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14. LECTURE 11: ADIABATIC PERIODICITY MAP
MONDAY, 29 SEPTEMBER

Last time I started the ‘easier’, or perhaps better to say ‘routine’, part of the
proof of Theorem 2 — giving the adiabatic diagonal sequence, from top left to bottom

right in
Q ?

(14.1)
ad 1so

(4 € G
/ \

Giso® RCH_A sus(Zd) 1so(Rk)'

180

(4) = 1}

Observe that this already gives us a map — following the arguments of last lecture

(14.2) [X;G (RF)]e — [X;G5

sus(2d),iso

(]RdJrk)] .

150

So once we see the same properties for the other sequence we conclude that this
must be an isomorphism. In fact for the moment I will only do this for d = 1.
Addendum to Lecture 11: GL(N,C) and the Bott element From Paul
Loya
Here we present the proof on Sept. 26-th that the restriction map to ¢ = 1:
R:G72 (R,R*) - G;°(RF1),

ad,iso 150

is surjective at the level of homotopies using the Bott element.
Preparing for the Bott element: Lemmas from Lecture 14
The following lemma is Lemma 16 in Lecture 14.

Lemma 15 (Finite Rank Approximation). Let II be the orthogonal projection
onto an N-dimensional subspace of S(RY) and choose an identification of linear
maps on the range of 11 with M (N, C), and consider the map

M(N,C) > A+ 1d—II + AIl € Id +¥,%°(R?),

is0

where ATl on the right is the matriz A acting on the range of 11 through the chosen
identification of linear maps on the range of I with M (N, C). This map restricts
to a map

GL(N,C) 3 A+ Id —IT + ATl € G;°°(RY),

and for any topological space X, induces a map
[X, GL(N,C)]e = [X, G2 (R)].

that is defined independent of the choice of the N-dimensional subspace of S(R?)
chosen and the choice of identification of linear maps on the range of II with
M(N,C). Moreover, any element of [X,G;°°(R?)], is in the image of this map
for a sufficiently large N.

is0

The following lemma is Lemma 17 in Lecture 14.
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Lemma 16. If I, is the orthogonal projection onto a 1-dimensional subspace of
S(RY), then the map'

G2 (R*) 5 h +— Id —II; + hII; € G, 2°(R*"7)

is0 80

induces an isomorphism
[X, G (RM)]e = [X, G20 (RFF)],

is0 is0

that is defined independent of the choice of the 1-dimensional subspace.

Proof of the theorem: The Magical Bott element
Recall that the Bott element is an operator B € H_7°(R) = {involutions in” y; +
U 2°(R,C?)}, which has the property that

1 0
B+|E:1 ~ (0 H1>

0 0
B|E=1N<0 1—H1>

where II; € ¥; °°(R) is the projection onto a one-dimensional subspace of S(R')

(say the ground state of the harmonic oscillator).

and

Theorem 3. The restriction map to € = 1:
R:G. 2 (R,R*) - G, °(RF),

ad,iso 50
is surjective at the level of homotopies. That is, for any topological space X and
any element [g] € [X, G20 (R¥1)]. there is an element [§] € [X, G giso(R, R¥)].
such that [Rg] = [g].

Proof. By finite rank approximation, any element of [X, G;,>° (R¥+1)], is homotopic
to an invertible matrix through Lemma 15 and by further stabilization we may

assume that

0 g
Idy is the N x N identity matrix, and

Fy : GL(2N,C) — G;;>°(R¥1)

180

g=F <IdN 0> , where go:X — GL(N,C),

is the map in Lemma 15 defined by some choice of 2N-dimensional subspace of
S(R*+1) — it’s not important now what subspace we choose although at the end
of this proof we’ll take a subspace in S(RF¥*!) = S(R* x R!) spanned by 2N
independent functions in S(R*) times a function in S(R'). The reason we take g
in terms of a 2 x 2 matrix (of N x N matrices) is because the Bott element is given
in terms of 2 x 2 matrices. We shall find a map
§:X = G5, (R,RY)
such that [Rg] = [g]. To define g, let
Fy : GL(2N,C) = G;,2°(RF),

180

LOn the right-hand side, as operators on S(R¥+4) = §(R* x R%), II; only acts on the R¢ factor
and h on the R¥ factor.

2Recall that 41 = <[1) _01) and note that ¥ (R, C?) consists of 2 x 2 matrices of operators

in U, (R).
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be the map in Lemma 15 induced by some choice of 2N-dimensional subspace of

S(R*), and then define

Id
gi= (1% YY) (1dy ©B,) +1dy ©B_.
0 go

Let’s pause to think about this! Note that B4 are 2 x 2 matrices whose entries
are operators in Id +¥_°(RR), so Idy ®B are 2N x 2N matrices of the same sort.
Using that B = ; modulo a 2x 2 matrix of operators in ¥_ > (R) one can check that
g1 = Iday +R where R is a 2N x 2N matrix of operators in ¥_ > (R). Moreover,
g1 is invertible with inverse

Idy 0
0 g

where

) (IdN ®B+) +Idy ®B_.

It follows that
g = Flgl € Gg?l,iso(]RJRk)'
Now we claim that
_ _ Idy O
9|51~9—F0< 0 go>'

To see this, recall that

1 0 0 0
B+|€=1N<0 H1> and B|E=1N<0 1—H1>'

Therefore,
1d 0
gile=1 = ( 0 ) (Idy @By )|e=1 + Iy ©B_|c—
9o
Idy O Idn 0 N 0 0
0 Jo 0 IdNH:L 0 IdN—Idan
Id
= Idon — Idon 0y + ( o 0) 10,
9o
Hence,

- Id 0
Gle=1 = Fig1]e=1 ~1d —II; + <F1< ON >> II,.
9o

In other words, if

Fy 1 [X, G2 (R¥)] — [X, G2 (RM)]

1850 180

is the isomorphism induced by the map, which we also denote by F5,

(14.3) G 2°(R*) 5 h — Id —TI; + hII; € G 5°(R*1)

iso 180

found in Lemma 16 with d = 1, then we see that

~ Idy O
e= :F F .
e 2( 1( 0 90))

To summarize, we are left to show that

(7 o) =187 )]
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Thus, our theorem is finished off by proving that the composition

[X,GL2N,C)] B (X, G2 (®RM] B X, G2 (R)]

180 180

is exactly the same as the map

[X,GL(2N,C)] B8 [X, G;.2 (RFH1)];

180

in other words, we need to prove that the following diagram commutes:

[X,GL(2N, C)] — 2> [X, G2 (R¥)] — 2= [X, G (RF+1)] .

is0 iso

V

Fo

To prove this we just have to look at what the maps Fy, F1, and F5. Let II be the
orthogonal projection onto any 2N-dimensional subspace of S(R*). Then F} is the
map induced by

GL(2N,C) 5 A — Id —II + ATl € G;,°(R*).

Therefore, at the homotopy group level, F5 Fy is the map (see (14.3) for F5) induced
by

GL(2N,C) 3 A+ Id —II; + (Id -1 + AINII; € G, 2°(RM)

180

=1d-II1I; + AIITI; € G; (R

1850

On the other hand, IIII; is the orthogonal projection onto a 2/N-dimensional
subspace of S(R¥*1) (namely, the space of functions of the form f(z)g(y) where
(z,y) € R¥ x R! with f and g in the range of II and II;, respectively). Hence, we
can take the map Fj to be induced by

GL(2N,C) 3 A+ Id —ITTI, 4+ AT T, € G,°°(R¥),

180

which is exactly F5F7. This completes the proof. O

Extra: Bott periodicity for the general linear group
This section is not needed for the Bott element, but might be useful to be written
down. In this section we prove that mo(GL(N,C)) = {0} and =1 (GL(N,C)) = Z.

Lemma 17. There is a smooth map

T:8°N "1\ {-e;} - GL(N,C) , veT,
such that T,, = Id and for allv € 2N "1\ {—e1}, Tyov = e;.
Proof. Given v € S?V~1, for all z € CV, define

(e1-v)(z-v)—z- e
1+e v

T,(z)=x+4 (z-v)(eg —v) + (e1 +v).

Here “” denotes the usual Hermitian inner product on CV (linear in the first slot
and conjugate linear in the second slot). Using this formula, it’s easy to show that
T, depends smoothly on v € S2V=1\ {—¢,}, T., = Id, and T,v = e;. O

Using this smooth map T, we prove prove the following theorem. (I haven’t seen
a proof of this theorem that uses the linear map T,,. Has anyone?)



BKLYO08 59

Theorem 4. If 0 < k < N, then the inclusion map

GL(E,C) - GL(N,C) ; A (Ig 2)

induces an isomorphism between homotopy spaces
[S', GL(k,C)] — [S*, GL(N,C)].

Proof. By iteration we may assume that K = N—1. Our theorem follows immediately
from the following two claims, which we’ll prove using the lemma: For any N > 1,

(1) Any element of [S', GL(IV, C)] has a representative of the form <1 0 >,

0 g(z)
where g : St = GL(N —1,C).

(2) Two maps gg, g1 : S* = GL(N —1,C) are homotopic if and only if the maps
<(1) go(()x)> and (é gl(()a:)> are homotopic as maps into GL(N, C).

Let f : S' — GL(NV,C) be a continuous map. Since f(S!) is a compact subset of
GL(N, C), an open set in the set of all N x N matrices, it follows that any N x N
matrix sufficiently close to the image f(S!) must lie in GL(N,C). Using this fact
plus a standard compactness argument, it is straightforward to show® that f is
homotopic to a map (again denoted by f) such that the first column wy (z) of f is
not a positive real multiple of —e;. Hence, v(z) = wy(x)/||w1(x)]| is never equal to
—e1. By Lemma 17 we have T, w1 (z) = ||wi(t)]], so for all z € S,

Toe) f(x) = (”wléx)” g(*x)> ;

where * is unimportant components and g : S' — GL(N —1,C). We may homotopy
the first column to ey, so

/1 0

fl@) ~ Ty (0 9(z)

Now v(z) € "1\ {—e;} = R?"~! so we can homotopy v(x) to the constant vector
e within 87"\ {—e;}. Since 7., = Id it follows that T, ,, ~ Id. This proves
Claim 1.

We now prove 2. Certainly the “only if” part holds, so assume that (é p ?m))
0

and <(1) p (()a:)> are homotopic as maps into GL(N,C), which means there is a
1

continuous map F : S x [0,1] — GL(N, C) such that
(144)  F(2,0) = fo(z) = (é go((’w)> and  F(z,1) = fi(z) = (é gl(()x)> .

By a similar argument as we stated in the previous paragraph we may assume that
wy(z,t), the first column of F(z,t), is never a positive multiple of —e;. Hence,
v(z,t) = wi(z,t)/||wi(z,t)|| is never equal to —e;. By Lemma 17, we have

1 *
Tv(ac,t)F('rat) - <0 g(m,t)) s

31f fni1(z) denotes the N-th row, 1-st column element of f(x), all you have to do is replace
this function by a new function such that fn1(z) # 0 for  # 1.
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where g(z,t) € GL(NV — 1,C). Since v(z,0) = e; = v(z,1) and T¢, = Id, it follows
that g(z,0) = go(z) and g(x,1) = gi(z). Thus, g : St x [0,1] - GL(N —1,C)
provides a homotopy between gg and g;. O

Corollary 3. 7y(GL(N,C)) = {0} and m (GL(N,C)) = Z.

Proof. The second statement follows from Theorem 4 (with £ = 1) and the fact
that 1 (GL(1,C)) = [S',GL(1,C)] = Z (which can be proved using for example
the winding number). The proof of Theorem 4 also works if we replace S! with a
point, so the first statement follows from the fact that 7o(GL(1,C)) = {0}. O



