 1/2m But then y € B(eg, 1/2m)
implies d(z,y) < d(z,e;)+d(ez,y) < 1/2m+1/2m = 1/m. Thus B(e,,1/2m) C U.
It follows that
(5) U= Bles, 1/2m,).

xeU
Thus U is written as a union of the elements of 5 which is therefore an open base.
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We wish to show that a given compact metric space K has a countable base. As
the hint says, for each n € N consider the balls of radius 1/n around each of the
points of K :

(6) K c | B(x,1/n)

zeK
since each € K is in one of these balls at least. Now the compactness of K implies
that there is a finite subcover, that is there is a finite subset C,, C K, for each n,
such that

(7) K c |J B(p.1/n).
peCn

Now, set E = |J,,cpy Cn. This is countable, being a countable union of finite sets.
Now it follows that C' is dense in K. Indeed given x € K and € > 0 there exists
n € N with 1/n < € and from (7) a point in p € C,, C C with |z —p| < 1/n < e.
Thus K = C and it follows that K is separable; from #23 it follows that K has a
countable open base.

Alternatively one can see directly that the B(p,1/n), p € C,, form an open base.
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