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25. Lecture 22: Isotropic families index (k = 1)
Friday, 24 October, 2008

Today I am supposed to be proving the weak contractibility of the central group
in the looping sequence. With any luck I will get to that as a by-product of the
families isotropic index, in K-theory for k = 1 (and untwisted). Namely, what I
want to do is to de�ne the istropic index map

(25.1) indiso : [X;G�1sus;iso(R
p)]c �! [X;H�1iso ]c

for any manifold X: Here I have written out the homotopy groups explicitly, since
both represent even K-theory, as we already know. The restriction to k = 1 shows
up in the single suspension on the left (but these arguments do carry over with only
relatively minor changes to 2k � 1 suspension, meaning isotropic operators on Rk

as we will see next week).
For the de�nition I will use same sort of set up as for Bott periodicity and de�ne

some larger spaces. Thus, let

(25.2) _Ell
0;�1

qiso;iso(R
k;Rp)

= fId+A 2 _	0;�1
qiso;iso(R

k;Rp); Id+�iso(A) 2 G�1sus(2k�1);iso(Rp)g:
So, this is just the set of elliptic elements perturbations of the identity, the operators
with invertible symbols. Then consider a similar space of pairs which are parameterices
of each other

(25.3) _P0;�1qiso;iso(R
k;Rp)

= f(Id+A; Id+B) 2 _	0;�1
qiso;iso(R

k;Rp); (Id+A)(Id+B)� Id;

(Id+B)(Id+A)� Id 2 	�1iso (Rk+p):

Proposition 28. In the diagram

(25.4) _P0;�1qiso;iso(R
k;Rp)

p1vvmmm
mmm

mmm
mmm

m
indiso

''OO
OO

OO
OO

OO
OO

_Ell
0;�1

qiso;iso(R
k;Rp) H�1iso (Rk+p)

where

(25.5) indiso(A;B) =

�
1� 2R2

L 2RL(Id+RL)(Id+B)
2RR(Id+A) � Id+2R2

R

�
;

RL = Id�(Id+A)(Id+B); RR = Id�(Id+B)(Id+A);
the left map is surjective with the lifting property for compactly supported maps
and the right map (is well-de�ned and) has the lifting property up to homotopy, so
every compactly supported smooth map into H�1iso is homotopic to the image of a

map into _P0;�1qiso;iso(R
k;Rp):

Proof. Of course the �rst assertion is that the two maps are well-de�ned. Certainly
the left map is, since it is just projection onto the �rst factor and this must be
elliptic, since the existence of a parameterix implies that the symbol is invertible. I
will not dwell on the lifting property for this map, since I discussed the construction
earlier. (Where exactly?) A smooth map with compact support into the elliptics
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can be quantized smoothly, to the identity outside a compact set. Then a smooth
family of parametrices can be constructed, also reducing to the identity outside a
compact set.

So, to the index map. This is in the rather obscure form (25.4) because I have
been remiss about �lling in the details about the relationship between involutions
and vector bundles. It would be more usual (perhaps, it depends a bit on the circles
you move in) to express the index map in terms of null bundle and null bundle of
parametrix, after stabilization. I did do this quickly earlier too. The explicit map
(25.4) has the advantage that it is explicit and de�ned for any parametrix, without
stabilization. Of course, I invite you to do the algebra to show that indiso(A;B) so
de�ned is an involution:

(25.6) indiso(A;B)
2 = Id :

(Which is a strange looking identity.) In doing so it is helpful to note that

(25.7) RLQ = QRR; RRP = PRL; PQ = Id�RR;

QP = Id�RL if Q = (Id+B); P = (Id+A):

At this point it only remains to show the lifting property up to homotopy. Given
the normal form for involutions which can be achieved for families, as discussed in
Proposition 16 it is really enough to show that the involution corresponding to any
pair of families of �nite rank, commuting projections can be recovered under the
index map. So, as in the periodicity construction we need a `Bott element'. In this
case it is easier { and it is certainly possible I should have done this much earlier.
Namely, we know that the annihilation operator, A = @z + z; has one dimensional
null space but is surjective on Schwartz functions. Of course the order is wrong,
but we can just divide by a square root of the harmonic oscillator to make it of
order zero with the same property. Then its symbol is not 
at at N; but it is equal
to 1 at one point. So, deforming it a little more we can �nd Id+A; A 2 _	0

qiso(R)
which is surjective, with one dimensional null space. Now to recover a given pair of
projections P+(x); P�(x) which are smooth families of N �N matrices, consider

(25.8)

�
AP+(x) + Id(Id�P+(x)) 0

0 CP�(x) + Id(Id�P�(x))
�
2 _	0

qiso(R;C
2N ):

Here C is the adjoint of A: It is easy to check (but I have not actually done it
..) that indiso is a family of involutions which `recovers' these two projections. Of
course one should stabilize C2N into smoothing operators �rst. �

So, the existence of index map in K-theory, (25.1), follows from the uniqueness
up to homotopy of the lifting on the left extended to:

(25.9) C1c (X; _P0;�1qiso;iso(R
k;Rp))

p1

��

indiso // C1c (X;H�1iso (Rk+p))

C1c (X; _Ell
0;�1

qiso;iso(R
k;Rp))

�iso

��
C1c (X;G�1sus(2k�1);iso(R

p)):
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Namely the linear homotopies between quantizations and parameterices shows the
uniqueness up to homotopy.

Finally then this isotropic index is rather precise:-

Theorem 7. This isotropic index map (25.1) is an isomorphism with right inverse
the clutching map cleo :

Proof. This requires one to check that the symbols constructed in (25.8) are homotopic
to that given by the map cleo : This implies that indiso cleo = Id : Since we know
that cleo is an isomorphism at the level of homotopy, i.e. as an inverse to (25.1) it
follows that the index is also an isomorphism. �

So, this is the k = 1 case of the isotropic families index. We want to generalize
it in two ways. First to k > 1: In fact the restriction to k = 1 only occurs in the
construction of the annihilation/creation operators and cleo : The more signi�cant
extension (which is slightly di�erent in form) is to twist the spaces on which the
isotropic algebra acts to be a vector bundle over X; instead of just considering
straight families. This leads to the Thom isomorphism. We can think of the group
on the left in several ways because of Bott periodicity. The most obvious is to
identify it as K1

c(X � R) and hence as K0
c(X � R2): This is how the map is usualy

described, as

(25.10) indiso : K
0
c(X � R2) �! K0(X)

implementing Bott periodicity. In fact it is precisely this relationship I want to
exploit in order to de�ne the Thom isomorphism

(25.11) K0
c(W ) �! K0(X)

for any complex, or symplectic, vector bundle over X (so it has even rank as a real
bundle).

Now, what does this tell us about _G0;�1
qiso;iso(R

k;Rp)? Basically half of what we
want, I would say the hard half given where we are. Namely

Corollary 4. If f : X �! G�1sus;iso(R
k) (is compactly supported) then f = �iso(F )

for a compactly supported family F : X �! _G0;�1
qiso;iso(R

k;Rp) implies that f is
homotopic to the identity.

Proof. The index vanishes, so [f ] 2 [X;G�1sus;iso(R
k)]c must vanish. �

In fact the converse is also true but this involves another argument which we can
subsume into what is the last part of the looping sequence.

Proposition 29. The group _G0;�1
qiso;iso(R;R

p) is weakly contractible; any compactly
supported map into it is homotopic to the constant map to the identity.

Proof. Given such a map, F; it follows from the corollary that �iso(f) is homotopic
to the identity. Let ft be such an homotopy, with f0 = Id; f1 = f: Since it is an
elliptic family, and has an invetible quantization at t = 0; this can be lifted to an
homotopy Ft : X � [0; 1] �! _G0;�1

qiso;iso(R;R
p) with symbol family ft and F0 = Id :

This might seem to solve the problem, but not so fast! It follows that F1 is a lift of
f to be a family of invertibles, but it is not clear that it is the one we started with.
Since we can deform lower order terms in the symbol away, we can arrange that

(25.12) F�11 F 2 C1c (X;G�1iso (Rp+k))
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since the two quantizations then di�er by smoothing terms. So the remaining
problem is to show that the image of a family of smoothing perturbations can be
deformed away in the bigger group _G0;�1

qiso;iso(R;R
p): In fact with the use of a bit

more homotopy theory we already have enough to show this. However, I think it is
worth doing directly. So the proof of this Proposition is completed by the next. �

Proposition 30. If g : X �! G�1iso (Rp+k) is a compactly supported smooth map

then there is an homotopy Gt 2 C1c ( _G0;�1
qiso;iso(R;R

p)) with G1 = g and G0 = Id :

Proof. This can be done quite explicitly using the creation and annihilation operators.
Here is the idea but I have not checked the details at all. The crucial point is that
we have found an operator of index 1:

First retract g to be of �nite rank, on some CN : Then take two copies and
consider the creation and annihilation operators acting on S(R) 
 C2 as a 2 � 2
matrix with matrix-operator values

(25.13)

�
�1 C
A 0

�
This is invertible, since the null space ofA and the lack of range of C are compensated
for by the o�-diagonal �1; projecting onto the null space. Now, tensor with matrices
on CN and consider
(25.14)�

cos(�) g(x) sin(�)
�g�1(x) sin(�) cos(�)

��1�
�1 
 g(x) + cos(�)(Id��1) g(x) sin(�)C

�g�1(x) sin(�)A cos(�):

�
These are invertible matrices, the �rst normalizes the symbol to be the identity at
N; the point where A and C are both 
at to 1:

Then, consider the reverse homotopy through invertibles

(25.15)

�
g(x) cos(�) g(x) sin(�)
�g�1(x) sin(�) g�1(x) cos(�)

��1
��

g(x)�1 + g(x) cos(�)(Id��1) g(x) sin(�)C
�g�1(x) sin(�)A g�1(x) cos(�):

�
This starts at the same matrix, at � = �=2 and deforms back to the identity. As I
say, I haven't checked this. �

There is another approach to proving Proposition 30 which is a bit more machine-
heavy but has other advantages, as I hope we will see. To do this we need the
adiabatic limit for operators of order 0:

When talking about the isotropic product, leading to the algebra 	0;�1
qiso;iso(R

k;Rp)
that is underlying the looping sequence, I carried along, at least for a while, the
adiabatic version of it. Namely the product in (20.3) is actually smooth down to
� = 0; just as in the case of smoothing operators discussed earlier. This means we
can set up an algebra of adiabatic operators of order 0 which is just the space of
functions

(25.16) C1([0; 1]� � q
R2k�;S(R2p))

with the product given by (20.3). Without going into details this will have both
an adiabatic symbol, at � = 0; extending the one in the smoothing case, and now
also a `regular' symbol at the boundary in the second variable (or a `full symbol if
we take Taylor series at this boundary). This second symbol depends on � 2 [0; 1];
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but just as a parameter since the leading term is always just the product (including
the operator product in the last variables of course). The lower order terms, the
star product, does depend on �: We also have the restriction to � = 1 and if you
recall this is how I �nally talked about Bott periodicity. I will denote this adiabatic
algebra

(25.17) 	0;�1
ad qiso;iso(R

k;Rp)

Now to this we can add the `dot' conditon of having the functions vanish to
in�niite order at the �xed pointN on the boundary of the quadratic compacti�cation
of R2k: This leads to the subalgebra

(25.18) _	0;�1
ad qiso;iso(R

k;Rp):

Proposition 31. The adiabatic algebras of order 0 in (25.17) and (25.18) (which
are non-unital) are Neumann-Fr�echet algebras.

Proof. This requires a combination of the proofs of the earlier cases. �

So now I have at least described the corresponding group of invertible perturbations
of the identity by elements of (25.18)

(25.19) _G0;�1
ad qiso;iso(R

k;Rp):

What good is it? Well, it has the same symbol maps as the algebra but now
valued in the groups. This gives us a diagram where the bottom line is the looping
sequence, the middle line is the corresponding sequence with this new group in the
middle and the top line is in principle the adiabatic part { what we get by taking
the adiabatic symbol (i.e. restricting to � = 0 to the extent that it makes sense).

(25.20) G�1sus(2);iso(R
p) // ~G�1sus;iso(R;R

p) // G�1sus �;iso;ind=0(R
p)

G�1ad;iso(R : Rp)

R

��

//

�ad

OO

_G0;�1
ad;iso(R;R

p)

R

��

�0;iso //

�ad

OO

C1([0; 1];G�1sus �;iso;ind=0(R
p))

R

��

�=0

OO

G�1iso (R1+p) // _G0;�1
qiso (R;Rp)

�0;iso // G�1sus �;iso;ind=0(R
p)

Now, I need to discuss what is happening here carefully, but the { maybe
somewhat surprising { point to grasp is that the top row is in fact the delooping
sequence for the (terminal) group which is the component of the identity in the
suspended group we are by now getting familiar with. So what this diagram is
supposed to show conceptually is that the delooping sequence is `just' the partly
quantized delooping sequence for the loop group. Now, before I go into a term by
term discussion of (25.20) let me show why it might help us.

Claim 3. All the vertical arrows, up and down, in (25.20) are surjective weak
homotopy equivalences with the lifting property for compact families, all three rows
are exact and the central column consists of weakly contractible groups.

So this is just making the same claim but more so! In fact the very central group
here is easily seen to be contractible by hand. The surjectivity of the middle R
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would imply directly the weak contractibility of the middle group for the looping
sequence, but this is where I have failed to �nd a direct proof.

However, just look at the bottom left rectangle and see that we can use it, if we
know a bit { particularly the commutativity { to give a proof of Proposition 30.
What we are given is a compactly supported map into the bottom left group. By
the lifting property property this comes from a map into the `adiabatic' group on
the left of the middle row. This can then be sent into the really central group. As
I said above, it is easy to see geometrically that this group is weakly contractible.
Thus it can be deformed away here. Mapping the homotopy forward to the central
group on the bottom row gives, by commutativity, an homotopy trivializing the
image of the original map.


