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20. Lecture 17: Isotropic calculus and looping sequence
Monday, 13 October

I am including here more detail (and may add even more later) than I will give in
the lecture where I will assume some familiarity with pseudodi�erential operators.
In fact, in the lecture, I started at (20.27) and tried to explain the nature of the
space in the middle that we need to construct { and then talked a little about the
isotropic calculus (the case � = 1 of what follows) and the corresponding group.

Earlier, I worked out the product formula for semiclassical families of smoothing
operators, in terms of their `renormalized' kernels, a�(t; t

0) = ��nF (�; 12�(t+ t
0); (t�

t0)=�) where F is Schwartz on R2n and smooth in �: From (10.5) the product is

(20.1) H(�; t; s) =

Z
Rn

F (�; t+
�2

2
(r +

1

2
s);

1

2
s� r)G(�; t+ �2

2
(r � 1

2
s); r +

1

2
s)dr:

The `full symbol', or Weyl form of this product is obtained by taking the Fourier
transform in s and using the Fourier inversion formula:

(20.2) Ĥ(�; t; �) = (2�)�2n
Z
R2n

Z
R2n

F̂ (�; t+
�2

2
(r +

1

2
s); �1)e

i( 12 s�r)�1

� Ĝ(�; t+ �2

2
(r � 1

2
s); �2)e

i(r+ 1
2 s)�2e�i�sdrdsd�1d�2:

Introducing t1 = t + �2

2 (r +
1
2s) and t2 = t + �2

2 (r � 1
2s) in place of r and s as

variables of integration, so r + 1
2s = 2(t1 � t)=�2 and r � 1

2s = 2(t2 � t)=�2 and
drds = dt1dt2; gives

(20.3) Ĥ(�; t; �) = (2�)�2n
Z
R2n

Z
R2n

F̂ (�; t1; �1)Ĝ(�; t2; �2)

� exp

�
2i

�2
�
!(t1 � t; �1 � �; t2 � t; �2 � �)

��
dw1dw2;

!(t1; t2; �1; �2) = t1 � �2 � t2 � �1; dw = dtd�:

Here ! : R2n �R2n �! R is the standard (antisymmetric) symplectic form on R2n

and dw is the corresponding (Lebesgue) volume form on R2n: In fact the formula
makes sense for an arbitrary symplectic vector space, W; i.e. is invariant under the
application of the same symplectic transformation in all three copies of R2n: Thus
it can be written

(20.4) h(�; w) =M(f; g)(�; w) = (2�)� dimW

Z
W

Z
W

f(�; w1)g(�; w2)

� exp

�
2i

�2
�
!(w1 � w;w2 � w)

��
dw1dw2;

M : C1([0; 1];S(W ))� C1([0; 1];S(W )) �! C1([0; 1];S(W )):

Consider various `symbol spaces' associated to Rp; and ultimately any vector
space. First the Fr�echet topologies on `symbols with bounds' on Rp; namely

(20.5) kakm;k = sup
(t;�)2Rp;j�j�k

k(1 + jzj)�m+j�jjD�
z aj

is a sequence of norms. Denote by Sm1(Rp) the subspace of C1(Rp) on which all
these norms are bounded then
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(1) For each m; Sm1(Rp) is a Fr�echet space, increasing with m: In particular
these are complete metric spaces.

(2) S(Rp) is dense in Sm1(Rp) with respect to the topology of Sm
0

1 (Rp) for any
m0 > m:

(3) Pull back gives an action of GL(p;R) on these spaces, which therefore make
sense on any �nite dimensional vector space.

(4) Consider the quadratic compacti�cation qRp of Rp; with quadratic boundary
de�ning function �2q (e.g. �2q = (jzj2 + 1)�1: This is a compact manifold
with boundary which is di�eomorphic to a ball and has interior canonically
di�eomorphic to Rp;

(20.6) Q : Rp �! q
Rp:

It is de�ned to have the property
(20.7)

Q�C1(qRp) =
�
u 2 C1(Rp); u = ~u(

1

jzj2 ;
z

jzj ) in z 6= 0; ~u 2 C1([0;1)� Sp�1)	:
The quadratic compacti�cation is invariant under linear isomorphisms, i.e.
the action of GL(p;R) on Rp extends to act as di�eomorphisms on qRp:

(5) Similarly the radial compacti�cation, Rp; with boundary de�ning function
� (e.g. � = �q) is a compact manifold with boundary, again di�eomorphic
to a ball, with compactifying map giving a commutative diagram of smooth
maps

(20.8) Rp
R //

Q !!C
CC

CC
CC

C Rp

�}}{{
{{
{{
{{

qRp

with � a parabolic blow-down map for the boundary. The analogue of
(20.7) is

(20.9)

R�C1(Rp) = fu 2 C1(Rp); u = u0(
1

jzj ;
z

jzj ) in z 6= 0; u0 2 C1([0;1)� Sp�1)g:

The radial compacti�cation is again invariant under invertible linear transformations
and in addition translations on Rp lift to be smooth on it.

(6) Then (with the pull-back maps suppressed)

(20.10) ��mq C1(qRp) � ��mC1(Rp) � Sm(Rp)

are linearly invariant.
(7)
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Theorem 5. The bilinear formM de�nes continuous bilinear maps, consistent
under the natural inclusions,

(20.11)

M : C1([0; 1]; ��mq C1(qW ))� C1([0; 1]; ��m
0

q C1(qW ))

�! C1([0; 1]; ��m�m
0

q C1(qW ))

M : C1([0; 1]; ��mC1(W ))� C1([0; 1]; ��m
0C1(W ))

�! C1([0; 1]; ��m�m
0C1(W ))

M : C1([0; 1];Sm1(W ))� C1([0; 1];Sm
0

1 (W )) �! C1([0; 1];Sm+m0

1 (W )):

Note that this `consistency' is the reason for introducing the spaces Sm:
The map in the last line is de�ned by density from C1([0; 1];S(R2n); when
m and m0 are both increased by � > : Then the map itself follows by
restriction (and of course has to be shown to be continuous). Then the
other two maps are by restriction { when f and g are in the appropriate
space from (20.10) then so is M(f; g) and it depends continuosly on them
in the stronger topology.

Proof. Not included for the moment { ultimately it can be proved by some
form of the lemma of stationary phase. Much more is proved in the paper
of H�ormander [4]. There are other sources which are maybe a bit more
accessible. �

(8) The corresponding associative �ltered algebras will be denoted 	m
qisy(W );

	m
isy(W ) and 	m

1-isy(W ): Note that for a symplectic vector space these are
not naturally algebras of operators, just algebras. However, in the case of
W = R2n they are all operators on S(Rn) and then 	m

qiso(R
n) = 	m

qisy(R
2n)

etc. Moreover the action on S(Rn) extends and restricts, much as for the
product itself to give

(20.12)

	m
qiso(R

n)� ��kq C1(qRn) �! ��k�mq C1(qRn);

	m
iso(R

n)� ��kC1(Rn) �! ��k�mC1(Rn);

	m
1-iso(R

n)� Sk1(Rn) �! Sk+m1 (Rn):

(9) The various algebras of isotropic pseudodi�erential operators are what we
get by setting � = 1 (or up to invertible linear change of variable, any other
� > 0): The `classical' space of isotropic pseudodi�erential operators have
a leading symbol map

(20.13) �m;iso : 	
m
iso(R

n) �! C1(S2n�1; (d�)�m)

which should be thought of as a section of a certain trivial line bundle over
the sphere at in�nity { namely the products ��mf; f 2 C1(R2n modulo
the ��m+1f): This symbol is multiplicative in the obvious sense

(20.14) �m+m0;iso(AB) = �m;iso(A)�m0;iso(B); A 2 	m
iso(R

n); B 2 	m
iso(R

n)

and gives a short exact sequence

(20.15) 	m�1
iso (Rn)

� � // 	m
iso(R

n)
�m;iso// // C1(S2n�1; (d�)�m):
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(10) For the quadratic isotropic algebra we get the same thing, with an improved
`error estimate'

(20.16) 	m�2
qiso (Rn) �

� // 	m
qiso(R

n)
�m;qiso// // C1(S2n�1; (d�q)

�m):

For the corresponding algebras on a symplectic vector space the same
properties hold, now with R2n replaced by W and the sphere S2n�1 replace
by the `sphere of W ' which is SW = (W n 0)=R+; so for instance (20.16)
becomes the exact sequence

(20.17) 	m�2
qisy (W ) �

� // 	m
qisy(W )

�m;qiso// // C1(SW ; (d�q)
�m):

(11) The adjoint (or transpose) is an involution on each of the algebras described
above and it follows by duality that 	m

1-iso(R
n) acts on S 0(Rn):

(12) We are mostly interested below in the algebras of operators of order 0: For
these the symbol can be recovered in part by noting that

(20.18) 	0
iso(R

n) : C1(Rn) �! C1(Rn)

where C1(Rn) � S 0(Rn): Then restriction to the sphere at in�nity gives

(20.19) u 2 C1(Rn); A 2 	0
iso(R

n); (Au)
��
Sn�1 = �iso;0(A)

��
[(Rn;0)]

u
��
Sn�1

which allows the symbol on the equatorial sphere, � = 0; to be recovered.
To get the symbol at all other points of the sphere, except at the `vertical
subsphere' t = 0; one can take a real quadratic (homogeneous) polynomial

q: Then q(t)� q(t0) = (t� t0) � L( t+t02 ) where L is a linear map. There is a
mapping property extending (20.18):

(20.20) 	0
iso(R

n) : eiqC1(Rn) �! eiqC1(Rn)

and then as in (20.19)

(20.21) (e�iqAeiqu)
��
Sn�1 = �iso;0(A)

��
[(Rn;LRn)]

u
��
Sn�1 8 u 2 C1(Rn):

From this one can recover the symbol everywhere on the sphere at in�nity
by continuity.

(13) The Fourier transform is also an isomorphism on the space of isotropic
operators, thus

(20.22)
AF v̂ = f̂ if Av = f; v 2 S(Rn); A 2 	m

iso(R
n)

=) AF 2 	m
iso(R

n); �m;iso(AF (t; �) = �m;iso(A)(�;�t):
(14) For the full semiclassical (and `classical') there is both a conventional symbol

as described above and a semiclassical symbol reduced to the previous case
for smoothing operators { I will discuss these more later.

(15) There is yet another generalization of the isotropic algebras that we need
to consider. Namely we want to allow them to `take values in (isotropic)
smoothing operators. This is not so hard. I will denote the corresponding
algebras of operators in the form 	0;�1

qiso (Rn;Rp): These are smoothing in
the last variables. The kernels can be thought of as just Schwartz maps

(20.23) k 2 S(R2p; 	0
qiso(R

n):
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The composition is then given by composing in the isotropic algebra and
then in the usual way as smoothing operators

(20.24) k � k0(�; z; z0) =
Z
Rp

k(�; z; z00)k0(�; z00; z0)dz00:
Make sure you have a picture of how these isotropic operators, especially the ones

of order zero `work'. For the moment look at (20.24) and take n = 1; and for the
picture p = 1: Then the kernels can be consider as distributions on R2 � R2 where
everything is Schwartz in the last two variables. Recall that we are considering
the partial Fourier transform of the Schwartz kernels, so k = k(t; � ; z; z0) where
the product is given by (20.4) (or (20.3)) in the t; � variables with � = 1: So the
function k is C1 on the product of two disks and vanishes to in�nite order at the
boundary of the second (with the z; z0 variables).

Picture: Product of two disks.
The operator product takes two such functions and composes then { the composition

in the second disk(s) is usual composition of Schwartz-smoothing operators. The
composition in the �rst disk(s) is really the same, but we have taken a partial Fourier
transform of everything and then this same product extends to C1 functions up
to the boundary. Both parts of the product are non-commutative of course, but at
a point approaching the boundary in the �rst fact the product becomes more and
more commutative and, as I will discuss later, the Taylor series at the boundary of
the product only depends on the Taylor series of the factors. So the principal symbol
{ on in t; � { is a function on the circle with values in the smoothing operators on
R (or just as well Rp) and composes as loops:-

(20.25) �0;qiso(AB) = �0;qiso(A)�0;qiso(B)

in C1(S; 	�1iso (Rp); for A;B 2 	0;�1
qiso (R;Rp):

So, let me identify the looping, or quantization sequence in terms of these
algebras. This involves three groups, two of which we are already familiar with:-

(20.26) G�1iso (R1+p) // _G0;�1
qiso (R;Rp)

�0;iso // G�1sus;iso(R
p):

In this form it is not quite exact. What precisely is the central group? It is
made up from (20.25). First consider the subalgebra of 	0;�1

qiso (R;Rp) obtained

by denanding that the (partially-Fourier-transformed) kernel k 2 C1(qR2 � R2)
{ which by assumption vanishes to in�nite order at the boundary in the second
variable { also vanishes to in�nite order at one point, N 2 qR2; on the boundary
of the �rst disk, say the North Pole (i.e. nothing interesting happens at the North
Pole). As I say, this is a subalgebra because of the Taylor-series-locality at the

boundary. Then the group _G0;�1
qiso (R;Rp) is the operators (on S(R1+p) or instance)

of the form Id+A with A of this form and invertible, with inverse of the same form.
The �rst map in (20.26) is then inclusion. The Schwartz-smoothing operators

correspond to those kernels (before and after Fourier transform) which vanish to
in�nite order at the whole boundary of the �rst disk as well as the second. The
second map is just the principal symbol { given by the restriction to the boundary in
the �rst variable (but not in the second set of variables). The identity appears here
either formally, or as it turns out corresponding to the function with is constant in
the �rst variable (if you like 1 from the Fourier transform of a delta function) and
actually the identity, i.e. �(z � z0); in the second variable. Anyway, it is just the
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identity in the second variables. Thus the image of an element Id+A of the central
group is Id+s0;iso(A) which is the identity plus a function on the circle, at at N;
with values in the Schwartz-smoothing operators on Rp and as such invertible! This
gives the sequence (20.26).

Now, why go to all the gymnastics of the atness at N? Well, otherwise we would
not get the loop group out on the right for one thing. More seriously

Theorem 6. The central group in (20.26) is weakly contractible and the range is
precisley the component of the identity in the loop group.

Even when we adjust the targent group the resulting sequence is not exact, but
only for a silly reason. Namely we have not taken into account the higher terms
in the Taylor series at the boundary. When we do this we get the looping sequence
which is an exact sequence of groups:-

(20.27) fIdg �! G�1iso (R1+p) �! _G0;�1
qiso (R;Rp)

�0;iso�!
G�1sus �;iso(R

p)
ind�! Z �! f0g:

Here G�1sus �;iso(R
p) is a `star product extension' or formal quantization of the original

group G�1sus;iso(R
p): Namely it consists of formal power series in a formal variable �

(which can be identi�ed with the de�ning function for the boundary of qR2) where
the leading term is an element of the suspended group:-

(20.28) G�1sus �;iso(R
p) 3 a =

X
j�0

�jaj ; a0 2 G�1sus;iso(Rp); aj 2 	�1sus;iso(Rp); j � 1

and the product is given by di�erential operators { more about this later! However,
it is important to note that invertibility of such a formal power series is just
invertibility of the leading term and the lower order terms are just `a�ne junk'
from a topoligical point of view { they can be deformed away. However, as we shall
see, from an analytic viewpoint they turn out to be important.


