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3. LECTURE 3: K-GROUPS AND LOOP GROUPS
WEDNESDAY, 3 SEPTEMBER, 2008

Reconstructed, since I did not really have notes — because I was concentrating
too hard on the 3 lectures on blow-up at MSRI!
(1) Odd K-theory
(2) Loop group
(3) Even K-theory
(4) Delooping sequence

Having defined the group G—°°(N) and shown that it is open (and dense) in
¥~>°(N) we can define the odd K-theory of a space simply as the set of smooth
equivalence classes of smooth maps. For the moment let us just consider a compact
smooth manifold X then a map

(3.1) fiX — G®(N) = T~(N)

is smooth if it is differentiable to infinite order. For a map into a fixed topological
vector space this is quite a simple condition. Namely forget for that X is compact,
then we certainly know what a continous map is. Differentiability at a point £ € X
is the existence of the derivative, which is to be a continuous linear map,

(3.2) Df(z): Tz X — ¥~°(N)

such that in local coordinates near Z, for given § > 0 there exists € > 0 such that
(83)  |If(2) = £(&) = DF@) (@ = B)llw) <z — 7| in |2 — 7] < e.

Then we require that D f(Z) exists everywhere so defines a map

(3.4) Df:TX — ¥~(N)

which we then require to be continuous and differentiable. Proceeding inductively
we can require the existence of higher derivatives by the same procedure, where
differentiablilty in the linear variables is trivially true. Thus the kth derivative is
required to be a map

(3.5) DFF(Z) : Te X x TeX -+ x Te X — U™°°(N)

for each point £ € X which is the derivative of the k — 1st derivative and which is
continuous in all variables.

Examples are immediately provided by smooth maps X — GL(N,C) in the
usual finite-dimensional sense, for any N because of the smooth inclusion

(3.6) GL(N,C) — G~°(N).

So, having defined smoothness on compact manifold — including a compact
manifold with boundary, we then define a smooth homotopy between two such
maps. If fo, f1 : X — G~ *°(N) are smooth maps then they are said to be
smoothly homotopic if there exists a smooth map

(3.7 F:[0,1; x X — G *(N)
such that
(3.8) F(0,z) = fo(z), F(l,2) = fi(z) Vz € X.
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Definition 2. The odd K-theory of a compact manifold X is defined to be the set of
equivalence classes under smooth homotopy of smooth maps f: X — G~*°(N) :

(3.9) K YX)={f:X — G N}/ ~.

The same definition applies to compact manifolds with boundaries, or with corners.

For non-compact manifolds I will require the smooth maps to have ‘compact support’,
meaning they reduce to the identity outside some compact set. The maps F' in the
homotopies are then also require to be equal to the identity outside a compact set,
although of course the set is not itself fixed. I will use the slightly non-standard

notation

(3.10) K YX)={f:X —G =N IKeX, fz)=ldVreX\K}/ ~

C

in this case.

Now, in fact K~1(X) is not just a set, but is an abelian group. That it is a
group is relatively clear. The commutativity of the group structure follows from
the approximation properties.

Proposition 5. Group composition in G~°°(N) induces the structure of an abelian
group on K—1(X).

Proof. Given two smooth maps f; : X — G~°(N), i = 1,2, the product f; fo(z) =
fi(z) f2(z) is smooth in view of the smoothness of the product map on G~*°(N).
To see that K~1(X) inherits a group structure from this, we need to check that
it is consistent with homotopy, i.e. is independent of the choice of representative.
However, that is obvious enough since if f/ : X — G *°(N), i = 1,2 are two
other representatives of the same K-classes then, by definition, there homotopies
F;:]0,1] x X — G~*°(N), ¢ = 1,2 which are smooth and such that

Then, F1F5 is a smooth homotopy between the products, so the class [fif2] €
K~1(X) only depends on the classes [f1], [fo] € K~(X). This product makes
K~1(X) into a group since the inverse of [f] is clearly [f~!] and the other group
conditions follow from G~°°(N).

So, the remaing thing to show is that the product is commutative. To do so,
we show that each element [f] € K~'(X) can be represented by a smooth map
f'+ X — GL(N,C) for some N (and hence for any larger N by stabilization).
This follows from the approximation result proved early. Namely, the image of f is
certainly compact (since X is assumed to be so) and thus

(3.12) Iy f(z) — f(z) uniformly for z € X.

It follows from the openness of G~°°(N) that for N large enough the smooth
homotopy F(t,z) = (1 —t)f(z) + tlny f(z) takes values in G~*°(N) and so Iy f
also represents [f] € K }(X).

Now, having take two classes, represented by f and g. For N large enough, these
classes are represented by Il f and IIxg which take values in GL(N,C). We can
also embed GL(N, C) in GL(2N, C) by stabilization and see that each of these classe
is represented by a map taking values in matrices like this

(3.13) (E‘) IC?N>
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which are block NV x IV matrices. Now consider the following homotopy which is
really just ‘rotation by a 2 x 2 matrix’ for say f :
(3.14)
1 in(l 1 —sin(L
Fit,n) = ( cos(5t) sm(%ﬂ't)) <f(:z:) 0 ) (COS(%ﬂ't) sm(27rt)>‘

—sin(§7t) cos(zmt) 0 Idy) \sin(3wt) cos(§mt)

2
The outer matrices are inverses of each other (of course there are hidden Idy’s in
the 2 x 2 matrices). At t = 0, F reduces to the suspended f but at ¢ = 1 it is

Id 0
3.15 .
(319) (0 )
Thus, f is homotopic to a map which commutes with g. The product is therefore
commutative. O

For the moment, I will not go into any detail, but these abelian groups (which
are written additively, so that the class [Id] = 0) behave like (and indeed form)
a cohomology theory. Thus, under a smooth map between compact manifold, A :
X — Y, these odd k-groups pull back:

(3.16) h*:H YY) — K Y(X), h*[f] = [f o h].

Check for yourself that this is well-defined.

As well as this bald definition of odd K-theory, which is only really justified by
subsequent properties, I want to introduct even K-theory and also the delooping
sequence today. Even K-theory here will be defined in terms of the appropriate
loop group as a classifying space. Loops in general are just maps from the circle.
In the case of a group, for us G~°°(N) one can restrict to smooth pointed loops,
which take the value Id at the base point, 1 € S. In fact, for analytic reasons that
will appear later, it is best here to take an even smaller group the flat-pointed loop
(smooth) loop group:

_ _ d*b
(3.17) G X(N)={b:S— G °(N);C*, b(1) =1d, W(l) =0V k>1}.
Thus these loops not only take the value Id at the point 1 € S but all derivatives
vanish there as well, making the loop ‘flat’. 1 use the abbreviation ‘sus’ for this
group to indicate that it is obtained by ‘suspension’ from G~°°(N) in a way that
will be clarified below.

Now, I did not do the following in the lecture, because I did not have my notes!

—0o0

(N) is open and dense in the Fréchet algebra

Lemma 2. The suspended group G

(3.18)

300 — 00 —00 dkb
¢2([0, 2], ¥7*(N)) = {b: [0,27]p — ¥™(N); - ¢
Proof. So, to do this properly I need to show that

(1) The space (3.18) is a Fréchet algebra
(2) There is a natural map from the group in (3.17) into it.
(3) The range is open (and in fact it is dense).

So, this is just like the relationship between ¥~°°(N) and G~*°(N). O

b(#) =0, =0, 27V k > 0}.

Having defined this suspended group, we can set by direct analogy with the odd
case above

(3.19) K2(X)={f: X — G.2(N);C®}/ ~

sus
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with the equivalence relation being smooth homotopy in the same sense. Thus f
and f; are homotopic if there exists

(3.20) F:[0,1] x X — GLX(N); F(0,z) = fo(z), F(l,2) = fi(z) Vx € X}.

sus

I need to expand a bit on the things I said in the later part of the lecture. Namely
there is a natural injection

(3.21) K 2(z) — K (S x X)

which corresponds to the fact that an element of G;,2°(N) is already a smooth map
of S into G~*°(N) and hence a map from X into G;°(N) can be regarded as a map

from S x X into G7°°(N). In the lecture I did not prove injectivity but I did say:
Lemma 3. For any compact manifold there is a natural short exact sequence
(3.22) K2(X) — K 'S x X) — K '(X).

Proof. O

The relationship between the circle S and the interval [0,27], which already
appears (at the moment implicitly) above gives rise to the delooping sequence.
This comes above by cutting the circle at 1. So, consider in place of (3.17) the

group
(3.23) G.2(N) =

k

{b:1]0,27]y — G~=(N);C>, b(0) = Id, %(t) =0,t=0,2rVk>1}.

Thus, these are smooth maps from the interval, hence ‘open loops’, which take the
value Id at 0 and which are flat at both ends. However the value at the far end,
t = 2m, is not specified. The topology on this group is of the same type as is (not
yet) discussed above.

Proposition 6. The natural maps, given by the identification S = R/27N with
fundamental domain [0,27r] and by restriction to 2w, give a short exact sequence of
groups

(20 {1} G () = G () — = G () —> {1},

Proof. Identifying S = R/27Z gives a smooth map [0, 27] — S, explicitly 8 — €%,
under which 0 and 27 are both identified with 1 € S. Thus, elements of G °(N),
being maps on S, pull back to [0,27]. In fact, comparing (3.17) and (3.23) this
map is injective into G5,2°(N) and has range the subset on which b(27) = Id. The
restricition map in (3.24) is just evaluation at = 27 so exactness at G5,°(N) also
follows. The surjectivity of this map follows from the connectedness of G~*°(N).
In fact the argument above, by approximation gave a piecewise smooth curve from
any given point of G~*°(N) to Id. To prove surjectivity we need to show that this
curve, which can be assumed to be from [0, 27] can be chosen smooth and flat at
the ends. If it is smooth, reparameterization makes it flat. Namely consider a map
¥ 1 [0,27] — [0,27] with is smooth and constant near the ends with ¢ (0) = 0,
¥(2m) = 2m. Then if ¥ : [0,27] — G~°°(N) is smooth, b’ o ¢ is smooth and flat
at the ends. The same construction allows a piecewise smooth curve to be mad
smooth, by making it flat at the special points. This completes the proof of the
exactness of (3.24). O
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Add some words about the contractibility of G;2°(N) and why this might be
important.



