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16. LECTURE 13: INvoLuTiONs AND K°
FripDAY, 3 OCTOBER

Last time I introduced the space of smooth involutions #~°°(R), let me immediately
note some properties of it.

Proposition 14. There is a surjective index, or relative dimension, map
1
(16.1) ind : H°(R*) — Z, ind(I, + a) = 3 tr(a)

which labels the components, H,;OO(IR’“), of H=°(R¥). The base component, where
the index vanishes, is a homogeneous space

(16.2) Ho ¥(RY) = Gio* (R C)/ (Gioo® (RY) @ Gig® (R))

iso iso

through conjugation and the other components are isomorphic to the base component
— but not naturally so.

Proof. We use finite rank approximation to prove this. In the construction of the
quantized Bott element I used the idea which lies behind:

Lemma 18. For each I € H~°(R*) there is a neighbourhood
0 € B C U—°°(RF; C?)
such that if b € B then the complex integral

(16.3) J(b) = —Td—"" (;(H— b — (2 — %) Id> i

is an element of H~°°(R¥).

Proof. As Boris said: Just use the functional calculus!

If b = 0 in (16.3), then the inverse of 1 — (z — $)Id = (1 — 2)By — 2B_ is
(1-2)"'B; —27'B_ where I = B, — B_ is the decomposition into projections.
The inverse is uniformly bounded on |z — 1| = 1 so remains invertible there if
perturbed by b/2 in a small ball around the origin. Thus the integrand in (16.3)

does exist and is of the form

(16.4) (;(I +b) — (2 — %) Id)  — (1= 2B — > 'B_ 4 4(:b)

where 7(z;b) is holomorphic near |z — 1| = 1 and valued in smoothing operators.

The integral of the first term on the right in (16.4) is =B so J(b) = I + V' with
b € U~>°(R*; C?). Moreover, b’ is small with b and depends continuously on it. It
remains to check that J(b) is an involution. The square can be written

™

(Wli)z /z—1|; /t—1;+5 <;(I *h) e %) Id> i

<;(1 b — (- %) Id) et

(16.5) J(b)? =1d +2i,/ (;(I+b) . ;)Id>_ iz
e

+
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where the ¢ contour has been moved slightly where § > 0. Applying the resolvent
identity

-1

<;(I+b) . ;)Id> - (;(I+b) . ;)Id> -
(z— )1 (;(H— b — (= — ;)Id> -

—(z—-t)"! (;(I+b) —(t— ;)Id>_1

and inserting this into the the last term allows it to be evaluated by residues as

(16.6) (7r1i>2/z_1|;/t_1|;+5 (;(I+b)—(z—;)ld>l
y (;(I+b) . ;)Id)ldzdt

_ oL <;(I+b) (- ;)Id> T

T J|a=11=5
Thus indeed, J(b)? =1Id. O

This ‘retraction onto = (R*)’ allows any element I, + a to be connected to a
finite rank perturbation of I,,. Namely, if k£ is large enough, depending on a, then

(16.7) Io + (1 — t)a + tTall,

is sufficiently close to I, + a, for ¢ € [0, 1], for the Lemma to apply. Moreover it
follows directly from the formula for J(b) that

(16.8) J(HkaHk) = I+ II;aII;
is indeed a finite rank perturbation. Thus, as an involution it is equal to
(16.9) I (Id —IIg) + II; ATl

where the second term is an involution in M(2,C) ® M (k,C), the latter being
matrices acting on the range of I in S(R*).

For finite rank involutions the first statements in the Proposition become obvious.
In a given vector space they correspond to a decomposition as a direct sum, of the
1 and —1 eigenspaces, of dimensions d; and d_, d; +d_ = N being the dimension
of the space on which the involution acts. Moreover, for fixed N any two such
decompositions are linearly equivalent if and only the positive eigenspaces have the
same dimension, d. . The trace of the involution, d; —d_ = —2N +2d_, is an even
integer which determines the involution up to linear equivalence. It follows that for
the decomposition (16.9), in which II; acts as a multiple of the identity on the C?
factor,

(1610) tr(J(HkaHk) — IOO) = tr(HkAHk) — tI‘(IOOHk) =2pe€2Z

determines the linear equivalence class.
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So, it remains to show that 3 Tr(a) is locally constant. However differentiating
the identity I} = Id shows that

LI+ 11, =0= tr(I) =0,
(16.11)

d
hence T tr(Ily — I) = 0.

since I} is off-diagonal with respect to I;.

This proves (16.1) and that the ‘index’ map is constant on the components of
H=°(RF).

In the case that ind(I, + a) = 0 it follows from the discussion above that I +a
is connected by a smooth path I, + a(t), t € [0,1], in H °(R¥) to I itself, so
a(l) = a,a(0) = 0. For each I € H~°(R*), if b is small enough and I+b € H~>°(R¥)
then

(16.12) T=I+bIi+(I+b)_I_€G >~R"C?
where I +b = (I;)+ — (I + b)— is the decomposition into projections. Moreover,
TI=(I+b)T = (I+b) =T 'IT.

Thus, nearby involutions are conjugate under the action of G~°°(R*; C?).

Apply this at each point t € [0, 1] it follows that there is a finite decomposition
of the interval such that I + a(t) at each lower end-point is so conjugate to the
upper end-point. Composing the action shows that I + a is conjugate to I.

Thus we see that the action by conjugation of G~°°(R¥;C?), is transitive on
Hy °(RF). Tt is clear that the subgroup fixing I, is the diagonal group G~>°(R¥) &
G~ (R¥) which is (16.2).

In each H, *°(R") there is a ‘base point’

{IOO +(Id =1 )My, € Hy™

16.13 ;
(16.13) Lo — (Id+I )T € H™

k>0
Thus it suffices to show that these are conjugate to I,. This can be done by

renumbering the bases — of course these conjugating operators are not in G~°°(R*; C?).
O

This result has quite a few consequences for our defintion of K°(X). However,
the first thing I need to do — to finish the proof of Bott periodicity — is to go back
and look at the quantized Bott involution constructed in Lemma 9. What we want
to do is to compute %tr(De), which we now know to be constant as a function of
€ > 0. Of course we must somehow compute it in terms of the semiclassical limit
as € | 0. By construction D, comes from a semiclassical family, with kernels

t+t) t—t
(16.14) D.=e'Dle, % —)
valued in 2 x 2 matrices. So, for € > 0
(16.15)
1 .
tr(D,) = e / tr D(e, et, 0)dt = €2 / D(e,T,0)dT = 5 / tr D(e, t, 7)dtdr.
R R 2me? o

So, what we know is D(0,¢,7) = 6(¢,7) and what we need to compute is the
(integral of the trace of) the coefficient of €2 in the Taylor series expansion of
D(e,...). Fortunately, the €2 term is the next after the leading term.
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In fact if you recall the construction of D what we did was start with Do which
is a quantization of d; we can take it not to depend explicitly on e. Then we need
to compute the semiclassical symbol of the error term

1
(16.16) (I + Do)? —1d = €2 EFy, 0g(F;) = % (0460,6 — 0,00;6) .
Now, the correction term is €2D; where o4 (D;) has to satisfy
(16.17) bO’sl(D1) + 0'51(D1)b = Usl(El)

which we did by noting that the right side satisfies
1

basl(El) = Usl(El)b SO Usl(D1) = §b051(E1)
works. Thus combining these formulae we need to compute
1
(16.18) —— tr (b (0:00,0 — 0,00.0)) dttT.
T JR2

Since 0.0 and 0,9 are derivatives of b = I, + ¢ we know that b(9;0) = —(0;0)b, etc,
anticommute. So in fact the two terms in (16.18) are the same. Since d is written
in terms of polar coordinates, it is natural to change variable and use a similar
rearrangement to reduce to the integral

1 %] 27
(16.19) ——/ / tr (b(0,0)(0g0)) drdf.

47 0 0
Now, recall what b = I, + ¢ is! It was defined in terms of Pauli matrices
(16.20)  b(t,7) = cos(O(—r))y1 +sin(O(—7)) cos(8)y2 — sin(O(—r)) sin(d)~s.

There are three constant matrices in (16.20). Each of them has trace zero and
the product of any two of them (which is i times the other one) has trace zero.
The product of all three v17273 = — Ida«s has trace —2. Thus there are four terms
which can contribute. Namely the product of ©'(—r) and

3

sin®(0) sin? #y3y1y2 — sin(O) cos? (O) sin? y1v372
(16.21) —sin®(0) cos? #y2y1793 + sin(O) cos?(©) cos? 17273
= —sin(0) Id,

where © = ©(—r). The integral is therefore

(16.22) - /2” /ff sin® #sin(©)dAdO = 8.
Combining all this we co(;ludg that

(16.23) ind(B) = %tr(D) =1

Phew, that proves Bott periodicity.



