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3. Lecture 3: K-groups and loop groups
Wednesday, 3 September, 2008

Reconstructed, since I did not really have notes { because I was concentrating
too hard on the 3 lectures on blow-up at MSRI!

(1) Odd K-theory
(2) Loop group
(3) Even K-theory
(4) Delooping sequence

Having de�ned the group G�1(N) and shown that it is open (and dense) in
	�1(N) we can de�ne the odd K-theory of a space simply as the set of smooth
equivalence classes of smooth maps. For the moment let us just consider a compact
smooth manifold X then a map

(3.1) f : X �! G�1(N) ,! 	�1(N)

is smooth if it is di�erentiable to in�nite order. For a map into a �xed topological
vector space this is quite a simple condition. Namely forget for that X is compact,
then we certainly know what a continous map is. Di�erentiability at a point �x 2 X
is the existence of the derivative, which is to be a continuous linear map,

(3.2) Df(�x) : T�xX �! 	�1(N)

such that in local coordinates near �x; for given � > 0 there exists � > 0 such that

(3.3) kf(x)� f(�x)�Df(�x)(x� �x)k(N) � �jx� �xj in jx� �xj < �:

Then we require that Df(�x) exists everywhere so de�nes a map

(3.4) Df : TX �! 	�1(N)

which we then require to be continuous and di�erentiable. Proceeding inductively
we can require the existence of higher derivatives by the same procedure, where
di�erentiablilty in the linear variables is trivially true. Thus the kth derivative is
required to be a map

(3.5) DkF (�x) : T�xX � T�xX � � � � T�xX �! 	�1(N)

for each point �x 2 X which is the derivative of the k � 1st derivative and which is
continuous in all variables.

Examples are immediately provided by smooth maps X �! GL(N;C) in the
usual �nite-dimensional sense, for any N because of the smooth inclusion

(3.6) GL(N;C) �! G�1(N):

So, having de�ned smoothness on compact manifold { including a compact
manifold with boundary, we then de�ne a smooth homotopy between two such
maps. If f0; f1 : X �! G�1(N) are smooth maps then they are said to be
smoothly homotopic if there exists a smooth map

(3.7) F : [0; 1]t �X �! G�1(N)

such that

(3.8) F (0; x) = f0(x); F (1; x) = f1(x) 8 x 2 X:
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De�nition 2. The odd K-theory of a compact manifold X is de�ned to be the set of
equivalence classes under smooth homotopy of smooth maps f : X �! G�1(N) :

(3.9) K�1(X) = ff : X �! G�1(N)g= � :
The same de�nition applies to compact manifolds with boundaries, or with corners.
For non-compact manifolds I will require the smooth maps to have `compact support',
meaning they reduce to the identity outside some compact set. The maps F in the
homotopies are then also require to be equal to the identity outside a compact set,
although of course the set is not itself �xed. I will use the slightly non-standard
notation

(3.10) K�1
c (X) = ff : X �! G�1(N); 9 K b X; f(x) = Id 8 x 2 X nKg= �

in this case.
Now, in fact K�1(X) is not just a set, but is an abelian group. That it is a

group is relatively clear. The commutativity of the group structure follows from
the approximation properties.

Proposition 5. Group composition in G�1(N) induces the structure of an abelian
group on K�1(X):

Proof. Given two smooth maps fi : X �! G�1(N); i = 1; 2; the product f1f2(x) =
f1(x)f2(x) is smooth in view of the smoothness of the product map on G�1(N):
To see that K�1(X) inherits a group structure from this, we need to check that
it is consistent with homotopy, i.e. is independent of the choice of representative.
However, that is obvious enough since if f 0i : X �! G�1(N); i = 1; 2 are two
other representatives of the same K-classes then, by de�nition, there homotopies
Fi : [0; 1]�X �! G�1(N); i = 1; 2 which are smooth and such that

(3.11) Fi(0; x) = fi(x); Fi(1; x) = f 0i(x):

Then, F1F2 is a smooth homotopy between the products, so the class [f1f2] 2
K�1(X) only depends on the classes [f1]; [f2] 2 K�1(X): This product makes
K�1(X) into a group since the inverse of [f ] is clearly [f�1] and the other group
conditions follow from G�1(N):

So, the remaing thing to show is that the product is commutative. To do so,
we show that each element [f ] 2 K�1(X) can be represented by a smooth map
f 0 : X �! GL(N;C) for some N (and hence for any larger N by stabilization).
This follows from the approximation result proved early. Namely, the image of f is
certainly compact (since X is assumed to be so) and thus

(3.12) �Nf(x) �! f(x) uniformly for x 2 X:
It follows from the openness of G�1(N) that for N large enough the smooth
homotopy F (t; x) = (1 � t)f(x) + t�Nf(x) takes values in G

�1(N) and so �Nf
also represents [f ] 2 K�1(X):

Now, having take two classes, represented by f and g: For N large enough, these
classes are represented by �Nf and �Ng which take values in GL(N;C): We can
also embed GL(N;C) in GL(2N;C) by stabilization and see that each of these classe
is represented by a map taking values in matrices like this

(3.13)

�� 0
0 IdN

�
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which are block N � N matrices. Now consider the following homotopy which is
really just `rotation by a 2� 2 matrix' for say f :
(3.14)

F (t; x) =

�
cos( 12�t) sin( 12�t)� sin( 12�t) cos( 12�t)

��
f(x) 0
0 IdN

��
cos( 12�t) � sin( 12�t)
sin( 12�t) cos( 12�t)

�
:

The outer matrices are inverses of each other (of course there are hidden IdN 's in
the 2� 2 matrices). At t = 0; F reduces to the suspended f but at t = 1 it is

(3.15)

�
Id 0
0 f(x)

�
:

Thus, f is homotopic to a map which commutes with g: The product is therefore
commutative. �

For the moment, I will not go into any detail, but these abelian groups (which
are written additively, so that the class [Id] = 0) behave like (and indeed form)
a cohomology theory. Thus, under a smooth map between compact manifold, h :
X �! Y; these odd k-groups pull back:

(3.16) h� : H�1(Y ) �! K�1(X); h�[f ] = [f � h]:
Check for yourself that this is well-de�ned.
As well as this bald de�nition of odd K-theory, which is only really justi�ed by

subsequent properties, I want to introduct even K-theory and also the delooping
sequence today. Even K-theory here will be de�ned in terms of the appropriate
loop group as a classifying space. Loops in general are just maps from the circle.
In the case of a group, for us G�1(N) one can restrict to smooth pointed loops,
which take the value Id at the base point, 1 2 S: In fact, for analytic reasons that
will appear later, it is best here to take an even smaller group the at-pointed loop
(smooth) loop group:

(3.17) G�1sus (N) = fb : S �! G�1(N); C1; b(1) = Id;
dkb

d�k
(1) = 0 8 k � 1g:

Thus these loops not only take the value Id at the point 1 2 S but all derivatives
vanish there as well, making the loop `at'. I use the abbreviation `sus' for this
group to indicate that it is obtained by `suspension' from G�1(N) in a way that
will be clari�ed below.

Now, I did not do the following in the lecture, because I did not have my notes!

Lemma 2. The suspended group G�1sus (N) is open and dense in the Fr�echet algebra
(3.18)

_C1([0; 2�]; 	�1(N)) = fb : [0; 2�]� �! 	�1(N);
dkb

d�k
b(�) = 0; � = 0; 2� 8 k � 0g:

Proof. So, to do this properly I need to show that

(1) The space (3.18) is a Fr�echet algebra
(2) There is a natural map from the group in (3.17) into it.
(3) The range is open (and in fact it is dense).

So, this is just like the relationship between 	�1(N) and G�1(N): �

Having de�ned this suspended group, we can set by direct analogy with the odd
case above

(3.19) K�2(X) = ff : X �! G�1sus (N); C1g= �
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with the equivalence relation being smooth homotopy in the same sense. Thus f0
and f1 are homotopic if there exists

(3.20) F : [0; 1]�X �! G�1sus (N);F (0; x) = f0(x); F (1; x) = f1(x) 8 x 2 Xg:
I need to expand a bit on the things I said in the later part of the lecture. Namely

there is a natural injection

(3.21) K�2(x) �! K�1(S�X)

which corresponds to the fact that an element of G�1sus (N) is already a smooth map
of S into G�1(N) and hence a map from X into G�1sus (N) can be regarded as a map
from S�X into G�1(N): In the lecture I did not prove injectivity but I did say:

Lemma 3. For any compact manifold there is a natural short exact sequence

(3.22) K�2(X) �! K�1(S�X) �! K�1(X):

Proof. �

The relationship between the circle S and the interval [0; 2�]; which already
appears (at the moment implicitly) above gives rise to the delooping sequence.
This comes above by cutting the circle at 1: So, consider in place of (3.17) the
group

(3.23) ~G�1sus (N) =

f~b : [0; 2�]� �! G�1(N); C1; ~b(0) = Id;
dk~b

dtk
(t) = 0; t = 0; 2� 8 k � 1g:

Thus, these are smooth maps from the interval, hence `open loops', which take the
value Id at 0 and which are at at both ends. However the value at the far end,
t = 2�; is not speci�ed. The topology on this group is of the same type as is (not
yet) discussed above.

Proposition 6. The natural maps, given by the identi�cation S = R=2�N with
fundamental domain [0; 2�] and by restriction to 2�; give a short exact sequence of
groups

(3.24) f1g // G�1sus (N) // ~G�1sus (N)
j2� // G�1(N) // f1g:

Proof. Identifying S = R=2�Z gives a smooth map [0; 2�] �! S; explicitly � 7�! ei�;
under which 0 and 2� are both identi�ed with 1 2 S: Thus, elements of G�1sus (N);
being maps on S; pull back to [0; 2�]: In fact, comparing (3.17) and (3.23) this

map is injective into ~G�1sus (N) and has range the subset on which ~b(2�) = Id : The

restricition map in (3.24) is just evaluation at � = 2� so exactness at ~G�1sus (N) also
follows. The surjectivity of this map follows from the connectedness of G�1(N):
In fact the argument above, by approximation gave a piecewise smooth curve from
any given point of G�1(N) to Id : To prove surjectivity we need to show that this
curve, which can be assumed to be from [0; 2�] can be chosen smooth and at at
the ends. If it is smooth, reparameterization makes it at. Namely consider a map
 : [0; 2�] �! [0; 2�] with is smooth and constant near the ends with  (0) = 0;
 (2�) = 2�: Then if b0 : [0; 2�] �! G�1(N) is smooth, b0 �  is smooth and at
at the ends. The same construction allows a piecewise smooth curve to be mad
smooth, by making it at at the special points. This completes the proof of the
exactness of (3.24). �
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Add some words about the contractibility of ~G�1sus (N) and why this might be
important.


