RICHARD MELROSE

8. TOPIC 2: HIGHER DIMENSIONAL HARMONIC OSCILLATOR IN PLACE OF LECTURE FOR MONDAY, 15 SEPTEMBER

Carry through the discussion of the higher-dimensional isotropic smoothing operators, forming the algebra $\Psi^{-\infty}(\mathbb{R}^n)$, the associated group $G_{iso}^{-\infty}(\mathbb{R}^n)$ and corresponding loop groups. Similarly, for any compact manifold X, for the moment without boundary, discuss $\Psi^{-\infty}(X)$, $G^{-\infty}(X)$ and $\tilde{G}_{sus}^{-\infty}(X)$ etc.

Here are some steps to help you along the way.

(1) Show that $\mathcal{S}(\mathbb{R}^{2n})$ becomes a non-commutative Fréchet algebra which will be denoted $\Psi_{iso}^{-\infty}(\mathbb{R}^n)$, with continuous product given by operator composition as in the 1-dimensional case

(8.1)
$$a \circ b(z, z') = \int_{\mathbb{R}^n} a(z, z'') b(z'', z') dz''.$$

(2) Discuss the higher dimensional harmonic oscillator using the n creation and annihilation operators

(8.2)
$$C_j = -\partial_{z_j} + z_j, \ A_j = C_j^* = \partial_{z_j} + z_j,$$

 $H = H(n) = \sum_{j=1}^n C_j A_j + n, \ [A_j, C_j] = 2, \ j = 1, \dots, n.$

Show that H has eigenvalues $n + 2\mathbb{N}_0$ with the dimension of the eigenspace with eigenvalue n + 2k equal to the dimension of the space of homogeneous polynomials of degree k in n variables.

(3) Compute the constants such that the functions

$$h_0 = c_0 \exp(-|z|^2/2), \ h_\alpha = c_\alpha C^\alpha h_0, \ \alpha \in \mathbb{N}_0^n$$

is orthonormal in $L^2(\mathbb{R}^n)$ and show that they form a complete orthonormal basis.

(4) Show that for any $u \in \mathcal{S}(\mathbb{R}^n)$ the Fourier-Bessel series

(8.4)
$$f = \sum_{\alpha} \langle f, h_{\alpha} \rangle h_{\alpha}$$

converges in $\mathcal{S}(\mathbb{R}^n)$ and that this gives an isomorphism

(8.5)
$$\mathcal{S}(\mathbb{R}^n) \longrightarrow \{\{c_\alpha\}; \sup_{\alpha} |\alpha|^N | c_\alpha| < \infty, \ \forall \ N \in \mathbb{N}\}, \ |\alpha| = \sum_j \alpha_j.$$

- (5) Show, either directly or by discussing the appropriate 'higher dimensional' versions of $\Psi^{-\infty}(\mathbb{N})$ based on sequences as in (8.5), that $\Psi^{-\infty}_{iso}(\mathbb{R}^n)$ is topologically isomorphic to the algebra $\Psi^{-\infty}(\mathbb{N})$.
- (6) Briefly describe and discuss the group $G_{iso}^{-\infty}(\mathbb{R}^n)$.
- (7) Introduce the (higher, pointed, flat) loop groups of $G^{-\infty}_{\operatorname{sus}(k),\operatorname{iso}}(\mathbb{R}^n)$.
- (8) Show that

(8.6)
$$\operatorname{tr}(a) = \int_{\mathbb{R}^n} a(z, z) dz$$

is the trace functional on $\Psi_{iso}^{-\infty}(\mathbb{R}^n)$.

- (9) Can you show that it is unique up to a constant multiple as a continuous linear functional which vanishes on commutators?
- (10) See how everything else we have done so far looks in this setting!

(8.3)

BKLY08

(11) Extend these results further to any compact manifold, using the eigendecomposition for the Laplacian. I will come back to this and disuss it more seriously later.