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33. Lecture 30: Topological index
Wednesday, 12 November, 2008

Today I want to go through the de�nition of the topolical index map, indt; for
a �bration and then start the proof of the equality

(33.1) indt = (��)
(sl)
!

where the notation on the right indicates that this is the (direct) push-forward map
in K-theory produced by semiclassical quantization.

The topological index is de�ned following a construction of Gysin. The basic
idea here is to `trivialize' the topology of a given �bration of compact manifolds

(33.2) Z M

�

��
Y

by embedding into a trivial �bration.

Proposition 48. For any �bration of compact manifolds, (33.2), there is an embedding

as a sub�bration of a product i :M �!M 0 = RN �Y �R�! Y giving a commutative
diagram

(33.3) Z M
�

  A
AA

AA
AA

A
� � i // M 0

�L //

�R

~~||
||
||
||

RN

Y:

After stabilization, taking the product with some RM ; any two such embeddings are
homotopic.

Proof. Any compact manifold, such as M; can be embedded in a Euclidean space
of su�ciently high dimension { indeed the dimension can be estimated quite well.
Here we do not care about the codimension of the embedding. To do this, take
a �nite covering of M by coordinate neighbourhoods Ui; i = 1; : : : ; k; on each of
which the coordinate map is Fi : Ui �! Rn; n = dimM: Then take a partition of
unity, �i; subordinate to the cover and consider the smooth map
(33.4)

i0 :M �! R
nk; i(p) =

X
i

ei�iFi(p); ei : R
n �! R

nk being the ith embedding.

This is a globally smooth map which is injective and has everywhere injective
di�erential. It is therefore a global embedding. To get the embedding i giving
(33.3) take i = i0 � � :M �! RN � Y where N = nk:

The stable homotopy equivalence we really do not need, but let me indicate
how to do it anyway. First, we can always increase the dimension N by adding
an extra factor of Rp to M 0 and extending the map i by mapping M to 0 in this
factor. Given two embeddings, stabilize them to have image spaces of the same
dimension, and then stabilize further by adding an extra factor of the stabilized
�bre dimension, RN ; to each map, interpreting the �rst as mapping into the �rst
factor and the second into the second factor. Now simply use the standard rotation
between the factors of RN to deform one map into the other { checking of course
that the conditions persist. �
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Having embedded � as a sub�bration of a trivial �bration we now use the collar
neighbourhood theorem.

Proposition 49. The image i(M) � RN � Y of an embedding (33.3) has an open
neighbourhood 
 with closure 
 � RN � Y a compact manifold with boundary
which �bres over i(M) as a radially compacti�ed (real) vector bundle and gives a
commutative diagram

(33.5) Rq 


�

��

� � //
RN � Y

�R

����
��
��
��
��
��
��
��
�

i(M)

0�

UU

�

��
Y:

Proof. This really is just the collar neighbourhood theorem, perhaps with a little
smoothness in parameters. Namely, an embedded submanifold, such as i(M) �
RN � Y has an open neighbourhood which �bres over the manifold and in such a
way that the resulting bundle is di�eomorphic to an open neighbourhood of the zero
section of a vector bundle over i(M) with the �bration being the bundle projection.
Given this we can easily shrink the neighbourhood a little so that it is the image of
a closed ball bundle, and call this 
 and the projection �: The only thing to check
is that we can make this bundle structure over i(M) compatible with �R; meaning
that �R factors through it. This is just the requirement that the vector bundle
structure � projects the intersection of ! with RN �fyg to the �bre Zy above y: To
ensure that each of the �bres of 
 over i(M) is contained in one of the �bres RN

it is enough to recall that one proof of the collar neighbourhood theorem proceeds
through the exponential maps of any Riemannian metric, in the normal directions
to the embedded submanifold. In fact it is enough to use a bundle of directions
complementary to the tangent bundle. If the metric is taken to be the product
metric on RN � Y and the bundle of initial points for the exponential map to be
the normals to Zy within the �bre then the resulting map � respects the �bres. �

Note that the vector bundle structure de�ned by � on a neighbourhood is
necessarily isomorphic to the normal bundle to i(M) in RN � Y and hence to
the bundle of normals to the �bres Zy in R

N : This is later important when we look
at the Chern character of the index, i.e. the Atiyah-Singer index formula.

Consider what (33.5) shows for the �bre cotangent bundle T �(M=Y ) for the
original �bration �: In the construction above, 
 has been identi�ed smoothly with
the total space of a radially compacti�ed vector bundle U �! M; if we use i
to identify M with i(M): This means that the �bre cotangent bundle of 
; as a
�bration over i(M) is identi�ed with

(33.6) T �(
=Y ) ' T �(M=Y )� (U � U�) = T �(M=Y )�W
as vector bundles over M: Here W = U � U� has a natural symplectic structure
given in terms of the pairing of U and its dual U�: Thus, by the Thom isomorphism

(33.7) K0
c(T

�(M=Y )) ' K0
c(T

�(
=Y ))

where we regard W as a symplectic vector bundle over T �(M=Y ):
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Now, 
 ,! RN � Y is an open subset, with consistent �bration. Thus the �bre
cotangent bundle also embeds as an open subset

(33.8) T �(
=Y ) ,! T �((RN � Y )=Y ) = T �(RN )� Y = R
2N � Y:

Thus compactly supported K-theory on the open subset is mapped into compactly
supported K-theory of the larger open set

(33.9) � : K0
c(T

�(
=Y )) �! K0
c(R

2N � Y ):
Finally we can apply Bott periodicity to get a composite map which can be written
out in steps:

(33.10) K0
c(T

�(M=Y ))
Thom //

indt

��

K0
c(T

�(
=Y ))

�

��
K0(Y ) K0

c(R
2N � Y )

Bott
oo

but in principle might depend on the embedding.

Exercise 32. Show that this topological index map does not change under stabilization
by additional Euclidean factors in the embedding and also under homotopies of the
embedding. Hence conclude that it is in fact well-de�ned.

I do not feel the need to show the independence of the choice of embedding in
the de�nition of indt because we can show (33.1) without using this. Since the map
on the right, given by semiclassical quantization, knows nothing of the embedding
this will show the naturality of the topological index as well.

Theorem 13. The identity (33.1) between semiclassical push-forward and topological
index maps holds for any embedding of M as a sub�bration of a trivial �bration as
in (33.3).

Proof. The strategy is to follow semiclassical quantization around the diagram
(33.10) where we have to be a bit careful of some of the identi�cations that have
been made. So we need to check that all the maps in the following diagram are
well-de�ned and all the triangles commute:

(33.11) K0
c(T

�(M=Y ))

qsl

��

K0
c(

~W=T �(M=Y ))

i

��
qsl

||yy
yy
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yy
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qsloo

K0
c(T

�(
=Y )

�

��

qsl

vvlll
lll

lll
lll

ll

K0(Y ) K0
c(R

2N � Y )qsloo

Perhaps unhelpfully there are �ve maps labelled qsl and I have added an extra
step compared to (33.10) corresponding to the identi�cation of the normal neighbourhood
of i(M) with the normal bundle. Thus the map on the left is semiclassical quantization
(of involutions) on the �bres of a �bration. The top map is isotropic quantization
(in the same general sense) for a symplectic vector bundle over a base { in this case
the base is T �(M=Y ): This we know gives the Thom isomorphism so gives the top
arrow in (33.10) after reversal. The top sloping map is the combination of these {
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isotropic on the �bres of a �bration over a �bre-bundle of manifolds. We need to
check that this is well-de�ned and gives a commutative �rst triangle. As you can
imagine at this point, the commutativity is some double-adiabatic argument but
slightly di�erent to what we did before since one part is a compact manifold and
the other is a symplectic vector bundle { before they were both bundles. There is
a more signi�cant di�erence in that this is not the �bre product of two �brations
but a double �bration, one is above the other. This means the double-adiabatic
algebra needs to be a little di�erent. The second sloping arrow is somewhat new. I
mentioned this at some point, but this is the `same' as the left arrow except that now
we have a �bration where the �bres are compact manifolds with boundary. Once
this quantization map is de�ned we need to show commutativity of the triangle
above it, meaning that the `isotropic' quantization can be replaced by the `manifold'
quantization (hence coordinate invariant) in this case. Again I mentioned earlier
that this was pretty obvious, but it does need to be done. Finally the bottom qsl
is again adiabatic quantization. So once again the commutativity here is the key
with the Bott periodicity map isotropic but the one above it not de�ned precisely
this way. �


