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18. Lecture 15: Vector bundles and K0
c
(X)

Wednesday, 8 October

We start with an involution which is a �nite rank perturbation of 
1; 
1 + a;
�ka = a�k = a: Thus, restricting to C2
�k which we can identify with any other
2k-dimensional vector space we have an involution

(18.1) I = I+ � I� acting on C2 
 Ran(�k) � C2k:
Then consider a further slice C2
 (�3k��k): Here we can identify Ran(�3k��k)
with C2k and so write the restriction of 
1 
 Id as

(18.2) 
1 
 (I+ + I�):

So the part of the involution in C2 
 Ran(�3k) is

(18.3)

(I+(x)� I�(x))� E+ 
 (I+ + I�)��E� 
 (�3k ��k);

E+ =

�
1 0
0 0

�
; E� =

�
0 0
0 1

�
:

Now, the I� part of the �rst block can be rotated rotated with the I� part of the
second block and thus there is an homotopy leading from (18.2) to

(18.4)
(I+(x) + I�(x))� E+ 
 (I+ � I�)��E� 
 (�3k ��k)

= (E+ + E�)��k + E+ 
 (I+ � I�)��E� 
 (�3k ��k):

This computation proves:-

Lemma 21. Any f 2 C1c (X;H�1iso (Rd) is homotopic through such maps to one of
the form

(18.5) ~f(x) = 
1 
 (Id��3k) +

�
I(x) 0
0 � Id

�

 (�3k ��k) +

�
Id 0
0 Id

�

�k

where I(x) is a smooth family of involutions acting on the 2k-dimensional space
which is the range of �3k ��k:

In consequence ~f commutes with 
1 and has positive and negative projections of
the form

(18.6)
~f+(x) = E+ 
 (Id��3k + I+ +�k) + E� 
�k

~f�(x) = E� 
 (Id��k) + E+ 
 I�;
which therefore commute (with each other of course and) with E+ and E�: One
really might as well write this in the more symmetric form

(18.7)

~f+(x) = E+ 
 (Id�P�(x)) + E� 
 (P+(x));

~f�(x) = E� 
 (Id�P+(x)) + E+ 
 (P�(x));

�lP
� = P��l = (P�)2 and P+P� = P�P+ = 0

where l = 3k: Then (18.6) shows that we can take P+ = �k; k � l; by considering
�I it follows similarly that one can arrange by homotopy that P� = �k instead.
Note that it follows from (18.7) that
(18.8)

ind( ~f(x)) =

1

2
tr
�
(E� + E+)
 P+(x)� (E+ + E�)
 P�(x)

�
= rank(P+)� rank(P�):
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This gives us the basic relationship between vector bundles and smooth families
of involutions, namely P+ 	 P� is a `superbundle' { the formal di�erence of two
bundles { which also determines the element of K0

c(X) �xed by ~f:
Said a di�erent way, the space H�1iso (Rk) of involutions itself has an involution

acting on it, namely

(18.9) H�1iso (Rk) 3 
1 + a 7�! 
1(
1 + a)
1 2 H�1iso (Rk):

This is however `trivial' as far as homotopy is concerned. Namely

Lemma 22. Any map f 2 C1c (X;H�1iso (Rk)) is homotopic to some

(18.10)
~f 2 C1c (X;H�1iso (Rk)) satisfying


1 ~f(x) = ~f(x)
1 and a = �ka = a�k

for some k:

Proof by Jesse and Paul, not proofread yet. First suppose that

fi : X ! H�1iso
�
R
d
�
; i = 0; 1;

are maps with f1 � f2. Then there is a map

F : [0; 1]�X ! H�1iso
�
R
d
�

F (0; x) = f0(x)

F (1; x) = f1(x)

f By the above lemma, there is a homotopy from F to a map eF so that eF has a
decompositioneF (t; x) = E+ 
 (Id� 2P�(t; x))� E� 
 (Id� 2P+(t; x)) ;

and that furthermore P� can be chosen so that P� � �k for some big k, so
in particular P�(0; x) = P�(1; x). It follows that the P+(t; �) de�ne isomorphic
bundles for all t by an open and closed argument (openness is always true, and the
closed part follows from the constancy of the rank.)

For the converse, suppose we have an equivalence of bundles

P 0
� � P 1

+ � S = P 1
� � P 0

+ � S = C
l;(18.11)

over a space X. Then we choose an identi�cation of Cl with a subspace of S(Rd)
so that �l is projection thereon, and de�ne

f i = E+ 

�
Id� 2P i

�

�� E� 
 �Id� 2P i
+

�
;

for i = 0; 1. The lemma then follows by using (18.11) and rotating blocks as follows.

f0 = E+ 

�
Id� 2P 0

�

�� E� 
 �Id� 2P 0
+

�
= E+ 


�
(Id� 2P 0

�)�l
�� E� 
 �(Id� 2P 0

+)�l
�

+E+ 

�
(Id� 2P 0

�)(Id� �l)
�� E� 
 �(Id� 2P 0

+)(Id� �l)
�
;

so just deal with the middle line, so that we only consider f0 (E+ 
 �k + E� 
 �k),
which is

= E+ 

�
IdCl � 2P 0

�

�� E� 
 �idCl � 2P 0
+

�
= E+ 


�
P 1
+ + S � P 0

�

�� E� 
 �P 1
� + S � P 0

+

�
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Everything here is in blocks, so you can rotate the two S's into one another, which
switches their signs. This and another substitution gives

= E+ 

�
P 1
+ � S � P 0

�

�� E� 
 �P 1
� � S � P 0

+

�
= E+ 


�
2P 1

+ � IdCl
�� E� 
 �2P 1

� � IdCl
�

= E+ 

�
IdCl � 2P 1

�

�� E� 
 �IdCl � 2P 1
+

�
Adding this back to the part we ignored gives the homotopy we wanted.

�

This is a direct consequence of Lemma 21.

Proposition 16. Any map ~f 2 C1c (X;H�1iso (Rk)) satisfying (18.10) is of the form

(18.7) and two such maps ~fi are homotopy if and only if there is a vector bundle S
over X which is identi�ed with Cp outside a compact set and a bundle isomorphism

(18.12) Ran(P+
1 )� Ran(P�2 )� S �! Ran(P+

2 )� Ran(P�1 )� S
which is the natural identi�cation outside a compact set; here the ranges of the
projections are considered as vector bundles over X:

Proof. �

The adiabatic Bott element constructed ealier

(18.13) B = 
1 
 Id+D; D 2 	�1sl;iso(R;C2)
is an involution, B2 = Id; and satis�es

(18.14)
�sl(B) = 
1 
 Id+�(t; �) = b(t; �)

R(B) = 
1 
 (Id��1) + Id
�1 2M(2;C) + 	�1iso (R;C2)

which is (18.7) with P� = 0; P+ = �1; l = 1:

Completion of proof of Proposition 15. To prove the even semiclassical lifting property
we can take an element in the form (18.7). Consider

(18.15)
~B = 
1 
 (Id�P+(x)� P�(x)) +B 
 P+(x)�B 
 P�(x)

2 C1c (X;M(2;C) + 	�1ad;iso(R : Rk):

I think this quantizes to the right thing and so proves the surjectivity of R in
(17.15). Injectivity follows using Atiyah's rotation again. �

Now, let me consider the clutching constructions. Perhaps I will take the time
to do this carefully, for the moment I have just written these down and am hoping
for the best!

First, from even to odd. There is an actual map

(18.16) cleo : H�1iso (Rk) 3 I = 
1 + a 7�!�
cos(�(t))� i sin(�(t))
1

��
cos(�(t)) + i sin(�(t))I

�
= Id+i sin(�(t))

�
cos(�(t))� i sin(�(t))
1

�
a 2 G�1sus;iso(Rk;C2):
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Here � 2 C1(R) is non-decreasing, vanishes for t su�ciently negative and is equal
to � for t positive. Similarly, from odd to even

(18.17) cloe : G
�1
iso (Rk) 3 g 7�!

I(t) =

8>>>><>>>>:

 
cos(�(t)) sin(�(t))g

sin(�(t))g�1 � cos(�(t))

!
t � 0 

cos(2� ��(�t)) sin(2� ��(�t))
sin(2� ��(�t)) � cos(2� ��(�t))

!
t > 0

2 H�1sus;iso(Rk):

Proposition 17. The clutching maps in (18.16) and (18.17) induce isomorphisms
in K-theory giving commutative diagrams for any manifold X :
(18.18)

[X;H�1iso (Rk)]c
cleo // [X;G�1sus;iso(R

k;C2)]c
cloe // [X;H�1sus(2);iso(Rk;C2)]c

EDGF
pad

��

K0
c
(X)

cleo // K1
c
(R�X)

cloe // K0
c
(R2 �X)BC@A

pad

OO

and

(18.19) [X;G�1iso (Rk)]c
cloe // [X;H�1sus;iso(Rk)]c

cloe// [X;G�1sus(2) iso(R
k;C2)]c

EDGF
pad

��

K�1
c
(X)

cleo // K0
c
(R�X)

cloe // K�1
c
(R2 �X)BC@A

pad

OO


