
32 RICHARD MELROSE

8. Topic 2: Higher dimensional harmonic oscillator
In place of lecture for Monday, 15 September

Carry through the discussion of the higher-dimensional isotropic smoothing operators,
forming the algebra 	�1(Rn); the associated group G�1iso (Rn) and corresponding
loop groups. Similarly, for any compact manifold X; for the moment without
boundary, discuss 	�1(X); G�1(X) and ~G�1sus (X) etc.

Here are some steps to help you along the way.

(1) Show that S(R2n) becomes a non-commutative Fr�echet algebra which will
be denoted 	�1iso (Rn); with continuous product given by operator composition
as in the 1-dimensional case

(8.1) a � b(z; z0) =
Z
Rn

a(z; z00)b(z00; z0)dz00:

(2) Discuss the higher dimensional harmonic oscillator using the n creation and
annihilation operators

(8.2) Cj = �@zj + zj ; Aj = C�j = @zj + zj ;

H = H(n) =

nX
j=1

CjAj + n; [Aj ; Cj ] = 2; j = 1; : : : ; n:

Show that H has eigenvalues n+2N0 with the dimension of the eigenspace
with eigenvalue n+2k equal to the dimension of the space of homogeneous
polynomials of degree k in n variables.

(3) Compute the constants such that the functions

(8.3) h0 = c0 exp(�jzj2=2); h� = c�C
�h0; � 2 Nn0

is orthonormal in L2(Rn) and show that they form a complete orthonormal
basis.

(4) Show that for any u 2 S(Rn) the Fourier-Bessel series
(8.4) f =

X
�

hf; h�ih�

converges in S(Rn) and that this gives an isomorphism

(8.5) S(Rn) �! ffc�g; sup
�
j�jN jc�j <1; 8 N 2 Ng; j�j =

X
j

�j :

(5) Show, either directly or by discussing the appropriate `higher dimensional'
versions of 	�1(N) based on sequences as in (8.5), that 	�1iso (Rn) is
topologically isomorphic to the algebra 	�1(N):

(6) Brie
y describe and discuss the group G�1iso (Rn):
(7) Introduce the (higher, pointed, 
at) loop groups of G�1sus(k);iso(R

n):

(8) Show that

(8.6) tr(a) =

Z
Rn

a(z; z)dz

is the trace functional on 	�1iso (Rn):
(9) Can you show that it is unique up to a constant multiple as a continuous

linear functional which vanishes on commutators?
(10) See how everything else we have done so far looks in this setting!
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(11) Extend these results further to any compact manifold, using the eigendecomposition
for the Laplacian. I will come back to this and disuss it more seriously later.


