
64 RICHARD MELROSE

16. Lecture 13: Involutions and K0

Friday, 3 October

Last time I introduced the space of smooth involutionsH�1(R); let me immediately
note some properties of it.

Proposition 14. There is a surjective index, or relative dimension, map

(16.1) ind : H�1(Rk) �! Z; ind(I1 + a) =
1

2
tr(a)

which labels the components, H�1k (Rk); of H�1(Rk): The base component, where
the index vanishes, is a homogeneous space

(16.2) H�10 (Rk) = G�1iso (Rk;C2)=
�
G�1iso (Rk)�G�1iso (Rk)

�
through conjugation and the other components are isomorphic to the base component
{ but not naturally so.

Proof. We use �nite rank approximation to prove this. In the construction of the
quantized Bott element I used the idea which lies behind:

Lemma 18. For each I 2 H�1(Rk) there is a neighbourhood

0 2 B � 	�1(Rk;C2)

such that if b 2 B then the complex integral

(16.3) J(b) = � Id��iR
jz�1j= 1

2

�
1

2
(I + b)� (z � 1

2
) Id

��1
dz

is an element of H�1(Rk):

Proof. As Boris said: Just use the functional calculus!
If b = 0 in (16.3), then the inverse of 1

2I � (z � 1
2 ) Id = (1 � z)B+ � zB� is

(1 � z)�1B+ � z�1B� where I = B+ � B� is the decomposition into projections.
The inverse is uniformly bounded on jz � 1j = 1

2 so remains invertible there if
perturbed by b=2 in a small ball around the origin. Thus the integrand in (16.3)
does exist and is of the form

(16.4)

�
1

2
(I + b)� (z � 1

2
) Id

��1
= (1� z)�1B+ � z�1B� + 
(z; b)

where 
(z; b) is holomorphic near jz � 1j = 1
2 and valued in smoothing operators.

The integral of the �rst term on the right in (16.4) is �B+ so J(b) = I + b0 with
b0 2 	�1(Rk;C2): Moreover, b0 is small with b and depends continuously on it. It
remains to check that J(b) is an involution. The square can be written

(16.5) J(b)2 = Id+2
1

�i

Z
jz�1j= 1

2

�
1

2
(I + b)� (z � 1

2
) Id

��1
dz

+
1

(�i)2

Z
jz�1j= 1

2

Z
jt�1j= 1

2+�

�
1

2
(I + b)� (z � 1

2
) Id

��1
�
1

2
(I + b)� (t� 1

2
) Id

��1
dzdt
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where the t contour has been moved slightly where � > 0: Applying the resolvent
identity�

1

2
(I + b)� (z � 1

2
) Id

��1�
1

2
(I + b)� (t� 1

2
) Id

��1
=

(z � t)�1
�
1

2
(I + b)� (z � 1

2
) Id

��1
� (z � t)�1

�
1

2
(I + b)� (t� 1

2
) Id

��1
and inserting this into the the last term allows it to be evaluated by residues as

(16.6)
1

(�i)2

Z
jz�1j= 1

2

Z
jt�1j= 1

2+�

�
1

2
(I + b)� (z � 1

2
) Id

��1
�
�
1

2
(I + b)� (t� 1

2
) Id

��1
dzdt

= �2 1

�i

Z
jz�1j= 1

2

�
1

2
(I + b)� (z � 1

2
) Id

��1
dz:

Thus indeed, J(b)2 = Id : �

This `retraction onto H�1(Rk)' allows any element I1+ a to be connected to a
�nite rank perturbation of I1: Namely, if k is large enough, depending on a; then

(16.7) I1 + (1� t)a+ t�ka�k

is su�ciently close to I1 + a; for t 2 [0; 1]; for the Lemma to apply. Moreover it
follows directly from the formula for J(b) that

(16.8) J(�ka�k) = I +�ka
0�k

is indeed a �nite rank perturbation. Thus, as an involution it is equal to

(16.9) I1(Id��k) + �kA�k

where the second term is an involution in M(2;C) 
 M(k;C); the latter being
matrices acting on the range of �k in S(Rk):

For �nite rank involutions the �rst statements in the Proposition become obvious.
In a given vector space they correspond to a decomposition as a direct sum, of the
1 and �1 eigenspaces, of dimensions d+ and d�; d++ d� = N being the dimension
of the space on which the involution acts. Moreover, for �xed N any two such
decompositions are linearly equivalent if and only the positive eigenspaces have the
same dimension, d+: The trace of the involution, d+�d� = �2N +2d�; is an even
integer which determines the involution up to linear equivalence. It follows that for
the decomposition (16.9), in which �k acts as a multiple of the identity on the C2

factor,

(16.10) tr(J(�ka�k)� I1) = tr(�kA�k)� tr(I1�k) = 2p 2 2Z
determines the linear equivalence class.
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So, it remains to show that 1
2 Tr(a) is locally constant. However di�erentiating

the identity I2t = Id shows that

(16.11)

ItI
0
t + I 0tIt = 0 =) tr(I 0t) = 0;

hence
d

dt
tr(It � I) = 0:

since I 0t is o�-diagonal with respect to It:
This proves (16.1) and that the `index' map is constant on the components of

H�1(Rk):
In the case that ind(I1 + a) = 0 it follows from the discussion above that I + a

is connected by a smooth path I1 + a(t); t 2 [0; 1]; in H�1(Rk) to I1 itself, so
a(1) = a; a(0) = 0: For each I 2 H�1(Rk); if b is small enough and I+b 2 H�1(Rk)
then

(16.12) T = (I + b)+I+ + (I + b)�I� 2 G�1(Rk;C2)

where I + b = (Ib)+ � (I + b)� is the decomposition into projections. Moreover,

TI = (I + b)T =) (I + b) = T�1IT:

Thus, nearby involutions are conjugate under the action of G�1(Rk;C2):
Apply this at each point t 2 [0; 1] it follows that there is a �nite decomposition

of the interval such that I + a(t) at each lower end-point is so conjugate to the
upper end-point. Composing the action shows that I + a is conjugate to I1:

Thus we see that the action by conjugation of G�1(Rk;C2); is transitive on
H�10 (Rk): It is clear that the subgroup �xing I1 is the diagonal group G�1(Rk)�
G�1(Rk) which is (16.2).

In each H�1k (Rk) there is a `base point'

(16.13)

(
I1 + (Id�I1)�k 2 H�1k
I1 � (Id+I1)�k 2 H�1�k

; k > 0

Thus it su�ces to show that these are conjugate to I1: This can be done by
renumbering the bases { of course these conjugating operators are not inG�1(Rk;C2):

�

This result has quite a few consequences for our de�ntion of K0
c(X): However,

the �rst thing I need to do { to �nish the proof of Bott periodicity { is to go back
and look at the quantized Bott involution constructed in Lemma 9. What we want
to do is to compute 1

2 tr(D�); which we now know to be constant as a function of
� > 0: Of course we must somehow compute it in terms of the semiclassical limit
as � # 0: By construction D� comes from a semiclassical family, with kernels

(16.14) D� = ��1D(�;
�(t+ t0)

2
;
t� t0
�

)

valued in 2� 2 matrices. So, for � > 0
(16.15)

tr(D�) = ��1
Z
R

trD(�; �t; 0)dt = ��2
Z
R

D(�; T; 0)dT =
1

2��2

Z
R2

tr D̂(�; t; �)dtd�:

So, what we know is D̂(0; t; �) = �(t; �) and what we need to compute is the
(integral of the trace of) the coe�cient of �2 in the Taylor series expansion of

D̂(�; : : : ): Fortunately, the �2 term is the next after the leading term.



BKLY08 67

In fact if you recall the construction of D what we did was start with D0 which
is a quantization of �; we can take it not to depend explicitly on �: Then we need
to compute the semiclassical symbol of the error term

(16.16) (I1 +D0)
2 � Id = �2E1; �sl(E1) =

1

2i
(@t�@�� � @��@t�) :

Now, the correction term is �2D1 where �sl(D1) has to satisfy

(16.17) b�sl(D1) + �sl(D1)b = �sl(E1)

which we did by noting that the right side satis�es

b�sl(E1) = �sl(E1)b so �sl(D1) =
1

2
b�sl(E1)

works. Thus combining these formul� we need to compute

(16.18) � 1

8�

Z
R2

tr (b (@t�@�� � @��@t�)) dtt�:
Since @t� and @�� are derivatives of b = I1+ � we know that b(@t�) = �(@t�)b; etc,
anticommute. So in fact the two terms in (16.18) are the same. Since � is written
in terms of polar coordinates, it is natural to change variable and use a similar
rearrangement to reduce to the integral

(16.19) � 1

4�

Z 1

0

Z 2�

0

tr (b(@r�)(@��)) drd�:

Now, recall what b = I1 + � is! It was de�ned in terms of Pauli matrices

(16.20) b(t; �) = cos(�(�r))
1 + sin(�(�r)) cos(�)
2 � sin(�(�r)) sin(�)
3:
There are three constant matrices in (16.20). Each of them has trace zero and
the product of any two of them (which is �i times the other one) has trace zero.
The product of all three 
1
2
3 = � Id2�2 has trace �2: Thus there are four terms
which can contribute. Namely the product of �0(�r) and

(16.21)

sin3(�) sin2 �
3
1
2 � sin(�) cos2(�) sin2 �
1
3
2

� sin3(�) cos2 �
2
1
3 + sin(�) cos2(�) cos2 �
1
2
3

= � sin(�) Id;
where � = �(�r): The integral is therefore

(16.22) �
Z 2�

0

Z �

0

sin2 � sin(�)d�d� = 8�:

Combining all this we conlude that

(16.23) ind(B) =
1

2
tr(D) = 1:

Phew, that proves Bott periodicity.


