BKLY08

39. Topic 8: More on the determinant bundle In place of lecture for Wednesday, 27 November, 2008

These are as yet very crude notes.

Consider the 3×3 commutative block in which the groups are only roughly identified:-

In more detail:-

- G_{11} : This is the classifying group for even K-theory $G_{\text{sus,iso}}^{-\infty}(\mathbb{R}^2)$ consisting of the elements $a \in \mathcal{S}(\mathbb{R}^5)$ where the first variable is a parameter, so the product is pointwise in this variable and in the last four variables is as smoothing operators on $\mathcal{S}(\mathbb{R}^2)$ and Id + a(t) is required to be invertible for all t.
- G_{21} : This is the contractible, half-free version of the preceeding group it consists of smooth loops in $G^{-\infty}(\mathbb{R}^2)$ which have Schwartz derivative and tend to Id as $t \to -\infty$.
- G_{31} : This is the classifying group for odd K-theory $G_{iso}^{-\infty}(\mathbb{R}^2)$.
- G_{*1} : Is therefore the (flat) delooping sequence for $G^{-\infty}_{\rm iso}(\mathbb{R}^2).$
- G_{12} : This is the symbolically suspended group of invertible isotropic pseudodifferential operators on \mathbb{R} with values in $\Psi_{iso}^{-\infty}(\mathbb{R})$ and normalization condition. As functions the kernels can be identified with functions on $\mathbb{R}^3 \times \mathbb{R}^2$ which are \mathcal{C}^{∞} and Schwartz in the last two variables. The first variable, t, is a parameter and the functions are required to vanish to infinite order at C which is a great half circle in the t direction. The are quantized to operators by Weyl quantization in the second two variables and then we require Id +a(t) to be invertible for all t. This group is contractible.
- G_{22} : This group is supposed to be similar to the previous one except it is now of product type. As functions the elements are smooth on $[\overline{\mathbb{R}^3}, \{t = \infty\}] \times \mathbb{R}^2$ and vanish to infinite order at the lift of C to the blow up which means the closure of the complement of $t = \infty$. The product extends to these more general functions and we look at the group of invertible perturbations as before. This is also a contractible group.
- G_{32} : This is really a *-extended version of the usual group $\dot{G}^0_{\rm iso}(\mathbb{R};\mathbb{R})$. The latter consists of the smooth functions on $\mathbb{R}^2 \times \mathbb{R}^2$ which are Scwartz in the last two variables, flat at a point C' at the on the bounding sphere and such that Id +a is invertible. The *-extension adds arbitrary lower order terms in $\dot{\Psi}^0_{\rm iso}(\mathbb{R};\mathbb{R})$ which do not affect invertibility.
- G_{*2} : This is an exact sequence of contractible groups!

RICHARD MELROSE

- G_{13} : This is the image of the full symbol map from G_{12} . It consists of a *-algebra where, after some reorganization, all terms are Schwartz maps from \mathbb{R}^2 into Schwartz operators on \mathbb{R} and the leading term is such that $\mathrm{Id} + b$ is invertible. This is a classifying space for odd K-theory.
- G_{23} : This is a half-open version of the preceeding group. That is the individual terms are not Schwartz but are (I think after rearrangement) Schwartz in one variable with values in the half-open flat loops in the other; it has a *-product. It is again a contractible group.

 G_{33} : This is a *-extension of $G^{-\infty}_{\text{sus,ind}=0}(\mathbb{R})$.

 G_{i*} : For each *i* this is quantization sequence.

Thus the operators in the top left block of four groups all correspond to certain functions on \mathbb{R}^5 . The top two of the right column and the left two on the bottom row correspond to functions on \mathbb{R}^4 and the bottom right group to functions on \mathbb{R}^3 . In all cases the last two variables are Schwartz. So we can really imagine the functions as being on \mathbb{R}^3 , \mathbb{R}^2 and \mathbb{R} respectively.

Log-multiplicative functionals:

- (1) ind : $G_{11} \to \mathbb{Z}$, ind $(g) = \frac{1}{2\pi i} \int_{\mathbb{R}} \operatorname{tr}(g^{-1}\dot{g}(t)) dt$. (2) $\eta : G_{12} \to \mathbb{C}$, $\eta(g) = \overline{Tr}(g^{-1}\dot{g})$ where \overline{Tr} is the regularized trace-integral which is a trace on the algebra.
- (3) $\tilde{\eta}: G_{21} \to \mathbb{C}, \ \tilde{\eta}(g) = \frac{1}{2\pi i} \int_{\mathbb{R}} \operatorname{tr}(g^{-1}\dot{g}(t)) dt$ which makes sense because of the flatness of the loops.
- (4) $\tilde{\eta}: G_{22} \to \mathbb{C}, \ \tilde{\eta}(g) = \overline{Tr}(g^{-1}\dot{g})$ where \overline{Tr} is the regularized trace-integral which is a trace on the algebra, since the parameter is the 'good' variable in product suspension.

These four maps are consistent under inclusion - i.e. they are all restrictions of the last map. Thus, restricting to the null spaces of these maps we get a commutative square in the top left corner. The exponential, $\exp(2\pi i\tilde{\eta})$ on G_{21} descends to G_{31} where it is the multiplicative Fredholm determinant. The exponential $\exp(2\pi i\eta)$ on G_{12} again descends to 'our' multiplicative determinant on the doubly suspended group. Again we can restrict to the subgroup where det = 1 in these two cases and get short exact sequences on the top row and left column.

Exercise 33. Extend this commutative diagram to the whole 3×3 square. In particular show (I believe Frédéric Rochon has already done this) that the image groups under R and σ respectively in G_{32} and G_{23} are the full groups as before – the same as without the $\tilde{\eta} = 0$ restriction. This shows how we can kill the determinant line bundle since the resulting group in the 33 slot is the central extension of $G_{\text{sus,ind}=0}^{-\infty}$ by the determinant bundle.

Proposition 57. The fact that the determinant bundle is 'primitive' as in (24.21) is equivalent to the fact that the non-zero elements give a \mathbb{C}^* central extension:

$$(39.2) \qquad \qquad \mathbb{C}^* \longrightarrow \mathcal{L}^* \longrightarrow G^{-\infty}_{\mathrm{sus,ind}=0}$$

Exercise 34. Check it. Also, while you are at it, define an Hermitian inner product on the determinant line bundle which reduces this to a U(1) extension. In the geometric case this was done by Bismut and Freed.

I will use this central extension to define and discuss the (reduced) K-theory 2-gerbe later.

162

BKLY08

Remark 2. The right hand column, in the unreduced picture, constructs the determinant bundle via the *-extended, suspended delooping sequence.