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Chapter 2: Problem 19

a) IfA and B are closed in X and disjoint then Ā = A and B̄ = B so Ā∩B = ∅
and A ∩ B̄ = ∅ follow from A ∩B = ∅ and hence the sets are separated.

b) If A and B are open and disjoint then A{ ⊃ B is closed so B̄ ⊂ A{ which
means A ∩ B̄ = ∅; similarly Ā ∩B = ∅ so they are separated.

c) With p ∈ X fixed and δ > 0 put A = {q ∈ X; d(p, q) < δ} and B = {q ∈
X; d(p, q) > δ}. If x ∈ A is a limit point of A then given ε > 0 it follows that
there exists y ∈ A with d(x, y) < ε, hence d(p, x) ≤ d(p, y)+d(y, x) ≤ δ + ε.
Since this holds for all ε > 0, d(p, x) ≤ δ. Thus Ā∩B = ∅. Similarly if x ∈ B̄
and ε > 0 there exists q ∈ B with d(x, q) < ε so δ < d(p, q) ≤ d(p, x)+d(x, q)
shows that d(p, x) ≥ δ − ε and so d(p, x) ≥ δ if x ∈ B̄ so A ∩ B̄ = ∅ and A
and B are separated.

Remark It is not in general the case that Ā = {x ∈ X; d(p, x) ≤ δ} and
similarly for B. Make sure you understand why!

d) If X is connected and contains at least two points, p and p′ then d(p, p′) > 0.
For any δ ∈ (0, d(p, p′)) there must exist at least one point in X with
d(p, xδ) = δ. Indeed if not, then {x ∈ X; d(p, x) = δ} is empty and X =
A ∪ B with A and B as above. Since these sets are separated and p ∈ A,
p′ ∈ B shows that neither is empty this would contradict the connectedness
of X.
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Suppose C ⊂ X is connected and consider C̄ = A ∪ B where Ā ∩ B = ∅ and
A∩ B̄ = ∅. Then C = (A∩C)∪ (B ∩C) and A ∩ C ⊂ Ā, B ∩ C ⊂ B̄ so A∩C and
B∩C are separated. Thus one must be empty by the connectedness of C; changing
names if necessary we can assume that it is A so A ⊂ C ′ must consist only of limit
points of C and necessarily C ⊂ B, but then A ⊂ C̄ so A = ∅ and C̄ is indeed
connected.

On the other hand the interior of a connected set need not be connected. Take
the region Q = {(x, y) ∈ R2;xy ≥ 0}. This is the union of the closed first and third
quadrants. From the problem below, the two quadrants are themselves connected.
Let us show that the union of two connected sets with non-empty intersection is
connected. Thus suppose Ci ⊂ X, i = 1, 2, are connected sets and C1 ∩ C2 6= 0.
Then if C1 ∪ C2 = A ∪ B with A and B separted it follows that Ci = Ai ∪ Bi

with Ai = A ∩ Ci, Bi = B ∩ Ci. Furthermore, Ai and Bi are separted for 1 = 1, 2
(and the same i) since Ai ∩ Bi ⊂ A ∩ B = ∅ and Ai ∩ Bi ⊂ A ∩ =∅. From the
connectedness of Ci we must have one of A1 = ∅ or B1 = ∅ and one of A2 = ∅ or
B2 = ∅. Of course it we have both Ai empty then A = ∅ and similarly for the Bi’s.
So, if necessary swithching a and B the only danger is that A1 = ∅ and B2 = ∅ but
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then B = B1 = C1 and A = A2 = C2 but then A ∩B = C1 ∩ C2 6= ∅ contradicting
the assumption. Thus C = C1 ∪ C2 is connected and in particular ths applies to
our union of two quadrants.

The interior is the union of the two open quadrants and these are separated,
since the closure of each is the corresponding closed quadrant so the union is not
connected.

Chapter 2: Problem 21

a) Certainly A0∩B0 = ∅ since A∩B = ∅ and p−1(A)∩p−1(B) = p−1(A∩B).
If s ∈ A′

0 then it is for ε > 0 (t− ε, t + ε) ∩A0 is infinite which means that

(1) B((1− s)a + sb, ε) ∩A

is infinite, so p(s) a limit point of A, hence p(s) /∈ B (since A and B are
separated) so s /∈ B0 which shows that A0 ∩ B0 = ∅. The same argument
shows that A0 ∩B0 = ∅.

b) Put s = sup{t ∈ A0; t < 1}. Since 0 ∈ A0 this set is non-empty and clearly
bounded above, so s exists. Moroever, 0 ≤ s < 1 since s = 1 would imply
that A0 ∩ B0 6= ∅. Now set s′ = inf{t ∈ B0; t > s}. Certainly s′ ≤ 1 and
s′ ≥ s. If s′ = s then s /∈ A0 and s′ = s /∈ B0, since otherwise they are
not separated so take t0 = s = s′. If s < s′ then (s, s′) ∩ A0 = ∅ and
(s, s′) ∩ B0 = ∅. In any case we have found t0 ∈ (0, 1), t0 /∈ A0 ∪ B0 which
implies p(t0) /∈ A ∪B.

c) If G is convex, then by definition for a, b ∈ G, p(t) = (1 − t)a + tb ∈ G
for t ∈ [0, 1]. From the argument above, if G = A ∪ B where A and B
are separated then we have a contradiction to the fact that both are non-
empty, since then taking a ∈ A and b ∈ B we have found p(t0) /∈ A∪B but
p(t0) ∈ G by convexity. Thus any convex subset of Rk is connected.

Chapter 2: Problem 24

Remark: Note that separable and separated are rather unrelated concepts.
We assume that X is a metric space in which every infinite subset has a limit

point (sequentially compact is what I called these in lecture). We are to show that
X is separable. For each n choose successively points xj ∈ X for j = 1, 2, . . . , such
that d(xj , xk) ≥ 1/n for k < j. Either at some point no further choice is possible,
or else we can choose this way an infinite set F ⊂ X with d(x, y) ≥ 1/n for all
x, y ∈ F distinct. By assumption on X this set F must have a limit point, call it
x∗. Since B(x∗, δ

4 ) ∩ F must be infinte, it must contain at least two distinct points
x, y which have

d(x, y) ≤ d(x, x∗) + d(x∗, y) ≤ δ/2

which is a contradiction. Thus any such procedure must lead to a finite set; call
one such choice Cn. Then consider C =

⋃
n Cn. This is a countable subset of X

and by construction for any x ∈ X and any n there exists yn ∈ Cn ⊂ C such that
d(x, yn) ≤ 1/n (since otherwise we could increase Cn) Thus x is in the closure of
F, i.e. F = X or F is dense. Hence X is separable.
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Suppose X is sequentially compact in the sense that every infinte subset of X has
a limit point. We already know from Exercises 23 and 24 that X has a countable
basis of open sets. That is, there is a countable collection of open sets B such
that any open set is a union of elements of B. That is, given U ⊂ X open define
S = {B ∈ B;B ⊂ U} then U =

⋃
B∈S B. Suppose

(2) X =
⋃
a∈A

Ua

is an arbitrary cover of X by open sets. Since each Ua is a union of the sets from
B if we define

(3) D = {B ∈ B;B ⊂ Ua for some a ∈ A}
we must have a subset of B, hence countable (possibly finite of course). For each
B ∈ D we can choose an a ∈ A such that B ⊂ Ua. Let A′ ⊂ A be a set chosen in
this way, there is a surjective map from D to A′ so A′ is countable and by definition
of D,

(4) X =
⋃

a∈A′

Ua.

Thus we have found a countable subcover of the original cover.
Now, replace A′ by a labelling by integers, so we can write

(5) X =
∞⋃

i=1

Uai
⇐⇒

∞⋂
i=1

(Uai
){ = ∅.

Of course if A′ is finite we are finished already. Otherwise, suppose that for each
N

(6) X 6=
N⋃

i=1

Uai
⇐⇒ FN =

N⋂
i=1

(Uai
){ 6= ∅.

The FN form a decreasing sequence of closed subsets of X. If they are all nonempty
then we can choose a point from each, forming a set F. Either F is finite or else
infinite. In the first case there is one point in F which is in FN for arbitrarily large
N hence in all the FN since they are decreasing. In the second case F must have
a limit point, x∗. Since, for each N, all but a finite subset of F is contained in FN ,
x∗ must be a limit point of each FN , hence in each FN (since they are closed). In
either case this gives a point in

⋂
N FN = ∅ because of (5) this is a contradiction.

Thus the FN must be empty from some point onwards, giving us a finite subcover.
Remark: In lecture I did not go through the step of extracting the countable

subcover, just used the cover given by D directly.

Chapter 2: Problem 29

Suppose O ⊂ R is open. Since R is separable, it contains a countable dense
subset, for instance Q. Take a surjection N −→ O ∩ Q and write pi for the image
of i. Since O is open if x ∈ O then (x − δ, x + δ) ⊂ O for some δ > 0 must
contain at least one of the pi. Consider successively each of the pi. Again, there is
an interval(pi − ε, pi + ε) ⊂ Q. Now, if [pi,∞) 6⊂ O consider

(7) Ai = sup{t ∈ R; [pi, t) ⊂ O}.
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Similarly if (−∞, pi] 6⊂ O consider

(8) Bi = sup{t ∈ R; [pi, pi − t) ⊂ O}.
In all four cases we obtain an open interval (pi−Bi, pi + Ai) ⊂ O, possibly infinite
in one direction or the other. By definition this interval is maximal in O and
containing pi. Another way of thinking about this interval is as the union of all
intervals in O containing pi and noting that the union of any collection of open
intervals with a fixed point in common is an open interval. Now, drop the pi’s from
O∩Q which are contained in one of the previous intervals and we have a countable
(possibly finite) collection of disjoint intervals with union O (since each point of O
is in an interval containing one of the pi).


