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41. Lecture 32: The K-theory gerbe
Monday, 1 December, 2008

First let me apologize for not having been able to keep up with the notes while
I was away. With any luck I will catch up a bit with what I had meant to put in
about the Chern character etc.

Today I want to describe the K-theory gerbe in one of its forms. Rather than
de�ne what a gerbe is { in the widest sense the term is used for any geometrical
object which is classi�ed by, or at least realizes all, integral 3-cohomology { I will
describe it and then try to explain the salient features. In brief the universal
K-theory gerbe is a `geometric invariant' associated with, in the �rst instance a
bundle with some structure over, a (reduced) classifying space for odd K-theory
which `captures' the primitive three-dimensional cohomology class.

However, �rst let me recall the `geometric invariants' { in degrees 0; 1 and 2;
that we have already introduced, since the gerbe is analogous to these:-

(1) The index.
(2) The determinant.
(3) The determinant line bundle.

Of course the �rst two of these don't look very geometric but that is what happens
in low degree.
The index. We have two basic `series' of classifying spaces the loop groups of (a)
G�1 and the loop spaces of the space of involutions H�1: The index is most easily
seen as the map

(41.1) H�1 3 fI = 
1 + 
; 
 2 	�1 
M(2;C); I2 = Idg 3 I 7�! 1

2
tr(
) 2 Z:

We have usually taken 
1 =

�
1 0
0 �1

�
: The index labels the components, i.e. induces

an isomorphism

(41.2) ind : �0(H�1) �! Z

which is additive (under compression to �nite rank and direct sum) and as such is
unique up to sign (which needs to be worried about).

The (
at-pointed) loop group on G�1; G�1sus is also a classifying space for even
K-theory and we showed that the index can be transferred to it. Namely the map

(41.3) cleo : H�1 �! G�1sus (�;C2)
is an homotopy equivalence and under it

(41.4) ind =
1

2
tr = cleo

� indsus; indsus(g) =
1

2�1

Z
R

tr

�
g�1(t)

dg(t)

dt

�
dt:

So, it is reasonable just to write indsus : G
�1
sus 7�! Z as `ind' and take (41.4) as a

natural identi�cation; however I will still use the notation indsus where this seems
helpful.6

Now, the index on G�1sus can be recognized as the functional induced by the
1-form

(41.5) Chodd1 =
1

2�i
tr
�
g�1dg

�
on G�1:

6The index functional on the higher loop groups G�1
sus(2k+1)

was supposed to have been

discussed in the write-ups while I was away { this may still appear.
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Namely, under the evaluation map and projection

(41.6) R�G1sus ev //

�2

��

G�1

G�1sus

; indsus = (�2)�(ev
�Chodd1 ):

The determinant. This, meand indsus; was the basis of the (second) construction
of the Fredholm determinant. Recall the delooping sequence:-

(41.7) G�1sus
// ~G�1sus

R // G�1:

Here, the middle group is the half-open 
at loops,
(41.8)

g : R �! 	�1 s.t.
dg

dt
2 S(R; 	�1); g(t) 2 G�1 8 t 2 R and lim

t!�1
g(t) = 0:

This central group is contractible and the construction (41.6) extends to it to de�ne

(41.9) R� ~G1sus
ev //

�2

��

G�1

~G�1sus

; ~� = (�2)�(ev
� Chodd1 ) : ~G�1sus �! C:

This `eta function' has the properties that it restricts to indsus on the subgroup
G�1sus and is log-additive, so the exponentiated function

(41.10) det = exp(2�i~�) : G�1 �! C
�

is well-de�ned, multiplicative and restricts to the usual determinant on GL(N;C)
included into G�1 by stabilization. Moreover, we know that

(41.11) d~� = R�Chodd1 :

It follows that as a map (41.10), det represents a generating class for H1(G�1;Z):

Exercise 35. If this is not `geometric' enough for you, the picture can be expanded
a little. Namely consider the possible values of `log det' at a point of G�1 {
there should be a Z of them at each point. To do this explicitly, take ~G�1 � C
and then identify all pairs (~g1; z1) and (~g2; z2) if R(~g1) = R(~g2) and z1 � z2 =
2�i ind(~g2 � (~g1)�1): Show that this results in a principal bundle

(41.12) Z Z

��

~� // C

G�1:

over G�1 with structure group Z on which ~� is a `connection' in the sense that it
is a well-de�ned function on the total space of the bundle which shifts by n under
the action of n 2 Z:
Determinant line bundle. The determinant bundle was constructed over the
groupG�1sus;ind=0[[�]]; the component of the identity inG

�1
sus [[�]] using the quantization

sequence. Here G�1sus [[�]] is a � extension of the group G�1sus : Namely as a space it is
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consists of formal power series in � { which is just another way of saying sequences
{

(41.13) h =

1X
j=0

hj�
j ; h0 2 G�1sus ; hj 2 	�1sus ; p = h � k =

1X
j

Bj(h; k)�
j

where the product is associative and the Bj are di�erential operators (acting only
in the suspension variable):

(41.14) B0(h; k) = hk; Bj(h; k) =
X

l+l0+p+p0=j

cl;l0;p;p0
dphl
dtp

dp
0

kl0

dtp0

where the product on the right is in 	�1:
For the quantization sequence, the product just comes from the formula for the

composition of isotropic pseudodi�erential operators on R { sometimes called the
Moyal product.

Now, the subject of today's lecture is the next step, the K-theory gerbe. To
construct this again consider the delooping sequence, but now it nees to be both
restricted and expanded. The basic delooping sequence is (41.7) above. The
restriction is to kill o� the determinant { so consider the subgroups

(41.15) G�1sus;ind=0
//

� _

��

~G�1sus;~�=0
R //

� _

��

G�1det=1� _

��
G�1sus

// ~G�1sus
R // G�1:

From the earlier discussion, the top row is exact.
The expansion is to consider the � product. Thus, consider just the case �2 = 0;

meaing pairs

(41.16) h = h0 + �h1; h0 2 G�1det=1; h1 2 	�1

with the projected � product
(41.17)

h � k = (h0k0) + �
�
h0k1 + h1k0 +B(h0; k0)

�
; B(h0; k0) =

1

2i

�
dh0
dt

k0 � h0 dk0
dt

�
:

Then if we take the restricted groups

(41.18)
G�1sus;ind=0[�=�

2] = G�1sus;ind=0 + �	�1sus ;

~G�1sus;~�=0[�=�
2] = ~G�1sus;~�=0 + �	�1sus

where there are no restrictions on the lower order terms, we get a new short exact
sequence in place of (41.7):

(41.19) L

��
G�1sus;ind=0[�=�

2] // ~G�1sus;~�=0[�=�
2]

R // G�1det=1:

Here I have included the fact that deterimant bundle is well-de�ned over the
`dressed' group [�=�2] { it also comes equipped with a connection.
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The basic `bundle gerbe' construction (the idea is due to Michael Murray) is to
take the �bre product of this thought of as a �bration. That is, consider

(41.20) G =
n
(g; g0) 2 ~G�1sus;~�=0[�=�

2];R(g) = R(g0)
o
=
�
~G�1sus;~�=0[�=�

2]
�[2]

which is the `�bre diagonal' in the full product of the central (contractible) group
with itself. This is, by construction, a bundle over G�1det=1: Moreover, there is a
map back to the (dressed) 
at-pointed loop group:

(41.21) G

��

S // G�1sus;ind=0[�=�
2]

G�1det=1

Here S(g; g0) = h if and only if g0 = hg { since R(g0) = R(g) the composite g�1g0 =
h is 
at to the identity at both ends, and hence is an element of G�1sus;ind=0[�=�

2]:
We can use S to pull back the determinant line bundle and so get a tower

(41.22) ~L = S�L

��

L

��
G

��

S // G�1sus;ind=0[�=�
2]

G�1det=1

In fact, as recalled above, we constructed a connection on L which therefore pulls
back to a connection on ~L:
So what is a gerbe? Well, as I said above, there are di�erent points of view on
this. In all cases one is supposed to be able to extract a class in H3(X;Z); where
X is the base, from the gerbe. I would distinguish between several di�erent, but
closely related objects.


