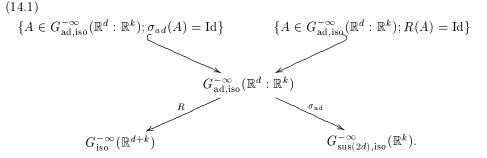
BKLY08

14. Lecture 11: Adiabatic periodicity map Monday, 29 September

Last time I started the 'easier', or perhaps better to say 'routine', part of the proof of Theorem 2- giving the adiabatic diagonal sequence, from top left to bottom right in



Observe that this already gives us a map - following the arguments of last lecture -

(14.2)
$$[X; G^{-\infty}_{\operatorname{sus}(2d), \operatorname{iso}}(\mathbb{R}^k)]_{\operatorname{c}} \longrightarrow [X; G^{-\infty}_{\operatorname{iso}}(\mathbb{R}^{d+k})]_{\operatorname{c}}.$$

So once we see the same properties for the other sequence we conclude that this must be an isomorphism. In fact for the moment I will only do this for d = 1. Addendum to Lecture 11: $GL(N, \mathbb{C})$ and the Bott element From Paul Loya

Here we present the proof on Sept. 26-th that the restriction map to $\varepsilon = 1$:

$$R: G_{ad iso}^{-\infty}(\mathbb{R}, \mathbb{R}^k) \to G_{iso}^{-\infty}(\mathbb{R}^{k+1}),$$

is surjective at the level of homotopies using the Bott element.

Preparing for the Bott element: Lemmas from Lecture 14

The following lemma is Lemma 16 in Lecture 14.

Lemma 15 (Finite Rank Approximation). Let Π be the orthogonal projection onto an N-dimensional subspace of $\mathcal{S}(\mathbb{R}^d)$ and choose an identification of linear maps on the range of Π with $M(N, \mathbb{C})$, and consider the map

$$M(N,\mathbb{C}) \ni A \mapsto \mathrm{Id} - \Pi + A\Pi \in \mathrm{Id} + \Psi_{iso}^{-\infty}(\mathbb{R}^d),$$

where $A\Pi$ on the right is the matrix A acting on the range of Π through the chosen identification of linear maps on the range of Π with $M(N, \mathbb{C})$. This map restricts to a map

$$\operatorname{GL}(N,\mathbb{C}) \ni A \mapsto \operatorname{Id} -\Pi + A\Pi \in G_{iso}^{-\infty}(\mathbb{R}^d),$$

and for any topological space X, induces a map

$$[X, \operatorname{GL}(N, \mathbb{C})]_c \to [X, G_{iso}^{-\infty}(\mathbb{R}^d)]_c$$

that is defined independent of the choice of the N-dimensional subspace of $\mathcal{S}(\mathbb{R}^d)$ chosen and the choice of identification of linear maps on the range of Π with $M(N, \mathbb{C})$. Moreover, any element of $[X, G_{iso}^{-\infty}(\mathbb{R}^d)]_c$ is in the image of this map for a sufficiently large N.

The following lemma is Lemma 17 in Lecture 14.

Lemma 16. If Π_1 is the orthogonal projection onto a 1-dimensional subspace of $\mathcal{S}(\mathbb{R}^d)$, then the map¹

$$G_{iso}^{-\infty}(\mathbb{R}^k) \ni h \mapsto \mathrm{Id} - \Pi_1 + h \Pi_1 \in G_{iso}^{-\infty}(\mathbb{R}^{k+d})$$

induces an isomorphism

$$[X, G_{iso}^{-\infty}(\mathbb{R}^k)]_c \to [X, G_{iso}^{-\infty}(\mathbb{R}^{k+d})]_c$$

that is defined independent of the choice of the 1-dimensional subspace.

Proof of the theorem: The Magical Bott element

Recall that the Bott element is an operator $B \in \mathcal{H}_{ad}^{-\infty}(\mathbb{R}) = \{\text{involutions in}^2 \gamma_1 + \Psi_{ad}^{-\infty}(\mathbb{R}, \mathbb{C}^2)\}$, which has the property that

$$B_+|_{\varepsilon=1} \sim \begin{pmatrix} 1 & 0\\ 0 & \Pi_1 \end{pmatrix}$$

 and

$$B_{-}|_{\varepsilon=1} \sim \begin{pmatrix} 0 & 0\\ 0 & 1 - \Pi_1 \end{pmatrix}$$

where $\Pi_1 \in \Psi_{iso}^{-\infty}(\mathbb{R})$ is the projection onto a one-dimensional subspace of $\mathcal{S}(\mathbb{R}^1)$ (say the ground state of the harmonic oscillator).

Theorem 3. The restriction map to $\varepsilon = 1$:

$$R: G_{ad,iso}^{-\infty}(\mathbb{R}, \mathbb{R}^k) \to G_{iso}^{-\infty}(\mathbb{R}^{k+1}),$$

is surjective at the level of homotopies. That is, for any topological space X and any element $[g] \in [X, G_{iso}^{-\infty}(\mathbb{R}^{k+1})]_c$ there is an element $[\tilde{g}] \in [X, G_{ad,iso}^{-\infty}(\mathbb{R}, \mathbb{R}^k)]_c$ such that $[R\tilde{g}] = [g]$.

Proof. By finite rank approximation, any element of $[X, G_{iso}^{-\infty}(\mathbb{R}^{k+1})]_c$ is homotopic to an invertible matrix through Lemma 15 and by further stabilization we may assume that

$$g = F_0 \begin{pmatrix} \operatorname{Id}_N & 0 \\ 0 & g_0 \end{pmatrix}$$
, where $g_0 : X \to \operatorname{GL}(N, \mathbb{C})$,

 Id_N is the $N \times N$ identity matrix, and

$$F_0: \operatorname{GL}(2N, \mathbb{C}) \to G^{-\infty}_{iso}(\mathbb{R}^{k+1})$$

is the map in Lemma 15 defined by some choice of 2N-dimensional subspace of $\mathcal{S}(\mathbb{R}^{k+1})$ — it's not important now what subspace we choose although at the end of this proof we'll take a subspace in $\mathcal{S}(\mathbb{R}^{k+1}) = \mathcal{S}(\mathbb{R}^k \times \mathbb{R}^1)$ spanned by 2N independent functions in $\mathcal{S}(\mathbb{R}^k)$ times a function in $\mathcal{S}(\mathbb{R}^1)$. The reason we take g in terms of a 2 × 2 matrix (of $N \times N$ matrices) is because the Bott element is given in terms of 2 × 2 matrices. We shall find a map

$$\tilde{g}: X \to G_{ad iso}^{-\infty}(\mathbb{R}, \mathbb{R}^k)$$

such that $[R\tilde{g}] = [g]$. To define \tilde{g} , let

$$F_1: \operatorname{GL}(2N, \mathbb{C}) \to G_{iso}^{-\infty}(\mathbb{R}^k),$$

²Recall that $\gamma_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and note that $\Psi_{ad}^{-\infty}(\mathbb{R}, \mathbb{C}^2)$ consists of 2×2 matrices of operators in $\Psi_{ad}^{-\infty}(\mathbb{R})$.

56

¹On the right-hand side, as operators on $\mathcal{S}(\mathbb{R}^{k+d}) = \mathcal{S}(\mathbb{R}^k \times \mathbb{R}^d)$, Π_1 only acts on the \mathbb{R}^d factor and h on the \mathbb{R}^k factor.

be the map in Lemma 15 induced by some choice of 2N-dimensional subspace of $\mathcal{S}(\mathbb{R}^k)$, and then define

$$\begin{bmatrix} \tilde{g} = F_1 g_1, \\ g_1 = \begin{pmatrix} \operatorname{Id}_N & 0 \\ 0 & g_0 \end{pmatrix} (\operatorname{Id}_N \otimes B_+) + \operatorname{Id}_N \otimes B_-$$

Let's pause to think about this! Note that B_{\pm} are 2×2 matrices whose entries are operators in Id $+\Psi_{ad}^{-\infty}(\mathbb{R})$, so Id_N $\otimes B_{\pm}$ are $2N \times 2N$ matrices of the same sort. Using that $B = \gamma_1$ modulo a 2×2 matrix of operators in $\Psi_{ad}^{-\infty}(\mathbb{R})$ one can check that $g_1 = \mathrm{Id}_{2N} + R$ where R is a $2N \times 2N$ matrix of operators in $\Psi_{ad}^{-\infty}(\mathbb{R})$. Moreover, g_1 is invertible with inverse

$$\begin{pmatrix} \operatorname{Id}_N & 0\\ 0 & g_0^{-1} \end{pmatrix} (\operatorname{Id}_N \otimes B_+) + \operatorname{Id}_N \otimes B_-.$$

It follows that

$$\tilde{g} = F_1 g_1 \in G^{\infty}_{ad,iso}(\mathbb{R}, \mathbb{R}^k).$$

Now we claim that

$$\tilde{g}|_{\varepsilon=1} \sim g = F_0 \begin{pmatrix} \mathrm{Id}_N & 0\\ 0 & g_0 \end{pmatrix}.$$

To see this, recall that

$$B_+|_{\varepsilon=1} \sim \begin{pmatrix} 1 & 0\\ 0 & \Pi_1 \end{pmatrix}$$
 and $B_-|_{\varepsilon=1} \sim \begin{pmatrix} 0 & 0\\ 0 & 1 - \Pi_1 \end{pmatrix}$.

Therefore,

$$g_1|_{\varepsilon=1} = \begin{pmatrix} \operatorname{Id}_N & 0\\ 0 & g_0 \end{pmatrix} (\operatorname{Id}_N \otimes B_+)|_{\varepsilon=1} + \operatorname{Id}_N \otimes B_-|_{\varepsilon=1}$$
$$\sim \begin{pmatrix} \operatorname{Id}_N & 0\\ 0 & g_0 \end{pmatrix} \begin{pmatrix} \operatorname{Id}_N & 0\\ 0 & \operatorname{Id}_N \Pi_1 \end{pmatrix} + \begin{pmatrix} 0 & 0\\ 0 & \operatorname{Id}_N - \operatorname{Id}_N \Pi_1 \end{pmatrix}$$
$$= \operatorname{Id}_{2N} - \operatorname{Id}_{2N} \Pi_1 + \begin{pmatrix} \operatorname{Id}_N & 0\\ 0 & g_0 \end{pmatrix} \Pi_1.$$

Hence,

$$\tilde{g}|_{\varepsilon=1} = F_1 g_1|_{\varepsilon=1} \sim \operatorname{Id} - \Pi_1 + \left(F_1 \begin{pmatrix} \operatorname{Id}_N & 0\\ 0 & g_0 \end{pmatrix}\right) \Pi_1.$$

In other words, if

$$F_2: [X, G_{iso}^{-\infty}(\mathbb{R}^k)]_c \to [X, G_{iso}^{-\infty}(\mathbb{R}^{k+1})]$$

is the isomorphism induced by the map, which we also denote by F_2 , (14.3) $G_{iso}^{-\infty}(\mathbb{R}^k) \ni h \mapsto \text{Id} - \Pi_1 + h \Pi_1 \in G_{iso}^{-\infty}(\mathbb{R}^{k+1})$ found in Lemma 16 with d = 1, then we see that

$$\tilde{g}|_{\varepsilon=1} = F_2 \left(F_1 \begin{pmatrix} \mathrm{Id}_N & 0 \\ 0 & g_0 \end{pmatrix} \right).$$

To summarize, we are left to show that

$$\begin{bmatrix} F_2 \begin{pmatrix} \mathrm{Id}_N & 0 \\ 0 & g_0 \end{pmatrix} \end{bmatrix} = \begin{bmatrix} F_0 \begin{pmatrix} \mathrm{Id}_N & 0 \\ 0 & g_0 \end{pmatrix} \end{bmatrix}.$$

where

Thus, our theorem is finished off by proving that the composition

 $[X,\operatorname{GL}(2N,\mathbb{C})] \xrightarrow{F_1} [X, G_{iso}^{-\infty}(\mathbb{R}^k)] \xrightarrow{F_2} [X, G_{iso}^{-\infty}(\mathbb{R}^{k+1})]$

is exactly the same as the map

$$[X, \operatorname{GL}(2N, \mathbb{C})] \xrightarrow{F_0} [X, G_{iso}^{-\infty}(\mathbb{R}^{k+1})];$$

in other words, we need to prove that the following diagram commutes:

$$[X, \operatorname{GL}(2N, \mathbb{C})] \xrightarrow{F_1} [X, G_{iso}^{-\infty}(\mathbb{R}^k)] \xrightarrow{F_2} [X, G_{iso}^{-\infty}(\mathbb{R}^{k+1})]$$

To prove this we just have to look at what the maps F_0, F_1 , and F_2 . Let Π be the orthogonal projection onto any 2*N*-dimensional subspace of $\mathcal{S}(\mathbb{R}^k)$. Then F_1 is the map induced by

$$\operatorname{GL}(2N,\mathbb{C}) \ni A \longmapsto \operatorname{Id} -\Pi + A\Pi \in G_{iso}^{-\infty}(\mathbb{R}^k)$$

Therefore, at the homotopy group level, F_2F_1 is the map (see (14.3) for F_2) induced by

$$\begin{aligned} \operatorname{GL}(2N,\mathbb{C}) \ni A &\longmapsto \operatorname{Id} - \Pi_1 + \left(\operatorname{Id} - \Pi + A\Pi \right) \Pi_1 \in G_{iso}^{-\infty}(\mathbb{R}^{k+1}) \\ &= \operatorname{Id} - \Pi \Pi_1 + A\Pi \Pi_1 \in G_{iso}^{-\infty}(\mathbb{R}^{k+1}) \end{aligned}$$

On the other hand, $\Pi \Pi_1$ is the orthogonal projection onto a 2*N*-dimensional subspace of $S(\mathbb{R}^{k+1})$ (namely, the space of functions of the form f(x)g(y) where $(x, y) \in \mathbb{R}^k \times \mathbb{R}^1$ with f and g in the range of Π and Π_1 , respectively). Hence, we can take the map F_0 to be induced by

$$\operatorname{GL}(2N,\mathbb{C}) \ni A \longmapsto \operatorname{Id} -\Pi \Pi_1 + A\Pi \Pi_1 \in G_{iso}^{-\infty}(\mathbb{R}^{k+1}),$$

which is exactly F_2F_1 . This completes the proof.

Extra: Bott periodicity for the general linear group

This section is not needed for the Bott element but might be useful to be written down. In this section we prove that $\pi_0(\operatorname{GL}(N,\mathbb{C})) = \{0\}$ and $\pi_1(\operatorname{GL}(N,\mathbb{C})) = \mathbb{Z}$.

Lemma 17. There is a smooth map

$$T: \mathbb{S}^{2N-1} \setminus \{-e_1\} \to \mathrm{GL}(N, \mathbb{C}) \quad , \quad v \mapsto T_v$$

such that $T_{e_1} = \text{Id}$ and for all $v \in \mathbb{S}^{2N-1} \setminus \{-e_1\}, T_v v = e_1$.

Proof. Given $v \in \mathbb{S}^{2N-1}$, for all $x \in \mathbb{C}^N$, define

$$T_{v}(x) = x + (x \cdot v)(e_{1} - v) + \frac{(e_{1} \cdot v)(x \cdot v) - x \cdot e_{1}}{1 + e_{1} \cdot v}(e_{1} + v).$$

Here "." denotes the usual Hermitian inner product on \mathbb{C}^N (linear in the first slot and conjugate linear in the second slot). Using this formula, it's easy to show that T_v depends smoothly on $v \in \mathbb{S}^{2N-1} \setminus \{-e_1\}, T_{e_1} = \text{Id}, \text{ and } T_v v = e_1$.

Using this smooth map T_v we prove prove the following theorem. (I haven't seen a proof of this theorem that uses the linear map T_v . Has anyone?)

Theorem 4. If 0 < k < N, then the inclusion map

$$\operatorname{GL}(k,\mathbb{C}) \to \operatorname{GL}(N,\mathbb{C}) ; \quad A \mapsto \begin{pmatrix} \operatorname{Id} & 0\\ 0 & A \end{pmatrix}$$

induces an isomorphism between homotopy spaces

 $[\mathbb{S}^1, \operatorname{GL}(k, \mathbb{C})] \to [\mathbb{S}^1, \operatorname{GL}(N, \mathbb{C})].$

Proof. By iteration we may assume that k = N-1. Our theorem follows immediately from the following two claims, which we'll prove using the lemma: For any N > 1,

- (1) Any element of $[\mathbb{S}^1, \operatorname{GL}(N, \mathbb{C})]$ has a representative of the form $\begin{pmatrix} 1 & 0 \\ 0 & g(x) \end{pmatrix}$, where $g: \mathbb{S}^1 \to \operatorname{GL}(N-1, \mathbb{C})$.
- (2) Two maps $g_0, g_1 : \mathbb{S}^1 \to \operatorname{GL}(N-1, \mathbb{C})$. $\begin{pmatrix} 1 & 0 \\ 0 & g_0(x) \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 0 & g_1(x) \end{pmatrix}$ are homotopic as maps into $\operatorname{GL}(N, \mathbb{C})$.

Let $f: \mathbb{S}^1 \to \operatorname{GL}(N, \mathbb{C})$ be a continuous map. Since $f(\mathbb{S}^1)$ is a compact subset of $\operatorname{GL}(N, \mathbb{C})$, an open set in the set of all $N \times N$ matrices, it follows that any $N \times N$ matrix sufficiently close to the image $f(\mathbb{S}^1)$ must lie in $\operatorname{GL}(N, \mathbb{C})$. Using this fact plus a standard compactness argument, it is straightforward to show³ that f is homotopic to a map (again denoted by f) such that the first column $w_1(x)$ of f is not a positive real multiple of $-e_1$. Hence, $v(x) = w_1(x)/||w_1(x)||$ is never equal to $-e_1$. By Lemma 17 we have $T_{v(x)}w_1(x) = ||w_1(t)||$, so for all $x \in \mathbb{S}^1$,

$$T_{v(x)}f(x) = \begin{pmatrix} ||w_1(x)|| & *\\ 0 & g(x) \end{pmatrix}$$

where * is unimportant components and $g : \mathbb{S}^1 \to \operatorname{GL}(N-1, \mathbb{C})$. We may homotopy the first column to e_1 , so

$$f(x) \sim T_{v(x)}^{-1} \begin{pmatrix} 1 & 0\\ 0 & g(x) \end{pmatrix}$$

Now $v(x) \in \mathbb{S}^{2n-1} \setminus \{-e_1\} \cong \mathbb{R}^{2n-1}$ so we can homotopy v(x) to the constant vector e_1 within $\mathbb{S}^{2n-1} \setminus \{-e_1\}$. Since $T_{e_1} = \text{Id}$ it follows that $T_{v(x)}^{-1} \sim \text{Id}$. This proves Claim 1.

We now prove 2. Certainly the "only if" part holds, so assume that $\begin{pmatrix} 1 & 0 \\ 0 & g_0(x) \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 0 & g_1(x) \end{pmatrix}$ are homotopic as maps into $\operatorname{GL}(N, \mathbb{C})$, which means there is a

continuous map $F: \mathbb{S}^1 \times [0,1] \to \mathrm{GL}(N,\mathbb{C})$ such that

(14.4)
$$F(x,0) = f_0(x) = \begin{pmatrix} 1 & 0 \\ 0 & g_0(x) \end{pmatrix}$$
 and $F(x,1) = f_1(x) = \begin{pmatrix} 1 & 0 \\ 0 & g_1(x) \end{pmatrix}$.

By a similar argument as we stated in the previous paragraph we may assume that $w_1(x,t)$, the first column of F(x,t), is never a positive multiple of $-e_1$. Hence, $v(x,t) = w_1(x,t)/||w_1(x,t)||$ is never equal to $-e_1$. By Lemma 17, we have

$$T_{v(x,t)}F(x,t) = \begin{pmatrix} 1 & * \\ 0 & g(x,t) \end{pmatrix},$$

³If $f_{N1}(x)$ denotes the N-th row, 1-st column element of f(x), all you have to do is replace this function by a new function such that $f_{N1}(x) \neq 0$ for $x \neq 1$.

where $g(x,t) \in \operatorname{GL}(N-1,\mathbb{C})$. Since $v(x,0) = e_1 = v(x,1)$ and $T_{e_1} = \operatorname{Id}$, it follows that $g(x,0) = g_0(x)$ and $g(x,1) = g_1(x)$. Thus, $g : \mathbb{S}^1 \times [0,1] \to \operatorname{GL}(N-1,\mathbb{C})$ provides a homotopy between g_0 and g_1 .

Corollary 3. $\pi_0(\operatorname{GL}(N, \mathbb{C})) = \{0\}$ and $\pi_1(\operatorname{GL}(N, \mathbb{C})) = \mathbb{Z}$.

Proof. The second statement follows from Theorem 4 (with k = 1) and the fact that $\pi_1(\operatorname{GL}(1,\mathbb{C})) = [\mathbb{S}^1,\operatorname{GL}(1,\mathbb{C})] = \mathbb{Z}$ (which can be proved using for example the winding number). The proof of Theorem 4 also works if we replace \mathbb{S}^1 with a point, so the first statement follows from the fact that $\pi_0(\operatorname{GL}(1,\mathbb{C})) = \{0\}$. \Box

60