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5. Lecture 5: Harmonic oscillator
Monday, 8 September, 2008

I have not really talked so far about the topology on the loop spaces. I hope to
get to this today, or at least do the preparation for it, and also consider the �rst
`geometric form' of G�1; namely the `isotropic smoothing algebra', or Schwarz
algebra, of operators on R:

� Schwartz space
� Harmonic oscillator
� Creation and annihilation operators
� Eigenfunctions
� Hermite polynomials
� Completeness
� Convergence of eigenseries
� The algebra 	�1(R) and group G�1(R):
� Loop groups again.

I will assume that you are somewhat familiar with the Schwartz space S(R); but
let me remind you of the de�nition and basic properties. In fact we might as well
consider S(Rn) for any n:

So, S(Rn) � C1(Rn) consists of all the (complex-valued) smooth functions of
rapid decay, meaning that all the norms

(5.1) kukp;1 = sup
z2Rn; 0�j�j�p

(1 + jzj2) p2 jD�u(z)j <1

are �nite. Here � = (�1; : : : ; �n) is a multi-index, so �i 2 N0 = f0; 1; 2; : : : g

(5.2) D�
z u = i�j�j

@�1

@z�11
: : :

@�n

@z�nn
u(z); j�j = �1 + � � �+ �n

where the powers of i are there for reasons to do with formal self-adjointness. This
sequence of norms is just like those considered on sequences above. Just as there,
S(Rn) is a complete metric space with the distance

(5.3) d(u; v) =
X
p

2�p
kukp;1

1 + kukp;1
where convergence of a sequence with respect to this distance means exactly the
same as convergence with respect to each of the norms kukp;1 (with no uniformity
in p): The dual space, the space of continuous linear maps

(5.4) U : S(Rn) �! C;

is the space of tempered (or temperate) distributions, S 0(Rn): There is a natural
inclusion, almost always treated as an identi�cation

(5.5) S(Rn) ,! S 0(Rn); u 7�! Uu : S(Rn) 3 f �!
Z
Rn

u(x)f(x)dx:

Since it is treated as an identi�cation we normally write Uu = u:
Now consider the algebra

(5.6) 	�1iso (R) = S(R2)



22 RICHARD MELROSE

where the product is

(5.7) ab(x; x0) =

Z
R

a(x; x00)b(x00; x0)dx00:

These are the Schwartz smoothing operators on R: They act on S(R) in the obvious
way, as integral operators

(5.8) a : S(R) �! S(R); (au)(x) =
Z
R

a(x; x0)u(x0)dx0:

Then (5.7) is operator composition.
The spectral theory of the harmonic oscillator

(5.9) H = � d2

dx2
+ x2

on the line can be discussed in an essentially algebraic way. This is based on the
two �rst order operators,

(5.10) A =
d

dx
+ x and C = � d

dx
+ x;

respectively the annihilation and creation operator. The idenitites

(5.11) H = CA+ 1; [A;C] = 2[
d

dx
; x] = 2; Ae�

x2

2 = 0

are easily checked. Since

(5.12)

Z
R

(e�
x2

2 )2dx =

Z
e�x

2

dx =
p
�

the function

(5.13) h1 = ��
1
4 e�

x2

2

has norm 1 in L2(R) and satis�es

(5.14) Hh1 = h1:

This is the ground state of the harmonic oscillator. The higher eigenfunctions
are obtained by applying the creation operator. Thus
(5.15)

Ckh1(x) satis�es

H(Ckh1) = Ckh1 + CACkh1 = Ckh1 + 2Ckh1 + C2ACk�1h1 = (1 + 2k)Ckh1

as follows from (5.11) by induction. Moreover it also follows inductively that

(5.16) Ckh1(x) = (2kxp + qk�1)(x))h1(x)

where qk�1 is a polynomial of degree at most k � 1: Certainly, Ckh1 2 S(R): The
L2 norm can be computed by integration by parts using the fact that A and C are
adjoints of each other

(5.17)

Z
R

(Ckh1(x))
2dx =

Z
R

hx(x)A
kCkh1(x)dx = 2kk!:

Moreover Ckh1 and Clh1 are orthogonal in L2 by a similar argument and hence
the

(5.18) hk = 2�
k
2 (k!)

1
2Ckh1; k = 0; 1; 2; : : :

form an orthonormal sequence of eigenfunctions of H:
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In fact this is a complete orthonormal basis of L2(R): To see this observe from

(5.16) that the span of the �rst k elements consists of all the products q(x)e�
x2

2

where q is a polynomial of degree at most k: In particular if u 2 L2(R) then
(5.19)

Z
u(x)hk(x)dx = 0 8 k ()

Z
u(x)xke�

x2

2 dx = 0 8 k:
Taking the Fourier transform and using Plancherel's formula and the fact that the
Fouier transform of h1 is a multiple of itself, (5.19) is equivalent to

(5.20)
dk

d�k
v(0) = 0 8 k; v(�) =

Z
e�ix�u(x) exp(�x

2

2
)dx:

Now v is entire, since the integral de�ning it is absolutely convergent for all � 2 C:
It follows that v � 0 and hence u � 0 by Fourier inversion. This shows that the hk
form a complete orthonormal basis of L2(R):

Lemma 6. If u 2 S(R) it follows that the Fourier-Bessel expansion of u in terms
of the hk converges in S(R) :

(5.21) u(x) =

1X
k=1

ckhk; ck =

Z
hk(x)u(x) =)

X
k

kpjckj <1 8 p:

Proof. This follows from Stirling's formula

(5.22) k! �
p
2�k

�
k

e

�k
:

which implies the existence of positive constants R; c and C such that

(5.23) cRkkk+
1
2 � 2kk! � CRkkk+

1
2 :

Fix p 2 N: Then hp+k = �(k; p)Cphk so integrating by parts from the de�nition of
the coe�cients in (5.21),

(5.24) cp+k = �(k; p)

Z
R

hk(x)A
pu(x)dx:

Now, in terms of the seminorms on S(R);
(5.25) jApu(x)j � 2p(1 + jxj)�2kukp+2;1
where the extra factor is to ensure integrability. Thus

(5.26) jcp+kj � �(k; p)2pkukp+2;1:
Combining (5.23) and (5.26) it follows that

(5.27) jcp+kj � Cpk�p=2kukp;1:
Thus the coe�cients decrease rapidly.

Estimating directly it also follows that

(5.28) khkkp;1 � Cpkp=2+1
so the sequence does indeed converge in S(R): �

Proposition 9. The map

(5.29) 	�1(N) 3 aij 7�!
X
ij

aijhi(x)hj(x
0) 2 	�1(R)

is an isomorphism.
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Proof. This requires the same sort of argument as in the previous proof, but now
applied in both variables. �

So everything I have said for 	�1(N) carries over to 	�1iso (R) and we can de�ne
the group G�1iso (R) which is similarly isomorphic, as a topological group and by
a smooth isomorphism, to G�1(N): The trace functional is the integral over the
diagonal

(5.30) 	�1iso (R) 3 a 7�! tr(a) =

Z
R

a(x; x)dx:

Thus the Chern character forms look the same as before but now involve lots of
integrals instead of sums.

Now, if I get this far, the loop group on 	�1(N) can also be written is `Schwartz
form'. Namely we can take an isomorphism

(5.31) (0; 2�) �! R; T (�) = arctan((� � �)=2)
which identi�es smooth functions on [0; 2�] which vanish with all their derivatives
at the end points with S(R): Basically only the `polynomial' behaviour of T at
0 and 2� (and the fact that it is a di�eomorphism of the open sets of course) is
important here.


