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12. Lecture 9: Adiabatic algebra and group
Wednesday, 24 September

To carry through the argument for Bott periodicity that I have been edging
towards, I have decided to take a slightly higher road than I initially intended. I
hope this will actually be pretty clear but the �rst step is to throw together what we
have done so far and work with an adiabatic algebra of smoothing operators. This
is the same as the semiclassical algebra except that `adiabatic' refers to a situation
in which the `semiclassical degeneration' occurs in only some of the variables. The
name arises from Physics and refers to a formal motion which is so slow that the
system remains in equilibrium. Here this just means that some of the variables
become commutative. I will get to more geometric versions of this later in the
semester. In fact we might as well jump into the higher dimensional case, which
really makes very little di�erence.

De�nition 4. A one-parameter family A 2 C1((0; 1]; 	�1(Rd+k)) is an adiabatic
family of smoothing operators, with respect to the the �rst d variables, if its
Schwartz kernel is of the form
(12.1)

a�(�; z; z
0; Z; Z 0) = ��dF (�;

�(z + z0)

2
;
z � z0
�

; Z; Z 0); F 2 C1([0; 1];S(R2d+2k)):
So the case discussed up to this point corresponds to d = 1 and k = 0; although

we allowed matrix values { which we could include here at only notational expense.
If k = 0 but d > 1 we are in a higher dimensional semiclassical setting.

Proposition 12. The adiabatic operators as in (12.1) form an algebra, denoted
	�1ad;iso(R

d : Rk); under operator compostion for � > 0:

Proof. The proof generalizes easily from the case above where d = 1 and k = 0:
Let me give the de�ning isomorphism (12.1) a name:

(12.2) � : 	�1ad;iso(R
d : Rk) �! C1([0; 1];S(R2d+2k))

which we are pretty free to regard as an identi�cation { indeed that is what I have
been doing implicitly up to this point. What we showed when d = 1 is that operator
composition for � > 0 induces a product which can be (corrected) generalized and
written out explicitly:
(12.3)

H = �(A �B) =Z
Rd�Rk

F (�; t+
�2

2
(r +

1

2
s);

1

2
s� r; Z; Z 00)G(�; t+ �2

2
(r � 1

2
s); r +

1

2
s; Z 00; Z 0)dZ 00

F = �(A); G = �(B):

Recall that this just arises by noting the relationship of the Schwartz kernel, a; of
A and F = �(A) :

(12.4)
a(�; z; z0; Z; Z 0) = ��dF (�;

�(z + z0)

2
;
z � z0
�

; Z; Z 0);

F (�; t; s; Z; Z 0) = �da(�; ��1t+
�

2
s; ��1t� �

2
s; Z; Z 0);

substituting into the formula for the product and changing variable. The same
estimates as before show that this product is indeed a continuous bilinear map

(12.5) C1([0; 1];S(R2d+2k))� C1([0; 1];S(R2d+2k)) �! C1([0; 1];S(R2d+2k)):
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�

One thing I did not get to before is the extraction of the `Moyel product' from
the formula (12.4). Notice that (apart from the explicit dependence of �(A) on �)
� only occurs through �2: Computing the Taylor series therefore gives

(12.6) Ĥ(�; t; �) '
1X
j=0

�2j
X

j�j+j�j=j

c�;�(@
�
t @

�
� F̂ (�; t; �)) � (@�t @�� Ĝ(t; �)):

where I have not (yet) computed the coe�cients properly. Here the product is just
the product in the suspended algebra 	�1sus(2d);iso(R

k):

A little later I will need (only in the 1-dimensional case in fact) the two leading
terms. The �rst leads to the product law for the adiabatic symbol

(12.7)

Ĥ(�; t; �) = F̂ (�; t; �) � Ĝ(�; t; �)

+�2
dX

j=1

�
@tj F̂ (�; t; �) � @�j Ĝ(�; t; �)� @�j F̂ (�; t; �) � @tj Ĝ(�; t; �)

�
+O(�4)

Ĥ(�; t; �; Z; Z 0) =

Z
Rd

H(�; t; s; Z; Z 0)e�is��ds:

This implies the analogous symbolic property to 1-dimensional case:-

(12.8)

�ad : 	
�1
ad;iso(R

d : Rk) �! 	�1sus(2d);iso(R
k);

�ad(A)(t; ~a) =

Z
Rd

�(A)(0; t; s; Z; Z 0)e�is��ds

satis�es

(12.9) �ad(AB) = �ad(A) � �ad(B) in 	�1sus(2);iso(R
k):

This sum in (12.7) correspnd to the Poisson bracket, as it should! Of course I
hardly need pause to say that �ad gives a short exact sequence

(12.10) �	�1ad;iso(R
d : Rk) �

� // 	�1ad;iso(R
d : Rk)

�ad // // 	�1sus(2);iso(R
k):

Now, one thing I have been pushing, rather relentlessly, in these lectures so far
is that one should take these sorts of algebras `seriously'. In particular look at the
corresponding group and see what you get. Let me do again what we did earlier,
perhaps with a little more care. Namely the algebra 	�1ad;iso(R

d : Rk) does not have
a unit. So simply append a unit by taking the direct product and considering

(12.11) 	�1;y
ad;iso(R

d : Rk) = C+	�1ad;iso(R
d : Rk)

where the product is the obvious one and in particular, Id = 1 + 0 is the unit.
Less abstractly one can consider C as being the complex multiples of the identity
as operators on S(Rd+k) depending trivially on the parameter �: Then one can
consider the group
(12.12)

G�1;y
ad;iso(R

d : Rk) = fA 2 	�1;y
ad;iso(R

d : Rk); 9 B 2 	�1;y
ad;iso(R

d : Rk); AB = BA = Idg:
In fact it follows that if A = z Id+A0 is invertible in this sense then z 2 C� and
Id+z�1A0 is invertible. Thus we really do not lose anything by considering the
group of the type we have been considering all along:-

(12.13) G�1ad;iso(R
d : Rk) = fId+A0 2 G�1;y

ad;iso(R
d : Rk)g ,! 	�1ad;iso(R

d : Rk):
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This is all just formal. What is important, as I indicated earlier, is that this group
happens to be open in terms of the inclusion (12.13) and hence is a nice topological
(and of course smooth) group. We need to check this, but in fact lots of amusing
things happen here so let me list this more formally.

Theorem 2. The inclusion in (12.13) is open and the two maps, the adiabatic
symbol (12.8) and the restriction map

(12.14) R : 	�1ad;iso(R
d : Rk)

��
�=1�! 	�1iso (Rd+k)

lead to a commutative diagram where the lower two maps are surjective, and admit
compact lifting, and the upper two spaces are weakly contractible:
(12.15)

fA 2 G�1ad;iso(Rd : Rk);�ad(A) = Idg
� u

((QQ
QQ

QQ
QQ

QQ
QQ

fA 2 G�1ad;iso(Rd : Rk);R(A) = Idg
I i

vvnnn
nn
nn
nn
nn
n

G�1ad;iso(R
d : Rk)

R

vvmmm
mmm

mmm
mmm

m
�ad

((PP
PP

PP
PP

PP
PP

G�1iso (Rd+k) G�1sus(2d);iso(R
k):

Recall that weak contractibility here means that for any smooth map from a
compact manifold into the space there is an homotopy to a constant map { in
this case taking the value Id : The diagonal sequences are therefore exact. Note
that compact lifting would usually be stated, at least in the topological literature,
in the form that these sequences are `Serre �brations'. It means precisely that if
f : X �! G is a smooth map into one of the bottom two spaces, then it can be
lifted to ~f : X �! G�1ad;iso(R

d : Rk) so that R ~f = f or �ad ~f = f respectively. Of
the �ve or so things to be proved here, three are reasonably straightforward and the
remaining part, amounting to the (Serre) exactness of the `R' sequence, depends
heavily on the construction I did last time. I will postpone the proof, probably
until next time.

Remark 1. (Fr�ed�eric Rochon) The two diagonal sequences in (12.15) are in fact
�brations, not just Serre �brations. So, if you know a little topology, the Serre
lifting condition does in fact follows from the surjectivity. I will prove it directly
anyway but this observation makes it clear why the proof of the lifting condition is
no harder than the proof of surjectivity!

So, suppose we have managed to prove the theorem, then what? Basically it
amounts to a weak homotopy equivalence between the bottom two spaces. That is,
the diagram induces a map, which is an isomorphism,

(12.16) pad : [X;G�1sus(2d);iso(R
k)]

'�! [X;G�1iso (Rd+k)]

for any compact manifoldX: Namely, take a smooth map f : X �! G�1sus(2d);iso(R
k):

The `Serre property' asserts that it can be lifted to ~f : G�1ad;iso(R
d : Rk) so the map

in (12.16) is supposed to be induced by

(12.17) [f ] 7�! [R ~f ]:
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Of course, we need to check that this is well-de�ned. For �xed f two liftings ~f(1)

and ~f(2) are such that F = ~f(2)�1 ~f(1) : X �! satis�es �ad(F ) � Id : So the
stated weak contractibility in the Theorem implies that this is homotopic to the
constant identiy map { hence ~f(1) and ~f(2) are homotopic. It follows that R ~f(1)

and R ~f(2) are homotopic so the image class in (12.17) is well-de�ned given f: On
the other hand if f0 and f1 are homotopic, so represent the same class [f ] on the
left, then an homotopy F : [0; 1] � X �! G�1sus(2d);iso(R

k) can also be lifted and

shows that the resulting image classes are the same. Thus (12.17) does lead to a
well-de�ned map (12.16). Of course, the argument is reversible in the sense that
there is a similar map de�ned the other way. These two maps are then inverses of
each other. Recalling that we have de�ned

(12.18) K�1�2d(X) = [X;G�1sus(2d);iso(R
k)] 8 d � 0;

with the result indepedent of the choice of k we conclude:

Corollary 1 (Bott periodicity). For any compact manifold semiclassical quantization
induces an isomorphism for any d :

(12.19) pad : K
�1�2d(X) �! K�1(X):

In fact the Theorem and the isomorphism (12.19) extends to the case of non-
compact manifolds X:We just need to consider the `homotopy groups of maps with
compact support'

(12.20) K�1�jc (X) = [X;G�1sus(j);iso(R)]c

=
n
f : X �! G�1sus(j);iso(R); f(x) = Id; x 2 X nK; K b X

o
= �

where the equivalence relation is through homotopies also reducing to the identity
outside some compact subset. Then (12.19) extends to

(12.21) pad : K
�1�2d
c (X) �! K�1c (X)

In fact,

Lemma 12.

(12.22) K�1�j
c

(X) � K�1
c
(X � Rj) 8 j � 0:

Proof. Left as an exercise, but said in brief as follows. Schwartz functions can
always be approximated by functions of compact support. �

There are many ways to rewrite these isomorphism including the form of Bott
periodicity mentioned earlier.

Corollary 2.

(12.23) �j(G
�1) =

(
f0g j even

Z j odd

Proof. Assuming we know that G�1 is connected and that �1(G
�1) = Z then we

just note that

(12.24)
�2j(G

�1) = K�1�2j(pt) = K�1(pt) = f0g;
�2j+1(G

�1) = K�1�2j�1(pt) = K�2(pt) = �1(G
�1) = Z:

�


