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14. Lecture 11: Adiabatic periodicity map
Monday, 29 September

Last time I started the `easier', or perhaps better to say `routine', part of the
proof of Theorem 2 { giving the adiabatic diagonal sequence, from top left to bottom
right in
(14.1)
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G�1iso (Rd+k) G�1sus(2d);iso(R
k):

Observe that this already gives us a map { following the arguments of last lecture
{

(14.2) [X;G�1sus(2d);iso(R
k)]c �! [X;G�1iso (Rd+k)]c:

So once we see the same properties for the other sequence we conclude that this
must be an isomorphism. In fact for the moment I will only do this for d = 1:
Addendum to Lecture 11: GL(N;C) and the Bott element From Paul

Loya

Here we present the proof on Sept. 26-th that the restriction map to " = 1:

R : G�1ad;iso(R;R
k)! G�1iso (R

k+1);

is surjective at the level of homotopies using the Bott element.
Preparing for the Bott element: Lemmas from Lecture 14

The following lemma is Lemma 16 in Lecture 14.

Lemma 15 (Finite Rank Approximation). Let � be the orthogonal projection
onto an N -dimensional subspace of S(Rd) and choose an identi�cation of linear
maps on the range of � with M(N;C), and consider the map

M(N;C) 3 A 7�! Id��+A� 2 Id+	�1iso (Rd);
where A� on the right is the matrix A acting on the range of � through the chosen
identi�cation of linear maps on the range of � with M(N;C). This map restricts
to a map

GL(N;C) 3 A 7�! Id��+A� 2 G�1iso (Rd);
and for any topological space X, induces a map

[X;GL(N;C)]c ! [X;G�1iso (R
d)]c

that is de�ned independent of the choice of the N -dimensional subspace of S(Rd)
chosen and the choice of identi�cation of linear maps on the range of � with
M(N;C). Moreover, any element of [X;G�1iso (R

d)]c is in the image of this map
for a su�ciently large N .

The following lemma is Lemma 17 in Lecture 14.
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Lemma 16. If �1 is the orthogonal projection onto a 1-dimensional subspace of
S(Rd), then the map1

G�1iso (R
k) 3 h 7�! Id��1 + h�1 2 G�1iso (Rk+d)

induces an isomorphism

[X;G�1iso (R
k)]c ! [X;G�1iso (R

k+d)]c

that is de�ned independent of the choice of the 1-dimensional subspace.

Proof of the theorem: The Magical Bott element

Recall that the Bott element is an operator B 2 H�1ad (R) = finvolutions in2 
1+
	�1ad (R;C2)g, which has the property that

B+j"=1 �
�
1 0
0 �1

�
and

B�j"=1 �
�
0 0
0 1��1

�
where �1 2 	�1iso (R) is the projection onto a one-dimensional subspace of S(R1)
(say the ground state of the harmonic oscillator).

Theorem 3. The restriction map to " = 1:

R : G�1ad;iso(R;R
k)! G�1iso (R

k+1);

is surjective at the level of homotopies. That is, for any topological space X and
any element [g] 2 [X;G�1iso (R

k+1)]c there is an element [~g] 2 [X;G�1ad;iso(R;R
k)]c

such that [R~g] = [g].

Proof. By �nite rank approximation, any element of [X;G�1iso (R
k+1)]c is homotopic

to an invertible matrix through Lemma 15 and by further stabilization we may
assume that

g = F0

�
IdN 0
0 g0

�
; where g0 : X ! GL(N;C);

IdN is the N �N identity matrix, and

F0 : GL(2N;C)! G�1iso (R
k+1)

is the map in Lemma 15 de�ned by some choice of 2N -dimensional subspace of
S(Rk+1) | it's not important now what subspace we choose although at the end
of this proof we'll take a subspace in S(Rk+1) = S(Rk � R1) spanned by 2N
independent functions in S(Rk) times a function in S(R1). The reason we take g
in terms of a 2� 2 matrix (of N �N matrices) is because the Bott element is given
in terms of 2� 2 matrices. We shall �nd a map

~g : X ! G�1ad;iso(R;R
k)

such that [R~g] = [g]. To de�ne ~g, let

F1 : GL(2N;C)! G�1iso (R
k);

1On the right-hand side, as operators on S(Rk+d) = S(Rk�Rd), �1 only acts on the Rd factor
and h on the Rk factor.

2Recall that 
1 =

�
1 0
0 �1

�
and note that 	�1

ad
(R;C2) consists of 2� 2 matrices of operators

in 	�1
ad

(R).
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be the map in Lemma 15 induced by some choice of 2N -dimensional subspace of
S(Rk), and then de�ne

~g = F1g1;

where

g1 =

�
IdN 0
0 g0

�
(IdN 
B+) + IdN 
B�:

Let's pause to think about this! Note that B� are 2 � 2 matrices whose entries
are operators in Id+	�1ad (R), so IdN 
B� are 2N � 2N matrices of the same sort.

Using that B = 
1 modulo a 2�2 matrix of operators in 	�1ad (R) one can check that

g1 = Id2N +R where R is a 2N � 2N matrix of operators in 	�1ad (R). Moreover,
g1 is invertible with inverse�

IdN 0
0 g�10

�
(IdN 
B+) + IdN 
B�:

It follows that

~g = F1g1 2 G1ad;iso(R;Rk):
Now we claim that

~gj"=1 � g = F0

�
IdN 0
0 g0

�
:

To see this, recall that

B+j"=1 �
�
1 0
0 �1

�
and B�j"=1 �

�
0 0
0 1��1

�
:

Therefore,

g1j"=1 =
�
IdN 0
0 g0

�
(IdN 
B+)j"=1 + IdN 
B�j"=1

�
�
IdN 0
0 g0

��
IdN 0
0 IdN �1

�
+

�
0 0
0 IdN � IdN �1

�
= Id2N � Id2N �1 +

�
IdN 0
0 g0

�
�1:

Hence,

~gj"=1 = F1g1j"=1 � Id��1 +

�
F1

�
IdN 0
0 g0

��
�1:

In other words, if

F2 : [X;G
�1
iso (R

k)]c ! [X;G�1iso (R
k+1)]

is the isomorphism induced by the map, which we also denote by F2,

(14.3) G�1iso (R
k) 3 h 7�! Id��1 + h�1 2 G�1iso (Rk+1)

found in Lemma 16 with d = 1, then we see that

~gj"=1 = F2

�
F1

�
IdN 0
0 g0

��
:

To summarize, we are left to show that�
F2

�
F1

�
IdN 0
0 g0

���
=

�
F0

�
IdN 0
0 g0

��
:
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Thus, our theorem is �nished o� by proving that the composition

[X;GL(2N;C)]
F1! [X;G�1iso (R

k)]
F2! [X;G�1iso (R

k+1)]

is exactly the same as the map

[X;GL(2N;C)]
F0! [X;G�1iso (R

k+1)];

in other words, we need to prove that the following diagram commutes:

[X;GL(2N;C)]
F1 //

F0

66
[X;G�1iso (R

k)]
F2 // [X;G�1iso (R

k+1)] :

To prove this we just have to look at what the maps F0; F1; and F2. Let � be the
orthogonal projection onto any 2N -dimensional subspace of S(Rk). Then F1 is the
map induced by

GL(2N;C) 3 A 7�! Id��+A� 2 G�1iso (Rk):
Therefore, at the homotopy group level, F2F1 is the map (see (14.3) for F2) induced
by

GL(2N;C) 3 A 7�! Id��1 +
�
Id��+A�

�
�1 2 G�1iso (Rk+1)

= Id���1 +A��1 2 G�1iso (Rk+1)
On the other hand, ��1 is the orthogonal projection onto a 2N -dimensional
subspace of S(Rk+1) (namely, the space of functions of the form f(x) g(y) where
(x; y) 2 Rk � R1 with f and g in the range of � and �1, respectively). Hence, we
can take the map F0 to be induced by

GL(2N;C) 3 A 7�! Id���1 +A��1 2 G�1iso (Rk+1);
which is exactly F2F1. This completes the proof. �

Extra: Bott periodicity for the general linear group

This section is not needed for the Bott element but might be useful to be written
down. In this section we prove that �0(GL(N;C)) = f0g and �1(GL(N;C)) = Z.

Lemma 17. There is a smooth map

T : S2N�1 n f�e1g ! GL(N;C) ; v 7! Tv

such that Te1 = Id and for all v 2 S2N�1 n f�e1g, Tvv = e1.

Proof. Given v 2 S2N�1, for all x 2 CN , de�ne

Tv(x) = x+ (x � v)(e1 � v) + (e1 � v)(x � v)� x � e1
1 + e1 � v (e1 + v):

Here \�" denotes the usual Hermitian inner product on CN (linear in the �rst slot
and conjugate linear in the second slot). Using this formula, it's easy to show that
Tv depends smoothly on v 2 S2N�1 n f�e1g, Te1 = Id, and Tvv = e1. �

Using this smooth map Tv we prove prove the following theorem. (I haven't seen
a proof of this theorem that uses the linear map Tv. Has anyone?)
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Theorem 4. If 0 < k < N , then the inclusion map

GL(k;C)! GL(N;C) ; A 7!
�
Id 0
0 A

�
induces an isomorphism between homotopy spaces

[S1;GL(k;C)]! [S1;GL(N;C)]:

Proof. By iteration we may assume that k = N�1. Our theorem follows immediately
from the following two claims, which we'll prove using the lemma: For any N > 1,

(1) Any element of [S1;GL(N;C)] has a representative of the form

�
1 0
0 g(x)

�
,

where g : S1 ! GL(N � 1;C).
(2) Two maps g0; g1 : S

1 ! GL(N�1;C) are homotopic if and only if the maps�
1 0
0 g0(x)

�
and

�
1 0
0 g1(x)

�
are homotopic as maps into GL(N;C).

Let f : S1 ! GL(N;C) be a continuous map. Since f(S1) is a compact subset of
GL(N;C), an open set in the set of all N �N matrices, it follows that any N �N
matrix su�ciently close to the image f(S1) must lie in GL(N;C). Using this fact
plus a standard compactness argument, it is straightforward to show3 that f is
homotopic to a map (again denoted by f) such that the �rst column w1(x) of f is
not a positive real multiple of �e1. Hence, v(x) = w1(x)=kw1(x)k is never equal to
�e1. By Lemma 17 we have Tv(x)w1(x) = kw1(t)k, so for all x 2 S1,

Tv(x)f(x) =

�kw1(x)k �
0 g(x)

�
;

where � is unimportant components and g : S1 ! GL(N�1;C). We may homotopy
the �rst column to e1, so

f(x) � T�1v(x)

�
1 0
0 g(x)

�
Now v(x) 2 S2n�1nf�e1g �= R2n�1 so we can homotopy v(x) to the constant vector
e1 within S2n�1 n f�e1g. Since Te1 = Id it follows that T�1v(x) � Id. This proves

Claim 1.

We now prove 2. Certainly the \only if" part holds, so assume that

�
1 0
0 g0(x)

�
and

�
1 0
0 g1(x)

�
are homotopic as maps into GL(N;C), which means there is a

continuous map F : S1 � [0; 1]! GL(N;C) such that

(14.4) F (x; 0) = f0(x) =

�
1 0
0 g0(x)

�
and F (x; 1) = f1(x) =

�
1 0
0 g1(x)

�
:

By a similar argument as we stated in the previous paragraph we may assume that
w1(x; t), the �rst column of F (x; t), is never a positive multiple of �e1. Hence,
v(x; t) = w1(x; t)=kw1(x; t)k is never equal to �e1. By Lemma 17, we have

Tv(x;t)F (x; t) =

�
1 �
0 g(x; t)

�
;

3If fN1(x) denotes the N -th row, 1-st column element of f(x), all you have to do is replace
this function by a new function such that fN1(x) 6= 0 for x 6= 1.
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where g(x; t) 2 GL(N � 1;C). Since v(x; 0) = e1 = v(x; 1) and Te1 = Id, it follows
that g(x; 0) = g0(x) and g(x; 1) = g1(x). Thus, g : S1 � [0; 1] ! GL(N � 1;C)
provides a homotopy between g0 and g1. �

Corollary 3. �0(GL(N;C)) = f0g and �1(GL(N;C)) = Z.

Proof. The second statement follows from Theorem 4 (with k = 1) and the fact
that �1(GL(1;C)) = [S1;GL(1;C)] = Z (which can be proved using for example
the winding number). The proof of Theorem 4 also works if we replace S1 with a
point, so the �rst statement follows from the fact that �0(GL(1;C)) = f0g. �


