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2. Lecture 2: Finite rank approximation
Friday, 29 August, 2008

From last time recall the de�nition of the sequential version of the `smoothing
group'

(2.1) G�1(N) =
�
a 2 	�1(N); 9 b 2 	�1(N) satisfying

(Id+a)(Id+b) = Id+a+ b+ ab = Id = (Id+b)(Id+a)
	
:

It is not quite obvious here that the existence of the right inverse, the �rst identity,
implies the existence of a left inverse as in the second identity, and the equality
of the two. In fact this is true as we will check later, but for the moment we just
require the existence of a two-sided inverse.

The main thing for today is to see that it satis�es variants of the `obvious'
properties of GL(N;C):

Proposition 2. The group G�1(N) is an open, dense, (path) connected subset of
	�1(N) in which the product and the map a 7�! b = (Id+a)�1�Id are continuous.

To prove these results we will use �nite dimensional approximation, so really the
same stabilization that was the reason for looking at a group like this in the �rst
place. Let �k be the projection on the space 	

�1(N) which `cuts o� the tails' after
k terms:

(2.2) (�k(a))ij =

(
aij if 1 � i; j � k
0 if i > k or j > k:

Clearly �k : 	�1(N) �! 	�1(N) is linear and continuous { in fact it decreases
each of the norms

(2.3) k�kak(N) � kak(N)

and �2
k = �k:

Proposition 3. A set K � 	�1(N) is precompact (has compact closure) if and
only if each of the norms k � k(N) is bounded on K and on such a set

(2.4) k�ka� ak(N) ! 0 uniformly as k !1 8 N:
Proof. Note that the di�erence a��ka has all entries with i; j � k vanishing. Thus
from the de�nitions of the norms,

(2.5) ka��kak(N) � k�1kak(N+1)

since at least one of i; j � k on all non-zero elements. This shows that (2.4) follows
from the assumption that all the norms are bounded on K: This in turn implies
sequential precompactness (which is precompactness for a metric space) of a set
satisfying these conditions by the usual diagonalization process. That is, given a
sequence a(n) in K; �ka(n) is in a bounded subset of a �nite dimensional space, so
we can extract successive subsequences such that each �ka(nk) converges. Passing
to the diagonal subsequence and relabelling it as a(n) it follows that we may assume
that �ka(n) �! �ka for each k and some �xed double sequence aij : It follows from
(2.5) that in fact a 2 	�1(N) and that a(n) converges to it in 	�1(N):

The converse is similar, maybe a little easier, and anyway of less interest in what
follows, so I leave it as an exercise. �
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To prove that G�1(N) is open we will also use another property of 	�1(N):

Lemma 1. The algebra 	�1(N) has the `corner property' that for any a; b; c 2
	�1(N) and any N;

(2.6) kabck(N) � Ckak(N)kbk(1)kck(N); N � 1:

Here C is actually independent of N but that is not really the point. As you will
see when we get to the geometric realizations of this setup, (2.6) corresponds to the
`smoothing property' of these operators

Proof. This is just the same sort of estimate as before:

(2.7) iN jnj(abc)ij j �
X
l;m

iN jailjjblmjjN jcmj j � (
X
l;m

l�2m�2)kak(N)kbk(1)kck(N):

�

Proof of Proposition 2. So, we want to show that for each point a 2 G�1(N) there
is an open ball centred at a with respect to one of the norms which is contained
in G�1: We will use a Neumann series argument. Clearly the group product is
continuous, since it is (a; b) 7�! a + b + ab: Thus, if Id+a 2 G�1 and U is a
neighourhood of Id 2 G�1 then (Id+a)U is a neighbourhood of Id+a: Thus it
su�ces to show that

(2.8) fa 2 	�1(N); kak(1) < 1g � G�1(N):

To see this consider the Neumann series for the inverse

(2.9) (Id+a)�1 = Id+

1X
j=1

(�1)jaj :

This is Cauchy with respect to the norm k � (1) provided kak(1) < 1: Of course,
to get (2.8) we need to show that it is Cauchy with respect to all the norms, since
that implies that it is Cauchy with respect to the distance. This is where Lemma 1
comes in, since if kak(1) = c < 1 then from (2.6)

(2.10) kaj+2k(N) � Ckak2(N)c
j

which implies that the sequence is Cauchy with respect to each k � k(N): Thus the
sequence in (2.9) does indeed converge. The limit is a two-sided inverse to Id+a:

The continuity of the inverse map follows from this argument and the continuity
of the product is clear.

Next we want to show that G�1(N) is connected. Here we can use the �nite
dimensional approximation to good e�ect. Since we know that �ka! a as k !1
and now that G�1(N) is open, it follows that ta + (1 � t)�ka 2 G�1(N) for
t 2 [0; 1] if k is large enough. Thus Id+�ka 2 G�1(N) is connected to a: From the
uniqueness of the inverse in a group, Idk�k +�ka 2 GL(k;C) when thought of as a
�nite dimensional matrix. Here we are using the fact that we can embed GL(k;C)
in G�1 by subtracting the identity in GL(k;C) from it, extending the resulting
matrix as zero for i; j > k and then adding the formal identity to it afterwards.

So, the connectedness of G�1(N) follows from the connectedness of each of the
GL(k;C) (well, we only need this for k large enough). This of course is well known.
One way to see it is to use a little spectral theory. If a 2 GL(k;C) then aa�

is positive de�nite, in particular is selfadjoint with positive eigenvalues, so has a
positive square root and de�ning u by a = (aa�)

1
2u makes u unitary. Moreover the
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curve t(a�a)
1
2 + (1 � t) Idk�k connects the positive de�nite factor to the identity

through positive, hence invertible, elements. Thus it is enough to show that U(k);
the group of unitary matrices is connected. The spectral decomposition of u gives an
orthonormal basis of eigenvectors on each of which u acts as ei� for some � 2 [0; 2�):
Rotating this to 1 on each eigenspace connects u to the identity. Thus each U(k)
and hence G�1(N) is connected. �

As for k � k matrices, it is nice to know that invertibility is determined by
the non-vanishing of a `character', which is to say a multiplicative map de�ned on
	�1(N) in the sense that

(2.11) det ((Id+a)(Idb)) = det(Id+a) det(Id+b):

This is often called the `Fredholm determinant'.

Proposition 4. There is an entire analytic function

(2.12) 	�1(N) 3 a 7�! detFr(a) = det(Id+a) 2 C
such that G�1 is the complement of its null space and if a = �ka then

(2.13) detFr(a) = det(Id+a) = det(Idk�k +�ka)

reduces to the usual determinant.

So the proof I have in mind is the �rst use I will make of di�erential forms on
G�1: There are other, possibly simpler, proofs but this one has the virtue of linking
up with the Chern classes later on { in fact that is what we are discussing here, the
�rst odd chern class.

I will therefore launch into a brief discussion of analysis on G�1(N): This is
fairly straightforward since G�1(N) is open in 	�1(N); it is therefore a complete
metric space, so we certainly know what continuity means. For di�erentiability I
will take a strong de�nition { there are lots of possibilities on Fr�echet manifolds
but many of them coincide here. So, �rst note that as an open set of a linear space,
the tangent space at any point can be identi�ed with 	�1(N) itself. For a function
f : U �! C where U � 	�1(N) is open, to be di�erentiable at a we will require
the existence of a continuous linear map Df(a) : 	�1(N) �! C such that

(2.14)

f(a+ b)� f(a)�Df(a) � b = o(kbk(N)) for N su�ciently large

()
9 N such that 8 � > 0 9 � > 0 for which

kbk(N) < � =) kf(a+ b)� f(a)�Df(a) � bk(N) � �kbk(N):

Note that ifN is large enough and � > 0 is small enough then a+b 2 U if kbk(N) < �:

The special properties of G�1(N) allow us to require as part of the de�nition of
once continuous di�erentiability, which or course requires di�erentiability at each
point, that (2.14) hold everywhere with the same N and that the derivative

(2.15) Df : U �	�1(N) �! C be continuous with respect to k � k(N)

on both factors. This does not make much sense unless U contains open k�k(N)-balls

around each of its points { which of course is the case for G�1(N):


