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27. Lecture 24: Thom isomorphism
Wednesday, 29 October, 2008

Reminder. Last time I talked a little about symplectic and complex vector bundles
and recalled that on a complex vector bundle with hermitian structure one has a
well-de�ned smooth family of harmonic oscillators on the �bres.

For a symplectic vector bundle over a manifold X we have shown that there is a
well-de�ned non-commuatative product given on C1([0; 1];S(W=X)); the space of
smooth functions on [0; 1]� qW which are Schwartz on the �bres, see (20.4) for the
explicit formula. Thus we have a bundle of algebras where the �bre above x 2 X is
C1([0; 1];S(W )) and we will denote the space of global sections of this algebra by
	�1sl;iso(W ): In fact if we can consider two, or even three, symplectic vector bundles,
W1; W2 and W3 over X and observe that the algebra de�ned last time { separately
adiabatic in each of the �rst two variables and just the product at � = 1 in the
last, is well-de�ned. We can denote the algebra of global sections of this bundle of
algebras as

(27.1) 	�1;�1
ad;ad;iso(W1=X W2=X W3=X;CN )

where I have thrown in matrix values for good measure. The �bre at some point
x 2 W is just 	�1;�1

ad;ad;iso((W1)x (W2)x (W3)x;C
N ) which is essentially the algebra

we were looking at last time.
Now there is one important thing to note. Even though this bundle of algebras

is `twisted', because the bundles Wi need not be trivial, its homotopy properties
haven't changed much. To see let us note that, given two symplectic vector bundles
over X there is a reasonably natural map of algebras:-

(27.2) B : 	�1iso (W1=X) 3 A 7�! A
 �B(x) 2 	�1iso ((W1 �W2)=X):

Here �B is the self-adjoint projection onto the ground state of some chosen smooth
family of harmonic oscillators corresponding to a compatible complex structure
on W2: Di�erent choices of compatible complex structure are homotopic and this
homotopy lifts to �B :

We can modify (27.2) to give us a similar map on involutions and invertibles,
where I will add a c subscript to indicate that things are compactly supported {
appropriately trivial outside a compact set:-

(27.3)

BH : H�1iso;c(W1=X) 3 I(x) = 
1 + a(x) 7�!

1 + a
 �B(x) 2 H�1iso;c((W1 �W2)=X)

BH : G�1iso;c(W1=X) 3 I(x) = Id+a(x) 7�!
Id+a
 �B(x) 2 G�1iso;c((W1 �W2)=X):

Here the `stabilization' if di�erent in each case { remember for H all the objects
are in 2 � 2 matrices over the obvious one. Of course the homotopies implicit in
the de�nition of the components have to have uniformly compact support.

Proposition 33. The stabilization maps in (27.3) induce homotopy equivalences

(27.4)
�0

�H�1iso;c(W1=X)
� ' �0

�H�1iso;c((W1 �W2)=X)
�

�0

�
G�1iso;c(W1=X)

� ' �0

�
G�1iso;c((W1 �W2)=X)

�
:

Note that these objects are the spaces of sections, and we can only map from the
base.
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Proof. For a change look at the odd case. The main point is that we certainly know
how to do this in case the bundles are trivial, using �nite rank approximation,
and we have such �nite rank approximation available in the general case. Thus
the projections, �N to the span of the eigenfunctions for eigenvalues less than
rank(W ) + 2N + 1 are all well-de�ned and smooth. Thus if a 2 	�1iso (W=X) then

(27.5) a�N ; �Na! a 2 	�1iso (W=X):

The range of �N is a vector bundle over X which is readily seen to be isomorphic to
the Nth symmetric power of the W as a complex bundle. We don't really need to
know this, just that it is a vector bundle. It is a standard result that a (compactly
supported) vector bundle can be embedded as a subbundle of any vector bundle
over the same set with su�ciently large rank { this can be proved by the same
sort of crude method as used to embed into a trivial bundle if the rank required is
not needed, as it isn't here. Anyway, this means that we can think of the range of
�N (W1); as a vector bundle over �M (W2) for some M: This allows us to `identify'
the cut-o� operator on W1; gN = �N + �Na�N ; which is invertible if N is large
enough, as an of invertible family of homorphisms g0M of �M on W2; extending as
the identity o� the subbundle. This means we can rotate in the usual way between

(27.6) gN (x)
 �B(W2) and �B(W1)
 g0M (x) extended as the identity.

This is not quite what we want, since we really want to go the other way, but it
is easy to extend it a bit so that it is. Namely any element Id+a(x) 2 G�1iso;c((W1�
W2)=X)) can be deformed by homotopy to a �nite rank perturbation of the identity
which acts on the range of �N (W1) 
 �N (W2) for some N: Then �N (W2) can be
complemented to be trivial, and the complement can be embedded in �M (W1) �
�N (W1) and �M (W2) � �N (W2) respectively, for M large enough. Thus we can
think of the perturbation as acting on the tensor product of the ranges of two
globally trivial families of projections. This actually reduces us to the case right
at the beginning (although I did not write down a very elegant proof then). In
particular it follows by embedding dim�N (W2) copies of the same trivial bundle in
W1 repeatedly in higher `tranches' �Mi

(W1) � �Mi�1
(W1): Then the argument in

the 
at case works just as well here to show that such an element can be rotated
to act on the range of �M (W1) 
 �1(W2) and hence is in the range of the second
map in (27.4).

The part for idempotents can be proved similary. �

Corollary 7. For any symplectic bundle W (of positive �bre rank of course) over
a manifold there are natural ideni�cations

(27.7)
�0

�H�1iso;c(W=X)
� ' K0

c
(X)

�0

�
G�1iso;c(W=X)

� ' K1
c
(X):

Proof. Apply the preceeding proposition twice in each case to the product of W
with a trivial bundle, say with symplectic �bre R2: �

Now, let us proceed to the Thom isomorphism. This concerns a vector bundle
W over a manifold X: As note above, the Thom isomorphism

(27.8) Thom : K0
c(X) �! K0

c(X)
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is �xed by the homotopy class of the smoothly varying symplectic form on the �bres
ofW; so it depends on some orientation information, but otherwise it is well-de�ned.
We will get it, by semiclassical quantization.

I have alread brie
y discussed the space

(27.9) 	�1ad;iso(W � R2p=X;M(N;C)) � C1([0; 1]� S(W � R2p=X;M(N;C))

which consists of all the smooth functions on [0; 1]�W�R2p with values inM(N;C)
and which have entries which are uniformly Schwartz functions on the �bres of
[0; 1]�W � R2p as a bundle over X � [0; 1]: The product is the adiabatic product
with respect to the symplectic structure on each �bre Wx: For N = 2 we consider
the space of adiabatic perturbations of 
1 and which are involutions
(27.10)

H�1ad;iso(W�R2p=X) =
n
I = 
1 + a; a 2 	�1ad;iso(W � R2p=X;M(N;C)); I2 = Id

o
:

The symbolic properties of this space should by now be fairly clear. Namely the
adiabatic sybol map restricts to
(27.11)

�ad : H�1ad;iso;c(W � R2p=X) �! C1c (X;H�1sus(W );iso(R
p)) = Sc(W ;H�1iso (Rp))

which is the involutions of the form 
1+ b; where b :W �! H�1iso (Rp) is uniformly
Schwartz on the �bres of W and has support in the preimage of a compact set in
the base.

Lemma 29. The symbol map (27.11) is surjective and the preimage of each element
is connected.

Since we are now talking about families, necessarily de�ned on X rather than an
arbitrary manifold, this is the analogue of the homotopically-unique lifting property.

Proof. At some point I will write out a general result for these symbolic lifting
constructions. This is no di�erent to most others. Namely we use the adiabatic
symbol map, the properties if which follow from the case we have been discussing
where W is the trivial product X�R2k since locally over X there is a trivialization
in which the symplectic form reduces to the Darboux form on R2k: Thus we have
a short exact and multiplicative symbol sequence

(27.12) �	�1ad;iso;c(W � R2p=X;M(N;C)) �! 	�1ad;iso;c(W � R2p=X;M(N;C))
�ad�! Sc(W ;H�1iso (Rp)):

Thus, we can lift the an element in the targen space in (27.11) to I 00
1 + b0 where
(I 00)

2 = Id+�c: The same iteration argument used earlier for involutions and Borel's
Lemma allows us to improve this to (I 0)2 = Id+c0 where c0 vanishes to in�nite order
with �; so is just smooth (and rapidly vanishing) down to � = 0 in the ordinary
sense. Then the same integral formula as before allows this to be corrected to an
involution in [0; �0] for some �0 > 0 and �nally stretching the parameter space we
�nd a lift of the symbol as desired and (27.11) is therefore surjective.

A modi�cation of this argument shows that any two lifts are homotopic as
families, i.e. the set of lifts is connected. �

Now, the Thom isomorphism comes from looking at the restriction operator R
to � = 1 as before. This gives a diagram (written the other way compared to the
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perioidicity case) where my notation is a bit out of hand

(27.13) H�1ad;iso;c(W=X : R2p)

�ad

uukkkk
kkk

kkk
kkk

k
R

))SSS
SSS

SSS
SSS

SSS

Sc(W ;H�1iso (Rp))

�o

��

H�1iso;c(W � R2p=X)

�o

��
K0
c(W )

Thom // K0
c(X):

Here the vertical `�0' maps are just the passage to components. Thus we know that
both maps on the left side are surjective and that the lift is unique up to homotopy.
So the map along the bottom is well-de�ned

Theorem 8. [Thom isomorphism] For any symplectic vector budle the map on the
bottom in (27.13) is an isomorphism and R on the right is surjective.

So, this is just the same as Bott periodicity in case W = R2k � X which we
�nally discussed properly last time. We already know how to change the dimension
`p' of the isotropic image space, so the Thom map really is well-de�ned. To prove
that it is an isomorphism we will bring out the main tool we have used so far, which
is the ability to do two things at once.

As mentioned above, we can consider adiabatic families, as we did last time,
with respect to two symplectic bundles W1 and W2 over X: The hardes thing here
is really the notation! I will let sus(W ); as a subscript, replace sus(2p) and here
mean that we are considering sections which are Schwartz, in an appropriate sense,
on the �bres of W: I have already used this without discussing it in (27.11). The
doubly adiabatic algebra, which has two parameters, one in the W1 slots and the
other in theW2 slots, is a non-commutative product on the spaces of sections which
have compact support in the base (or arbitrary support, both work but we mostly
want the compact case)

(27.14) fa 2 C1c ([0; 1]� [0; 1]� qW1 �X qW2 � q
R2p); a � 0 at all boundariesg:

Here the quadratic compacti�cations can be replaced by the radial ones, since we
are considering functions 
at at the boundaries anyway. The �X means the �bre
product, so really we are taking the products of the compacti�cations of (W1)x and
(W2)x and making them into a bundle over X:

I leave it to you to carefully de�ne the corresponding space of involutions

(27.15) H�1;�1
ad;ad;iso(W1=X :W2=X : Rp)

which are doubly-adiabatic-smoothing perturbations of 
1; so as usual are 2 � 2
matrices. Now there are a total of seven `restriction maps' we wish to consider.
Six of them correspond to restricting to one of �1 = �2 = 0 (the doubly-adiabatic
symbol), to �i = 0; i = 1; 2; the two single adiabatic symbols, �i = 1; i = 1; 2; the
two restriction maps and �1 = �2 = 1: The seventh map is the restriction to �1 = �2
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(= � if you like). These are of the form
(27.16)

�ad(W1�W2) : H�1;�1
ad;ad;iso(W1=X :W2=X : Rp) �! H�1sus(W1�W2);iso

(Rp)

�ad(W1) : H�1;�1
ad;ad;iso(W1=X :W2=X : Rp) �! H�1sus(W1);ad;iso

(W2=X : R2p)

�ad(W2) : H�1;�1
ad;ad;iso(W1=X :W2=X : Rp) �! H�1ad;sus(W2);iso

(W1=X : R2p)

R�2=1 : H�1;�1
ad;ad;iso(W1=X :W2=X : Rp) �! H�1ad;iso(!)(W1=X : (W2 � R2p)=X)

R�1=1 : H�1;�1
ad;ad;iso(W1=X :W2=X : Rp) �! H�1ad;iso(!)(W2=X : (W1 � R2p)=X)

R�1=�2=1 : H�1;�1
ad;ad;iso(W1=X :W2=X : Rp) �! H�1iso(!)((W1 �X W2 � R2p)=X)

R�1=�2 : H�1;�1
ad;ad;iso(W1=X :W2=X : Rp) �! H�1ad;iso((W1 �X W2)=X : R2p):

Here I just thought of the idea of using iso(!) instead of iso to mean that the space
is a symplectic vector space instead of operators on a vector space. The main thing
to swallow is that all these maps exist. Here is a diagram in �1; �2 space:-

So, there are lots of things we could easily prove about this picture. However,
recall that at the level of functions these maps really are restrictions to the sets in
question. So they have the obvious consistency properties that I will not write out
but will use below.

Now recall what we want to use this set-up for. We want to consider three
bundles, namely

(27.17)

W1 �X W2 �! X bundle over X

W1 �xW2 �!W1 bundle over W1

W1 �! X bundle over X:

although for vector bundles the notationW1�W2 for the �bre productW1�XW2 is
conventional, here I am just trying to emphasize what things really are. In all three
case we have the Thom isomorphism and what we will use the doubly-adiabatic set
up to show:-

Proposition 34. For any pair of symplectic vector bundles over a manifold the
three Thom maps give a commutative diagram

(27.18) K0
c
(W1 �X W2)

Thom

��

Thom

''OO
OO

OO
OO

OO
O

K0
c
(W1)

Thomwwooo
oo
oo
oo
oo

K0(X):

Proof. The main claim, that I am not for the moment going to write down, is that
the third map above is surjective. This is the same sort of argument as in Lemma 29
above, with a few extra twists because of the two parameters { but not essentially
harder. It follows from this that the �rst map is also surjective, because this, by
consistency of the symbols, is the adiabatic symbol map applied to the range of the
third map.
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Thus we can start of with an element of � 2 H�1sus(W2);iso
(W1 � R2p=X) which is

in the image, under restriction to �1 = 1 of an element K 2 H�1ad;sus(W2);iso
(W1=X :

R2p); meaning its class is in the image of the top sloping Thom map. Using the
surjectivity discussed above, this is the image under the third map in (27.17) of an

element ~K in the doubly-adiabatic space. The image of this under the �fth map
in (27.17) is therefore a lift of � which de�nes the lower Thom map on the right,
i.e. restricting this element to �2 = 1 gives the image of � in K0(X): However the

restriction of ~K under the last map gives the image of K in this space, and by the
consistency of these restricition maps these are the same. Thus the Proposition is
proved. �

Proof of Theorem 8 { Thom isomorphism. Consider any symplectic vector bundle
W: We know that this can be given a complex structure compatible with its
symplectic structure (and determined up to homotopy). As a complex vector
bundle,W can be embedded as a subbundle of CN for someN and hence complemented
to this trivial bundle with another complex bundle ~W: Conversely ~W has a symplectic
structure so we can arrange, after a homotopy of the symplectic structure which
does not a�ect the Thom map, that

(27.19) W �X ~W =W � ~W = R
2N �X

with consistent symplectic structures. Now Proposition 34 gives the commutative
diagram

(27.20) K0
c(R

2N �X)

Thom=psl

��

Thom

&&MM
MM

MM
MM

MM
M

K0
c(W )

Thomxxqqq
qq
qq
qq
qq

K0(X):

Thus the vertical map is Bott periodicity, so is an isomorphism. It follows that the
lower map on the right, the Thom map for W as a bundle over X is surjective. It
also follows that the upper map on the right, which is the Thom map forW�X ~W =
R2N �X as a symplectic bundle over W is injective.

We have shown that the Thom map is universally surjective. However the upper
map on the right, which we know to be injective, is an example of such a map. So
it must also be surjective, hence an isomorphism. Hence the general Thom map on
the lower right is also always an isomorphism. �

Here is some material that seems to have been orphaned; I will work out where
to put it some time!

Let me recall, and extend, some of the basic results about the space H�1iso (Rp);
especially since the treatment I gave was rather brief, to say the least.

Proposition 35. Two compactly supported smooth maps Ii : X �! H�1iso (Rp);
i = 0; 1; (through such maps) if and only if they are conjugate under a smooth
compactly supported map g : X �! G�1iso (Rp;C2) which is homotopic through such
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maps to the identity:

(27.21) I1(x) = g�1(x)I0(x)g(x) 8 x 2 X:
Proof. Certainly if g = g1 for a compactly supported homotopy g� : [0; 1]�X �!
G�1iso (Rp;C2) with g0 = Id then It = g�1t I0gt(x) is an homotopy from I0 to I1:

To see the converse, we will solve a di�erential equation. Recall that for an
homotopy of involutions

(27.22) _ItIt + It _It = 0 =) _It = I+t _ItI
�
t + I�t _ItI

+
t ;

meaning that the derivative must be o�-diagonal with respect to the involution.
Now, if we want to solve It = g�1t I0gt; for the moment for �xed x; we can
di�erentiate and try to solve

(27.23) _It = 
(t) = �(g�1t _gt)It + It(g
�1
t _gt):

Now, it follows from (27.22) that this identity is satis�ed if we take arrange that

(27.24) g�1t _gt =
1

2

�� I+t _ItI
�
t + I�t _ItI

+
t

�
:

Thus, we can simply (try to) solve

(27.25)

_gt =
1

2
gt
(t); g0 = Id

() gt = Id+a(t); a(t) =

Z t

0

�

(s) + a(s)
(s))ds:

Now, the integral equation has a unique solution by standard contraction arguments,
and it follows from this uniqueness that the solution is smooth in the parameters.
Moreover it follows that gt(x) = Id+a(t; x) is always invertible, and is equal to
the identity outside a compact set in X: For instance the invertibility follows by
following the determinant since

(27.26)
d

dt
log det(gt(x)) = tr(
(t; x)):

Exercise 21. Do it { check that it works in each seminorm and from uniqueness the
solution to (27.25) is Schwartz.

Now, going backwards it follows that gt implements the conjugation we want. �

Lemma 30. For a symplectic vector bundle W over X; two elements

Ii 2 H�1iso;c(W=X;CN ) i = 0; 1;

are in the same component if and only if there exists g 2 G�1iso (W=X;CN 
C2) in
the component of the identity such that I1 = g�1I0g:

Proof. The uniqueness of the method used in the previous proof means that it
works in the same way for sections of these bundles over X and then this is simply
a restatement of the conclusion. �
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I did show earlier that any smooth map of compact support I : X �! H�1iso (Rp)
are homotopic to simple sections of the form

(27.27) ~I = 
1 � 2E+ 
 P�(x) + 2E+ 
 P+(x); P�(x)2 = P�(x);

�NP+(x) = P+(x)�N = P+(x);

(�M ��N )P�(x) = P+(x)(�M ��N ) = P+(x) 8 x 2 X;
P�(x) = A�P�(x)B� are constant for x 2 X nK; K b X:

Here M and N are integers and A� and B� are matrices acting on the range of
�M :

To extend this to the case of sections of a symplectic bundleW is straightforward
except that we cannot demand the constancy outside a compact set unless we
demand that the bundle W itself is trivial, and has constant symplectic structure
outside such a set { I have been a bit cavalier about this. Fortunatly it is not really
a problem. Instead we just demand the conjugation equivalence in the complement
of a compact set (and I will change things retrospectively at some point).

Proposition 36. Any family of involutions, I 2 H�1iso (W=X); is homotopic over
any open subset 
 � X with compact closure to one of the form

(27.28) ~I = 
1 � 2E+ 
 P�(x) + 2E+ 
 P+(x); P�(x)2 = P�(x);

�N (x)P+(x) = P+(x)�N (x) = P+(x);

(�M (x)��N (x))P�(x) = P+(x)(�M (x)��N (x)) = P+(x) 8 x 2 X;
P�(x) = A�(x)P�(x)B�(x) in 
0 n 
; 
0 open, 
0 b X; 
 � 
0:


