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18. LECTURE 15: VECTOR BUNDLES AND K?(X)
WEDNESDAY, 8 OCTOBER

We start with an involution which is a finite rank perturbation of 1, v + a,
e = all, = a. Thus, restricting to C? ® I which we can identify with any other
2k-dimensional vector space we have an involution

(18.1) I =1, —1_ acting on C*>® Ran(TI;) = C**.

Then consider a further slice C? @ (Il3; — ;). Here we can identify Ran(IIs; — ;)
with C?* and so write the restriction of v, ® Id as

(18.2) "Iy +12).
So the part of the involution in C* ® Ran(Ilzy) is
(Iy(z) —I-(2) @ EL @ (I4 +1-)® —E_ ® (II3; — 1),

(18.3) B, = <(1) 8): B (8 (1)>

Now, the I_ part of the first block can be rotated rotated with the I_ part of the
second block and thus there is an homotopy leading from (18.2) to

(I4(z) +1-(z) D EL ® (I+ — ) ® —E_ ® (I — IIy)
— (Be +E) 0T+ B @ (Iy — ) ® —E— ® (g, — ).

This computation proves:-

(18.4)

Lemma 21. Any f € C°(X;H>°(R?) is homotopic through such maps to one of
the form

z I(x 0 Id o
189) fo)=me -+ (17 ) em-m+ (§ 5)em

where I(z) is a smooth family of involutions acting on the 2k-dimensional space
which is the range of I3, — Ij.

In consequence f commutes with v; and has positive and negative projections of
the form

fi(@) = By @ (1d =Tl + I, +T0) + E_ @ I,
f()=E ©Id-I})+E, oI,

which therefore commute (with each other of course and) with £ and E_. One
really might as well write this in the more symmetric form

fr@) = By @ (1[d—P~(2)) + B ® (P*(x),
(18.7) fo(z)=E_® 1d-P*(z)) + EL @ (P~ (x)),
I, P* = P*IN; = (P*)? and PTP~ =P Pt =0
where | = 3k. Then (18.6) shows that we can take P™ = Il;, k < I; by considering
—1I it follows similarly that one can arrange by homotopy that P~ = II} instead.

Note that it follows from (18.7) that
(18.8)

(18.6)

ind(f(z)) =
%tr (B~ + E;) ® P"(z) — (B4 + E_) ® P~ (z)) = rank(P*") — rank(P ).



BKLYO08 73

This gives us the basic relationship between vector bundles and smooth families
of involutions, namely PT © P~ is a ‘superbundle’ — the formal difference of two
bundles — which also determines the element of K?(X) fixed by f.

Said a different way, the space H;;>°(R*) of involutions itself has an involution
acting on it, namely

(18.9) Hi? (R*) 31 +a— n(n + a)n € Hi®(R).

iso iso

This is however ‘trivial’ as far as homotopy is concerned. Namely

Lemma 22. Any map f € C°(X;H,>°(R¥)) is homotopic to some

150

f € CR(X; H S (RY)) satisfying

150

(18.10) N .
v f(z) = f(x)y1 and a = Ta = ally,

for some k.

Proof by Jesse and Paul, not proofread yet. First suppose that
fir X > H 2 (RY), i=0,1,

180

are maps with f; ~ fo. Then there is a map
F:[0,1]xX — MH;.>(R%

50
F0,z) = fo(x)
Fl,z) = f(z)
f By the above lemma, there is a homotopy from F' to a map F so that F has a
decomposition

F(t,z) = E,®(Id—2P_(t,2)) — E_ @ (Id — 2P, (t,z)),

and that furthermore P_ can be chosen so that P_ = m; for some big k, so
in particular P_(0,2) = P_(1,z). It follows that the P, (¢, ) define isomorphic
bundles for all ¢ by an open and closed argument (openness is always true, and the
closed part follows from the constancy of the rank.)

For the converse, suppose we have an equivalence of bundles

(18.11) PPeoPieS=PlePles=C,

over a space X. Then we choose an identification of C! with a subspace of S(R?)
so that 7 is projection thereon, and define

fi = Ey®(Id-2P') —E_® (Id-2P}),
for i = 0,1. The lemma then follows by using (18.11) and rotating blocks as follows.
f° E,® (Id—2P%) —E_ ® (Id—2PY)
= E,® ((Id-2P%m) - E_® ((Id—2P))m)
+Ey ® ((Id - 2P2)(Id - m)) — E- @ ((Id — 2PY)(Id - m)) ,

so just deal with the middle line, so that we only consider f° (E; ® 7y, + E_ ® mg,),
which is

= E.® (Ide —2P°) — E_ @ (idet — 2PY)
E,®(PL+S-P’)—E_®(P.+S-P?)
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Everything here is in blocks, so you can rotate the two S’s into one another, which
switches their signs. This and another substitution gives

E,®(PL-S-P)-E_®(P.-5-P)
= E,®(2P{ —Idx) — E_ ® (2P — Idg)
= B, ® (Ide —2P') — E_ ® (Idet — 2PY)

Adding this back to the part we ignored gives the homotopy we wanted.

This is a direct consequence of Lemma 21.

Proposition 16. Any map f € C°(X; H>°(R¥)) satisfying (18.10) is of the form

150

(18.7) and two such maps ﬂ are homotopy if and only if there is a vector bundle S
over X which is identified with CP outside a compact set and a bundle isomorphism

(18.12) Ran(P;") @ Ran(P; ) ® S — Ran(P;) ® Ran(P) @ S

which is the natural identification outside a compact set; here the ranges of the
projections are considered as vector bundles over X.

Proof. O

The adiabatic Bott element constructed ealier

(18.13) B=vy ®Id+D, D € ¥7%° (R;C?)

sl,iso
is an involution, B? = Id, and satisfies
os1(B) =7y @ Id+0(t,7) = b(t,7)
R(B) =y ® (Id —1I;) + Id ®II; € M(2,C) + ¥, .>°(R; C?)

150

(18.14)

which is (18.7) with P~ =0, P+ =TI, [ = 1.

Completion of proof of Proposition 15. To prove the even semiclassical lifting property
we can take an element in the form (18.7). Consider

B=v ®(d-P"(z) - P~ (z)) + B® PT(z) - B® P~ ()
€CE(X; M(2,C) + ¥ (R:RF).

ad,iso

(18.15)

I think this quantizes to the right thing and so proves the surjectivity of R in
(17.15). Injectivity follows using Atiyah’s rotation again. O

Now, let me consider the clutching constructions. Perhaps I will take the time
to do this carefully, for the moment I have just written these down and am hoping
for the best!

First, from even to odd. There is an actual map
(18.16) clog : H o (RF) D T = +a —>

(cos(O(t)) — isin(O(t))y1) (cos(O(t)) + isin(O(t))I)
= Id +isin(O(t)) ( cos(O(t)) — isin(@(t))%)a € G _(RF;C?).

sus,iso
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Here © € C*°(R) is non-decreasing, vanishes for ¢ sufficiently negative and is equal
to m for t positive. Similarly, from odd to even

(18.17)  cloe : GL°(RF) 3 g +—s

( cos(O(t))  sin(O(t))g )

1) = sin(O(t))g~! —cos(O(t)) -
(cos(?w —0O(—t)) sin(2r — O(—t)) > - sus,iso .
sin(2r — O(—t)) —cos(2m — O(—t))

t<0

Proposition 17. The clutching maps in (18.16) and (18.17) induce isomorphisms
in K-theory giving commutative diagrams for any manifold X :
(18.18)

Pad

': A

[0 2 (R)] — 5 [X5 G (RE )] — 5 [X5 %, (RF; C2)),

iso sus,iso sus(2),iso

loe .
KOX)— =2 S K!(Rx X)—=" > K%R2 x X
C C

A J

and

v N

(1819)  [X; G (RE)], —25 [X; H 250 (RF)] e —2%5 [X5 G0, o (RES C2)],

iso sus,iso sus(2) iso

cl cloe

K (X)) ———KIR x X) ———K_ ' (R? x X)

A /

Pad




