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29. Lecture 26: Semiclassical push-forward for fibrations
Monday, 3 November, 2008

At this point I want to start the transition to geometric settings and in particular
the Atiyah-Singer index theorem. This can be paraphrased in the form: `The push-
forward in K-theory for �brations is realized by the index of pseudodi�erential
operators' { although this is slightly misleading since the push-forward is from the
�bre-cotangent bundle of the �bration. That is what I want to examine today.

So, let me start with a single compact manifold Z: In fact I will allow it to be
a manifold with corners later, but for the moment let us require that it not have a
boundary. The basic commutative object is C1(Z); the space of smooth functions
on Z: I will also assume that you know about �kZ; the bundle of k-forms on Z:

One thing we need to be able to do is to integrate, invariantly. Given the
transformation law for integrals under coordinate changes we can only integrate, at
least in the usual sense, objects which transform with a factor of the absolute value
of the Jacobian unless we assume that the manifold is oriented. The latter works
because we then only make coordinate changes with positive Jacobian matrices
anyway and volume forms v 2 C1(Z; �nZ); n = dimZ; transform with a factor of
the Jacobian:-

(29.1) F �(dz1 ^ � � � ^ dzn) = det

 
@Fi(z)

@z0j

!
dz01 ^ � � � ^ dz0n; zj = Fj(z

0):

Here the �bre at a given point �nzZ can be viewed as the space of totally antisymmetic
multilinear forms

(29.2) TzZ � TzZ � � � � TzZ �! C or R:

In general �kzZ is a contraction for �k(T �z Z) and alternatively on can identify �nzZ
as the space of linear functions on, i.e. the dual of, �n(TzZ): The latter is a one-
dimensional vector space so we can apply the self-proving

Lemma 34. For any one dimensional real vector space L the space of absolutely
homogoneous functions of degree �

(29.3) f : L n f0g �! R; f(tv) = jtjf(v) 8 t;2 R n f0g; v 2 V n f0g
is a well-de�ned one-dimensional vectors space, denoted 
�V �; or 
V � when � = 1:

It follows easily enough that the �bres 
(�nzZ) form a smooth one-dimensional
vector bundle 
Z over Z: This is the space of densities.

Exercise 23. If you have not done this before, check that the integral is well-de�ned
by reference to local coordinates and a partition of unity:

(29.4)

Z
Z

: C1(Z; 
Z) �! R or C:

Note that if v 2 C1(Z; �nZ) then jvj 2 C0(Z; 
Z) can be integrated and if Z
is oriented and v > 0 this gives the integral back again (and in that case jvj 2
C1(Z; 
Z)):

Now consider the product, Z1 � Z2; of two compact manifolds. The density
bundle on Z2 can be pulled back to the product, where we can again denote it

Z2 or �

�
R
 where �R : Z1 � Z2 �! Z2 is the projection and we drop, as obvious,
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the reminder that the bundle comes from the second factor. Fubini's theorem then
shows that

(29.5)

Z
Z2

: C1(Z1 � Z2;�R
) �! C1(Z1):

Exercise 24. Try to write down a clean proof of the existence, and natural properties,
of the integration map

(29.6)

Z
Z2

: C1(Z1 � Z2;��LE 
 �R
) �! C1(Z1;E); �L : Z1 � Z2 �! Z1

being the projection onto the �rst factor and E being any vector bundle over Z1:

We will make extensive use of smoothing operators. Let me set these up �rst
for any pair of compact manifolds Zi; i = 1; 2 with complex vector bundles Ei over
them. Namely a smoothing operator is a continuous linear map

(29.7) A : C1(Z2;E2) �! C1(Z1;E1)

which is given by the generalization of (29.6). Namely there must exist a Schwartz
kernel A 2 C1(Z1 � Z2; Hom(E2; E1)
 ��R
) such that

(29.8) Au(z1) =

Z
Z2

A(z1; z2)u(z1)

Here Hom(E2; E1) is a bundle over Z1 � Z2 which has �bre at a point (z1; z2) the
linear space of linear maps T : (E2)z2 �! (E1)z1 { it is unfortunate about the
reversals here. Standard linear algebra gives a natural isomorphism

(29.9) Hom(E2; E1) = E1 � (E2)
�:

Then (29.8) reduces to (29.6) since it means we `contract' in E2 { or apply the
homomorphism { to get

(29.10) A(z1; z2)u(z2) 2 (E1)z1 
 
(Z2)z2

and then we can integrate.

Exercise 25. I have not discussed the Fr�echet topology on C1(Z;E) for a vector
bundle over Z { it is basically the same as the earlier spaces such as S(Rn): In fact
it is isomorphic to this space! You might wish to go through the topology carefully
(and think about the isomorphism which will appear a little later).

For the moment we are most interested in the case Z1 = Z2 = Z and E1 = E2 =
E; then Hom(E) = Hom(E;E) is a bundle over Z2: The `usual' homomorphism
bundle, hom(E) = hom(E;E) is a bundle over Z which is the restriction of Hom(E)
to the diagonal.

Lemma 35. The space C1(Z2; Hom(E)
��R
) is an associative, non-commutative,
Neumann-Fr�echet algebra, denoted 	�1(Z;E) under the operator product

(29.11) AB(z; z0) =

Z
Z

A(z; z00)B(z00; z0):

Proof. I leave it to you to check that similar arguments as in the isotropic case
show that the product is continuous and that it has the corner property. For the
moment this means that with seminorms (based on continuous derivatives in local
coordinates and trivializations)

(29.12) kA1A2A3kk � CkA1kkkA2k0kA3kk:
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This again is Fubini's theorem. It follows that for A in a neighbourhood of the zero
in 	�1(Z;E) the operator Id+A is invertible with inverse Id+B; B 2 	�1(Z;E):

�

Exercise 26. Let G�1(Z;E) be the corresponding Fr�echet group { it is in fact an
open dense subset of 	�1(Z;E) with the `drop the Id' identi�cation. I invite you
to check that many things we have done previously hold for this group. It has a
determinant function, admits �nite rank approximation and it is a classifying space
for K1 : I will write down the Chern forms and so on later.

This is our replacement in the geometric setting for 	�1(Rk;CN ): Moreover
we can generalize at least some of the things we have done before. First we can
introduce the corresponding semiclassical algebra. The scaling here is slightly
di�erent to the isotropic case, but this does not in the end make very much
di�erence. Of course we immediately know what smooth dependence on a parameter,
even one in a manifold, means.

For the semiclassical calculus we want to consider the appropriate subspace of
kernels

A� 2 C1((0; 1]; 	�1(Z;E) = C1((0; 1]� Z2; Hom(E)
 ��R
)
where I am even too lazy to write the extra pull-backs from Z2 to (0; 1]� Z2: So,
of course the crucial thing is to specify exactly what happens as � # 0: We demand
two things of the kernels A�: First assume E = C :

If K � Z2 is closed and K \Diag = ; then
A� ! 0 rapidly with all derivatives as � # 0 on K:(29.13)

If U � Z is a coordinate chart then 9 FU 2 C1([0; 1]� U � Rn) s.t.

A�(z; z
0) = ��nFU (�; z;

z � z0
�

)jdz0j on (0; �0(K))�K �K; �0(K) > 0 8 K b U:

(29.14)

So, there are two main changes compared to the Euclidean case. First we need to
specify the rapid vanishing away from the diagonal { this is true in the Euclidean
case anyway { since we do not have global coordinates. Secondly, the scaling is
di�erent in (29.14) { it simply does not make sense to scale the base variable since
they lie in U: I have also not made the `Weyl' change from z to (z + z0)=2 but this
is only because I would have to put a double covering { since (z+ z0)=2 is not in U
in general.

Exercise 27. Work out the wording for (29.14) in terms of Weyl coordinates.

This is a seriously overspeci�ed de�nition. Even so, this would not make much
sense if it wasn't really local:-

Exercise 28. Check that (29.14) for all coordinate charts is equivalent to the same
de�nition for a covering by coordinate charts, given (29.13). Check at the same
time that the bundle E can be put back in where in (29.14) U should be such that
E is trivial over it and then f should take values in M(N;C) where N is the rank
of E:

Proposition 43. The semiclassical families form an algebra under operator composition,
denoted 	�1sl (Z;E) with a well-de�ned symbol map giving a multiplicative short
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exact sequence

(29.15) �	�1sl (Z;E) �! 	�1sl (Z;E)
�sl�! S(T �Z; hom(E));

where in any local coordinate system

(29.16) �sl(z; �) =

Z
Rn

e�iZ��FU (0; z; Z):

Proof. Use the preceeding exercise to reduce the problem to local coordinates and
then check directly by changing variable as we did before. Most importantly, check
that the leading part of FU ; FU (0; z; Z)jdZj is actually a well-de�ned density on
TzZ for each z 2 Z; so (29.16) makes sense and gives a well-de�ned function on the
cotangent bundle { the density is absorbed by the Fourier transform. �

Digression 1. I am pretty unhappy having to do local coordinate proofs like the
one above { that I have not done. So, I now resort to global de�nititons of things
like the semiclassical calculus described above, where the composition and symbolic
properties become geoemtrically complelling. In this case it is convenient to use the
notion of real blow up. Since I do not have the time to discuss this in the course I
have not used it, although I have come close. You could look at the notes from my
introductory lectures at MSRI this year but it can also be found in lots of other
places. So, let me just assume you know what blow up is. The manifold we want
to consider, a manifold with corners, is by de�nition

(29.17) Z2
sl = [[0; 1]� Z2; f0g �Diag]; �sl : Z

2
sl �! [0; 1]� Z2:

That is, it is the kernel and parameter space, blown up at the diagonal at � = 0:
This is a manifold with corners with a `front face' corresponding to the blow
up { it is a bundle over f0g � Diag which is naturally isomorphic to TZ; the
radial compacti�cation of the tangent bundle of Z: The other, or `old', boundary
hypersurface is the closure of the preimage of f0g � (Z2 n Diag): It is naturally
di�eomorphic to [Z2; Diag]; the product with the diagonal blown up. The intersection
of these two faces, the corner, is naturally the sphere bundle, the boundary of the
radial compacti�cation of the tangent bundle of Z:

The blow-down map can be composed with the projections to get, for instance

(29.18) ~�R = �R � � : Z2
sl �! Z and ~� = �Z2 � � : Z2

sl �! Z2

which are also smooth.

Proposition 44. The kernels of semiclassical operators, forming 	�1sl (Z;E) can
be identi�ed naturally (by continuity from � > 0) with

(29.19)
�
A 2 (��(�))�nC1(Z2

sl;
~��Hom(E)
 ~��R
);

( ~���)nA � 0 at ��1(f0g � (Z2 nDiag)	:
Thus, except for the power of � (which can be hidden in the density if one

prefers) the kernels are smooth on Z2
sl. The semiclassical symbol then comers from

the restriction of the kernel to the front face. If the � factor is absorbed into the
density, this is naturally a Schwartz function on TZ with values in the �bre density.
The Fourier transform along the �bres then gives the function �sl(A): The exactness
of (29.15) is then just the fact that vanishing at the front face produces a similar
kernel with an extra factor of � { since the kernel vanishes rapidly at the `old' face
by assumption.
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The product itself can be usefully viewed in this picture too. I may put in a
description here if I have an idle moment!

So, all this is setting up the semiclassical calculus of smoothing operators on
a compact manifold. Naturally we want to go further and the main immediate
extension is to operators on the �bres of a �bration. This is the setting of the
Atiyah-Singer theorem.

Recall that a smooth map � : M �! Y between manifolds (compact or not) is
a �bration if there exists another manifold Z such that each point �y 2 Y has an
open neighbourhood U � Y corresponding to which there is a di�eomorphism FU
giving a commutative diagram

(29.20) ��1(U)
FU //

�

##G
GG

GG
GG

GG
U � Z

�L

||yy
yy
yy
yy
y

U:

Exercise 29. Recall that the implicit function theorem shows that if M and Y
are compact and connected then the condition that � be a submersion, that its
di�erential be surjective at each point of M; implies that it is a �bration. The
connectedness conditon can be dropped with minor consequences. Dropping compactness
is more serious.

If Y is connected, or by �at in the de�nition above, the manifold Z is �xed, up
to di�eomorphism. I will use the notation

(29.21) Z M

�

��
Y

for a �bration and denote the �bre above y 2 Z by Zy = ��1(y): There is no speci�c
map from Z to a given �bre, but such a di�eomorphism does exist by hypothesis
from (29.20).

Now, if I am to get this far I will have to be quick. Let me just say, the
coordinate invariance of the smoothing algebra and the semiclassical algebra on a
�xed manifold, Z; means that it can be transferred to the �bres of � in such a way
that we know what

(29.22) 	�1(M=Y ;E) and 	�1sl (M=Y ;E)

are, where E is a bundle over M (not necessarily coming from a bundle over Y ):
They are the spaces of smooth sections of bundles of (families of) operators. In the
�rst case we get for each y 2 Y an element of 	�1(Zy;Ey) where Zy = ��1(y) and
Ey is the restriction of E to this submanifold (which of course is di�eomoprhic to
Z): In the second case we get a semiclassical family, an element of 	�1sl (Zy;Ey):
Enough said, well not quite. We need a little of the geometry of �brations.

The pull-back of the cotangent bundle of the base ��T �Y �! T �M is a subbundle
and the quotient is denoted

(29.23) T �(M=Y ) = T �M=��T �Y; � : T �(M=Y ) �!M:

Its �bre can be thought of as the space of �bre-di�erentials at that point of M:
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We will let G�1(M=Y ;E) be the group of invertibles in Id+	�1(M=Y ;E) and
H�1(M=Y ;E) the space of involutions of the form 1+a; a 2 	�1(M=Y ;C2
E)
where 1 is the usual 2� 2 matrix.

One of the more serious generalization of the isotropic picture that we need is

Proposition 45. If Y is compact and (29.21) is a �bration with compact �bres (of
positive dimension) then for any bundle E over M there are natural identi�cations

(29.24)
�0(G

�1(M=Y ;E)) = K1(Y );

�0(H�1(M=Y ;E)) = K0(Y ):

To prove this I will rely on a construction that I will not give in the lectures.
Not that it is hard, just that it is not so amusing.

Proposition 46. For any �bration, (29.21), with compact total space and any
complex vector bundle E there is a sequence of elements �j 2 	�1(M=Y ;E) which
are projections, �2

j = �j and are such that A�j ! A and �jA ! A; as j ! 1;
for each A 2 	�1(M=Y ;E):

Proof of Proposition 45. We can retract onto operators acting on sections of the
range of the bundle �j ; for j large enough, and then stabilize to get elements of

K1(Y ) or K0(Y ) and conversely. I should do this properly, but it is similar to the
corresponding proof for a symplectic bundle, once we have the �j 's. �

This again means that the twisting by the �bration does not matter and extends
the claims made above that G�1(Z;E) is classifying for odd K-theory.

Finally then after wading through all this stu�, we get a theorem which should
be almost self-proving at this stage. Let GL(E) be the bundle of invertible linear
maps on the �bres of E and H(E) be the bundle with �bre the involutions on the
�bres of C2 
 E:
Theorem 11. In case the base and �bre of the �bration (29.21) is compact, the
semiclassical symbol restricts to give surjective maps with connected �bres

(29.25)
G�1sl (M=Y ;E) �! S(T �(M=Y );��GL(E))

H�1sl (M=Y ;E) �! S(T �(M=Y );��H(E)):
Complementing E to a trivial bundle and using the standard stabilizations maps
gives

(29.26)
�0(S(T �(M=Y );��GL(E))) �! K1

c
(T �(M=Y )) and

�0(S(T �(M=Y );��H(E))) �! K0
c
(T �(M=Y ))

which cover the images as E varies and then, using (29.24), de�ne push-forward
maps

(29.27)
psl : K

1
c
(T �(M=Y )) 3 [�sl(A)] 7�! [R�=1(A)] 2 K1(Y );

psl : K
0
c
(T �(M=Y )) 3 [�sl(A)] 7�! [R�=1(A)] 2 K0(Y ):


