
BKLY08 17

4. Lecture 4: Delooping and Chern forms
Friday, 5 September, 2008

(1) Contractibility of ~G�1sus (N):
(2) Odd Chern forms.
(3) Even Chern forms { only started.
(4) Transgression under delooping; next time.

Last time I de�ned two versions of the loop group on G�1(N) and discussed
the delooping sequences. The central group in the sequence consists of open loops.
Identifying the circle with the quotient of the interval [0; 2�] there is in fact no
contuity condition corresponding to 0 = 2� so this group can be written as
(4.1)

~G�1sus (N) = fb : [0; 2�]s �! G�1(N); b(0) = Id;
dkb

dtk
(0) = 0;

dkb

dtk
(2�) = 0 8 k � 1g:

Thus, the value at the end, s = 2�; of the loop is `free' but the curve is required to
be 
at there and also to be 
at as it approaches Id at s = 0:

Proposition 7. The is a smooth global retraction

(4.2)
R : [0; 1]t � ~G�1sus (N) �! ~G�1sus (N);

R(1; b) = b; R(0; b) = Id 8 b 2 ~G�1sus (N):

Proof. The idea is to simply shorten the curves but we need to be a little careful
in order to maintain the 
atness conditions. First choose two smooth functions

(4.3)

 i : [0; 1] �! [0; 1]; i = 0; 1 with

 1(1) = 1 in s > 3=4;  1(s) = 0 in s < 1=2;

 0(s) = 0 in s > 3=4 and s < 1=4;  0(s) +  (s) = 1 in s � 1=2:

Then consider a smooth function f : [0; 2�] �! [0; 2�] with f(s) = 0 in s > 1=20;
f(s) = 2� in s > 2� � 1=20 and de�ne

(4.4) � : [0; 1]t � [0; 2�]s �! [0; 2�] by �(t; s) = f(s) 0(t) + s 1(t):

Clearly �(0; s) = 0; �(1; s) = s for all s 2 [0; 2�]: Moreover, �(t; 0) = 0 forall t;
�(t; 2�) = 2�; for t � 1=2 and for t � 1=2;

(4.5)
dk�

dsk
(t; 2�) = 0 8 k > 1:

Then the desired homotopy is given by

(4.6) R(t; a)(s) = a(�(t; s)) 2 ~G�1(N)

where the 
atness at s = 0 follows from the 
atness of a at s = 0 and the 
atness
at s = 2� follows from that of a for t � 1=2 and from that of � for t � 1=2: Thus
(4.2) follows, proving the Proposition. �

Now, let me turn, or return, to the Chern forms. As in a Lie group, the canonical
map g : G�1(N) �! 	�1(N) which embeds the group as an open dense subset of
the algebra trivializes the tangent bundle to the group, so we can identify

(4.7) dg : TG�1 = G�1 �	�1(N):

The `name' chosen for this identi�cation, dg; is supposed to be suggestive but can
be confusing. Really the `g' here just tells you at which point of the group you are
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supposed to be and the `d' indicates the identi�cation of tangent spaces. However,
it does give magical formul� which fortunately are correct.

So, the higher tensor spaces, multi-tangent bundles, are just the formal tensor
products. This means that if we want to have a cotensor at a point of G�1 it will
just be a continuous multilinear map

(4.8) 	�1(N)�	�1(N) � � �	�1(N) �! C:

The continuity of such multilinear maps automatically generates a completed tensor
product of the dual spaces, so we do not have to worry about formalizing this at
the moment. In short then a k-form on G�1 should be a smooth map

(4.9) G�1(N)�	�1(N)�	�1(N) � � �	�1(N) �! C

which is linear in each of the last k factors and which is totally antisymmetric in
these. Before worrying too much about di�erentials etc, let's just check that we
can manufacture some.

The simplest forms one could think of would be those `independent' of the �rst
factor in (4.9) { although such independence is illusionary since the trivialization
of the tangent bundle introduces a degree of twisting. Thus, since we have the
product in the algebra and the trace functional at our disposal we can just consider
(4.10)

	�1(N)�	�1(N) � � �	�1(N) 3 (b1; : : : ; bk) 7�!
X
�k3i

sgn(i) tr(bi1bi2 : : : bik):

Here I have explicitly introduced the exterior product by antisymmetrizing in all
the variables. So, at the identity of the group this can be written

(4.11) tr(dg ^ dg ^ : : : dg)(b1; : : : ; bk) at g = Id 2 G�1(N):

This does indeed de�ne a global form on G�1 but not a very interesting one as it
turns out. Rather we need to introduce factors of g�1 to map everything back to
the identity. So we consider the k-form

(4.12) tr(g�1dg ^ : : : g�1dg) = tr
�
(g�1dg)k

�
:

Written out at any point on the group it just looks like (4.10) with g�1's inserted
between the factors and then antisymmetrized in the tangent variables. Clearly
(4.12) is a rather simpler formula, especially when we suppress the wedge product
as well!

Now, from antisymmetry alone this form vanishes identically if k is even. You
can think of this as `moving' the �rst factor to last { which is okay because of the
properties of the trace { but in doing so one has to pass over an odd number of
terms each of which reverses the sign, so overall it is equal to its negative. Thus we
only consider the odd case and write

(4.13) Chodd2k+1 = Ch2k+1 = tr
�
(g�1dg)2k+1

�
; k = 0; 1; 2; : : : :

The `odd' here is redundant, since the forms are only in odd degree anyway.
Note that the insertion of the factors of g�1 makes this form left-invariant. That

is, consider the map from G�1 to itself given by multiplication on the left by
h 2 G�1(N); �xed but arbitrary. Ther is of course a similar right multiplication
map, which conventionally has an inverse inserted

(4.14)
Lh : G

�1(N) �! G�1(N); g 7�! hg

Rh : G
�1(N) �! G�1(N); g 7�! gh�1
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are both global di�eomorphisms.

Lemma 4. All the (odd) Chern forms in (4.13) are are bi-invariant.

Proof. Trivial enough. Namely (hg)�1 = g�1h�1 and d(hg) = hdg: Thus even the
product g�1dg = (hg)�1d(hg) is left-invariant. On the other hand under the right
action, R�h(g

�1dg) = h(g�1dg)h�1: Thus the forms are obviously left-invariant and
right-invariance follows from the invariance properties of the trace:

(4.15) R�h Ch2k+1 = tr
�
h(g�1dg)2k+1h�1

�
= Ch2k+1 :

�

Most importantly of all, of course, is that

Lemma 5. The (odd) Chern forms are closed.

Proof. The operator d is perfectly well-de�ned as in the �nite-dimensional case.
Let me just leave this as an exercise for the moment! In fact d makes good sense
on smooth forms valued in any vector space, such as 	�1(N): Thus we see,

(4.16) g�1 : G�1(N) ! G�1(N); dg�1 = �g�1dgg�1:
As usual, this just follows by di�erntiating the identity g�1g = Id : Thus the product
g�1dgg�1 is closed, in fact is exact. Similarly of course, dg is closed { being the
di�erential of a linear map. So,

(4.17) tr
�
(g�1dg)2k+1

�
= tr

�
g�1dg(g�1dgg�1dg)k

�
:

Since tr is a continuous linear functional d tr(F ) = tr(dF ) so we see that

(4.18) dCh2k+1 = tr
�
(dg�1)dg(g�1dg)k

�
= � tr �g�1dgg�1dg(g�1dg)k� = 0

since we are back to the case of an even number of factors. �

Where does this lead us? Each of these Chern forms de�nes a cohology class on
G�1(N) { of course we have not yet checked that they are non-zero. In fact they
are and so it is interesting to consider the pull-backs:

Proposition 8. The odd Chern forms de�ne maps for each k

(4.19) K�1(X) �! H2k+1(X;C)

for any compact manifold.

Proof. By de�nition an odd K-class is de�ned by a smooth map f : X �! G�1(N):
Thus we can simply pull the forms back to get

(4.20) f�Ch2k+1 = tr
�
(f�1df)2k+1

�
where now we can think of f as a map into 	�1(bN) (which happens to map into
G�1(N) of course). So, we only need to show that the cohomology class de�ned by
this form is the same for homotopic f 's. Given a homotopy F : [0; 1]t�X �! G�1

the Chern form pulls back to 
 = F � Ch2k which is a smooth closed form on
[0; 1]�X: Then if f0 and f1 are the restrictions to t = 0 and t = 1 it follows that

(4.21) f�1 Ch2k �f�0 Ch2k = d�

for a smooth form �: Indeed 
 = dt ^ v + v0 where v; v0 are forms on X which
depend on t as a parameter. That 
 is closed means that

(4.22)
@v0

@t
� dXv = 0; dXv

0 = 0:
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Hence

(4.23) f�1 Ch2k �f�0 Ch2k = v0(1)� v0(0) =
Z 1

0

@v0

@t
dt = dX�; � =

Z 1

0

v(t)dt:

�

In fact it is usual to sum these forms up, to give the Chern character mapping
from odd K-theory to odd cohomology { this involves questions of normalization
which I will postpone for a little while.

So, next consider the even analogue of these forms. Of course there are no even
forms on G�1(N) but these are forms on G�1sus (N): In fact these are induced by
the forms we already have on G�1(N) through the evaluation map

(4.24) ev : S�G�1sus (N) �! G�1; (�; g) �! g(�):

Since this map is smooth, we can pull the forms Ch2k+1 back to the product and
then we can push-forward to the suspended group by integrating over the circle.
Thus reduces the degree by one, so we de�ne

(4.25) Cheven2k =

Z
S

ev� Ch2k+1 on G�1sus (N):

Now, it is straighforward to write this form down in terms of dg; the same map on
G�1(N) and the parameter � 2 S :

(4.26) Ch2k =

Z
S

tr

�
g�1

@g

@�
(g�1dg)2k

�
:


