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5. LECTURE 5: HARMONIC OSCILLATOR
MoONDAY, 8 SEPTEMBER, 2008

I have not really talked so far about the topology on the loop spaces. I hope to
get to this today, or at least do the preparation for it, and also consider the first
‘geometric form’ of G~™°°, namely the ‘isotropic smoothing algebra’, or Schwarz
algebra, of operators on R.

Schwartz space

Harmonic oscillator

Creation and annihilation operators
Eigenfunctions

Hermite polynomials

Completeness

Convergence of eigenseries

The algebra ¥~°°(R) and group G~*°(R).
Loop groups again.

I will assume that you are somewhat familiar with the Schwartz space S(R), but
let me remind you of the definition and basic properties. In fact we might as well
consider S(R") for any n.

So, S(R™) C C*°(R™) consists of all the (complex-valued) smooth functions of
rapid decay, meaning that all the norms

(5.1) lullpoo = sup (14 [2[)5|D"u(2)] < o0
2€R", 0<|a|<p

are finite. Here a = (ay, ..., ay) is a multi-index, so o; € Ng = {0,1,2,...}
oM g%

(5.2) DYy =il u(z), la) =ay + - +ay

Dzt T Oz

where the powers of i are there for reasons to do with formal self-adjointness. This
sequence of norms is just like those considered on sequences above. Just as there,
S(R™) is a complete metric space with the distance

(5.3) 22 p_lullpoo

1+ {Jullp,o0

where convergence of a sequence with respect to this distance means exactly the
same as convergence with respect to each of the norms ||u||p o (With no uniformity
in p). The dual space, the space of continuous linear maps

(5.4) U:SR") — C,

is the space of tempered (or temperate) distributions, S'(R™). There is a natural
inclusion, almost always treated as an identification

(5.5) S(R™) = S'(R™), u+— U, : S(R") > f — u(z) f(x)dz.
R’n
Since it is treated as an identification we normally write U, = u.

Now consider the algebra

(5.6) U-°(R) = S(R?)
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where the product is
(5.7) ab(z,z') = / a(z,z'")b(z", z")dz".
R

These are the Schwartz smoothing operators on R. They act on S(R) in the obvious
way, as integral operators

(5.8) a:S(R) — S(R), (au)(z) = /Ra(m,m')u(m')daz'.

Then (5.7) is operator composition.
The spectral theory of the harmonic oscillator

2

d 2

on the line can be discussed in an essentially algebraic way. This is based on the
two first order operators,

d d
1 A= — - _ =
(5.10) dm+m and C dm+x’
respectively the annihilation and creation operator. The idenitites
d 22
(5.11) H=CA+1, [AC] :2[d—,x] =2, Ade” 7 =0
x
are easily checked. Since
22
(5.12) /(e_T)Qda: = /e_wzda: =7
R
the function
22
(513) hl = W_%B_T
has norm 1 in L?(R) and satisfies
(5.14) Hhy = hy.

This is the ground state of the harmonic oscillator. The higher eigenfunctions
are obtained by applying the creation operator. Thus
(5.15)
C*h, (x) satisfies
H(C*hy) = C*hy + CAC*hy = C*hy +2C*%hy + C?PAC*'hy = (1 + 2k)C*hy
as follows from (5.11) by induction. Moreover it also follows inductively that
(5.16) C*hy(z) = (2827 + g 1) () by ()

where g, _; is a polynomial of degree at most k — 1. Certainly, C*h; € S(R). The
L2 norm can be computed by integration by parts using the fact that A and C are
adjoints of each other

(5.17) /R(C’“hl(m))zd:r = /Rhm(a:)Akahl(a:)dm =2k,

Moreover C*h; and C'h; are orthogonal in L? by a similar argument and hence
the

(5.18) he =23 (k)2C*hy, k=0,1,2,...

form an orthonormal sequence of eigenfunctions of H.
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In fact this is a complete orthonormal basis of L?(RR). To see this observe from

(5.16) that the span of the first k elements consists of all the products q(m)e‘é
where ¢ is a polynomial of degree at most k. In particular if u € L?(R) then

(5.19) /u(m)hk(w)d:ﬂ =0Vk<<= /u(m)wke_édac =0Vk.

Taking the Fourier transform and using Plancherel’s formula and the fact that the
Fouier transform of hy is a multiple of itself, (5.19) is equivalent to

d* , z?
— —_ —tTT
(5.20) WU(O) =0VYEk, o(r) = /e u(z) exp(—?)dm.
Now wv is entire, since the integral defining it is absolutely convergent for all 7 € C.
It follows that v = 0 and hence u = 0 by Fourier inversion. This shows that the hy
form a complete orthonormal basis of L?(R).

Lemma 6. If u € S(R) it follows that the Fourier-Bessel expansion of u in terms
of the hy, converges in S(R) :

(5.21) u(z) = chhk, cp = /hk(x)u(:r) = ka|ck| < ooV p.
k=1 k
Proof. This follows from Stirling’s formula
k
(5.22) k! ~ V2rk (i) .

which implies the existence of positive constants R, ¢ and C' such that
(5.23) cRFEMTS < 2Fk < CRFERS

Fix p € N. Then hyy, = p(k, p)CPhy, so integrating by parts from the definition of
the coefficients in (5.21),

(5.24) Cpth = u(k,p)/hk(a:)Apu(:v)dm.
R

Now, in terms of the seminorms on S(R),

(5.25) | APu(z)] < 2P(1 + |2]) 7 flullps 2,00

where the extra factor is to ensure integrability. Thus

(5.26) |Cp+k| < N(k:p)2pl|u||p+2,oo-

Combining (5.23) and (5.26) it follows that

(5.27) lepel < Cpk ™2 lullpoo.

Thus the coefficients decrease rapidly.
Estimating directly it also follows that

(5.28) i llp.o0 < CpkP/*+
so the sequence does indeed converge in S(R). O
Proposition 9. The map
(529) \I’ioo(N) 3 a;; — Za”hz(l‘)hj(.fl) € ‘IJfOO(R)
ij

is an isomorphism.
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Proof. This requires the same sort of argument as in the previous proof, but now
applied in both variables. O

So everything I have said for ¥~ >°(N) carries over to ¥, >°(R) and we can define
the group G, ,;°(R) which is similarly isomorphic, as a topological group and by
a smooth isomorphism, to G~%°(N). The trace functional is the integral over the
diagonal

iso

(5.30) Wo(R) 3 a — tr(a) = /R o(z, z)dz.

Thus the Chern character forms look the same as before but now involve lots of
integrals instead of sums.

Now, if T get this far, the loop group on ¥~°°(N) can also be written is ‘Schwartz
form’. Namely we can take an isomorphism

(5.31) (0,27r) — R, T'(#) = arctan((f — 7)/2)
which identifies smooth functions on [0,27] which vanish with all their derivatives
at the end points with S(R). Basically only the ‘polynomial’ behaviour of T at

0 and 27 (and the fact that it is a diffeomorphism of the open sets of course) is
important here.



