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22. Lecture 19: Riesz regularization
Friday, 17 October

Today, let me go back and �ll in some of the gaps, or perhaps just paper over
some of the cracks.

First let me say a little more about symbols. I will probably not go through all of
this in the lectures but it may help clarify things a bit to separate the symbol spaces
from Rn: (Or it may not, depending on your tendencies!) From our point of view
symbols are the same things as `conormal functions at a boundary'. Suppose we
have a compact manifold with boundaryM ; in the case at hand this is a ball { say Rp

or qRp: Such a manifold comes equipped with a space of smooth functions C1(M)
with its Fr�echet topology of the uniform norm on derivatives over compact subsets of
coordinate neighbourhoods. Since it is a manifold with boundary there is a �ltration
by ideals which vanish to higher and higher order at the boundary. In particular
there is always a boundary de�ning function 0 � � 2 C1(M); @M = f� = 0g;
d� 6= 0 on @M: Then the boundary ideal is

(22.1) J (@M) = �C1(M) = fu 2 C1(M);u
��
@M

= 0g:
The successive ideals are the powers, in the sense of �nite spans of products

(22.2)
C1(M) � J (@M) � J 2(@M) � � � � � J k(M);

_C1(M) = \kJ k(M):

We can also add the negative powers, or `Laurent functions' at the boundary and
then think of

(22.3) ��kC1(M) = fu 2 C1(M n @M); �ku 2 C1(M)g
as the classical (perhaps more correctly `1-step-classical') symbols of order k; so
elements of J k(@M) are classical symbols of order �k; rather perversely.

Now, we can interpolate with the classical symbols of any complex order by
taking complex powers of �; �z = exp(z log �) 2 C1(M n @M) and then de�ne

(22.4) �zC1(M) = fu 2 C1(M n @M); ��zu 2 C1(M)g:
These are the classical symbols of complex order z: Notice that the only inclusions
we have are

(22.5) �z+kC1(M) � �zC1(M) 8 k 2 N0:
The topology on �zC1(M) is the topology of C1(M) after division by �z: The
common subspace of all these spaces is the `Schwartz space' of smooth functions
vanishing to in�nte order at the boundary:-

(22.6) _C1(M) � �zC1(M) is a closed subspace.

So there is no hope of it being dense!
To arrange density we introduce the `symbol (or conormal) spaces with bounds'.

Let Vb(M) be the space of smooth vector �elds on M which are tangent to the
boundary { so in local coordinates x = �; y1; : : : ; yn�1; dimM = n + 1; near the
boundary, Vb(M) is spanned over C1 coe�cients by x@x; @yj : Then set

(22.7) As(M) = fu 2 C1(M);V1 : : : Vk�
�su 2 L1(M) 8 Vi 2 Vb(M); 8 kg:
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This again is a Fr�echet space with supremum norms { Vb(M) is �nitely generated
as a module over C1(M) so there really are only countably many conditions here.
In fact

(22.8) ��t : As(M) �! As+t is an isomorphism 8 t; s 2 R:
Note that �z 2 ARe z(M) so there is only a real, not a complex, order here and

(22.9) �zC1(M) � As(M); s � Re(z):

So, now the density result is easy enough. Take a smooth function � 2 C1(R) with
 = 1 in x < 1

2 ;  = 0 in x > 1 and consider  � = (1��)(�=�) 2 C1(M) for � > 0:

This vanishes for � < 1
2� and is eventually equal to 1 on any compact subset of the

interior of M as � # 0: Then
(22.10) u 2 As(M) =)  �u! u in As0(M); s0 < s:

In particular _C1(M) is dense in �zC1(M) in the topology of As(M) for any s <
Re(z):

The algebra of isotropic pseudodi�erential operators discussed above is a non-
commutative product on the �ltration of Fr�echet spaces As(qR2n) for any n that
is, it is a consistent associative product

(22.11) As(qR2n)�At(qR2n) �! As+t(qR2n) 8 t; s 2 R
which restricts to de�ne products

(22.12) �zC1(qR2n)� �z0C1(qR2n) �! �z+z
0C1(qR2n) 8 z; z0 2 C:

You might ask: How can one characterize �zC1(M) insideAs(M); which contains
it for s < Re(z)?

Proposition 20. For a compact manifold with boundary there exists a vector �eld
R 2 Vb(M) such that Rf � f modulo J 2(M) for all f 2 J (M) and then for any
s < Re(z);

(22.13) �zC1(M) =

fu 2 As(M); (R�z)(R�z�1)(R�z�2) : : : (R�z�k)u 2 As+k(M) 8 k 2 N0g
Proof. Is not very hard! �

Following the line of thought related to �z for a boundary de�ning function
�; I will next consider Riesz-regularized integrals over M { which is a compact
manifold with boundary. Suppose 0 < � 2 C1(M ; 
) is a smooth density. In
case you don't know about densities I will add some exercises so that you can
familiarize yourself with them. For the moment just agree that they are objects
which in any local coordinates give a smooth (positive) multiple of the Lebesgue
measure in coordinates and that under change of coordinates the factor changes by
the absolute value of the Jacobian determinant. Alternatively you can assume that
M is oriented (which in our case of the balls it is) and that � is a smooth volume
form which is positive, in the sense that it de�nes the orientation. Either way, this
means that

(22.14) C1(M) 3 u 7�!
Z
M

u� 2 C
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is a continuous linear map on the Fr�echet space C1(M): In fact it extends by

continuity, and hence unambiguously, from the subspace _C1(M) to

(22.15)

Z
M

�� : As(M) �! C; 8 s > �1:

The limit at s = �1 is just the non-integrability of x�1 with respect to dx near 0
on the line.

So, how can we extend this functional? Well, the answer really is that one cannot
do it on the spaces As(M) for s � �1: However, one can extend the integral to

(22.16)

Z
M

� � : ��k(M) �! C; k 2 N:

Lemma 24. If u 2 ��k(M) and � 2 C1(M ; 
) then

(22.17) F (z; u�; �) =

Z
M

�zu� is holomorphic in Re z > k � 1

and has a meromorphic extension to Cnfk�Ng with only simple poles at the points
k � N: The residue at z = 0 (if any) is independent of the choice of �:

The residue at zero is the `boundary integral' or `residue integral' and will be
denoted

(22.18)
R
Z
u� = lim

z!0
zF (z; u�; �):

The regularized value at z = 0 is the regularized integral

(22.19)

Z
M

u� = lim
z!0

�
F (z; u�; �)� 1

z

R
Z
u�):

In contrast to the residue integral, this functional does depend on the choice of �
if k � 1: Note that these are both functionals on u� 2 ��kC1(M ; 
) which are
consistent on restriction from ��kC1(M ; 
) to ��k+1C1(M ; 
):

Proof. For any k holomorphy of F (z; u�; �) in Re z > k�1 follows from the absolute
convergence of the integral de�ning it in (22.17), the fact that any one deriviative
with respect to Re z or Im z is also absolutely convergent, since it only introduces
another j log �j of growth, and the holomorphy of the integrand. Now, we can split
the integral into a part near the boundary and a part away from the boundary
using �:-

(22.20)

F (z; u�; �) = F 0(z; u�; �) + F 00(z; u�; �);

F 0(z; u�; �) =

Z
�<�

�zu�; F 00(z; u�; �) =

Z
�>�

�zu�

where � > 0 is �xed and is chosen so small that there is a smooth product
decomposition, of M; in � � � : f� � �g ' [0; �]�� @M: The term F 00 is entire in z;
by the same reasoning as above. For the second term we can write the product
(22.21)

u� = (

LX
j=0

�j�ku0j + ��k+L+1vL)d�d�@M ; vk 2 C1([0; �]� @M); uj 2 C1(@M)

for any L � k: This comes from the product decomposition of the measure u�;
into the product of d�; a smooth measure, �@M ; on @M and function ��ku0 with
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u0 2 C1([0; �]� @M): Then (22.21) is just the Taylor series expansion up to order
L:

The remainder term here makes a contribution to F 0 of the form

(22.22) F 0L(z) =

Z �

0

�z+1+L�kv0kd�d�@M which is holomorphic in Re z > k�L�2
by the same reasoning. Thus in this half-space, which of course increases with L;

(22.23) F 0(z) = F 0L(z) +

LX
j=0

(z + j � k + 1)�1�z+j�k+1
Z
@M

u0jd�@M :

Since �z is entire, this shows that F 0 only has simple poles at the points z 2 k �N
in the half-plane Re z > k�L: Thus indeed F (z; u�; �) is meromorphic as claimed.

So, it remains to show that the residue at z = 0 { which of course can only be
non-zero if k 2 N { is independent of the choice of �: The other residue-functionals
are not independent in this way. Any two boundary de�ning fucntions are positive
smooth multiples of each other so a second can be connected to the �rst by a smooth
curve

(22.24) �s = ((1�s)1+sa)� = A(s)�; 0 < a 2 C1(M); 0 < A 2 C1([0; 1]s�M):

Inserting this into the de�nition of F we get

(22.25) F (z; u�; �s) =

Z
M

�zA(s)zu�

in the half-plane of holomorphy.
The arguments above now apply uniformly in s 2 [0; 1]; with the extra, entire,

factor of A(s)z: It follows by di�erentiation that all residues and the analytic
continuation are smooth in s: Now

(22.26)
d

ds
F (z; uv; �s) = z

Z
M

�z
dA(s)

ds
A(s)z�1uv:

The same argument regarding meromorphy can now be applied to the integral on
the right, so it can only have a simple pole at z = 0: The extra factor of z ensures
that there is no such pole, so the residue of F (z; uv; �s) at z = 0 is constant in s
and hence indeed independent of the choice of �: �


