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Notes

1 Expand
14 Go through notes from Paul and Co.
32 Write Lecture 29.
35 Write Topic 4.
37 Write Topic 6.
38 Write Topic 7.
40 Write Topic 9.
45 Write Lecture 36.

Additional topics

� Geometric forms of determinant, determinant bundle and gerbe.
� Hopkins and Singer?
� Dirac and Bunke.
� Segal's classifying spaces
� Loop groups and representations.
� Primitive determinant bundle over whole of loop group.
� Higher Gerbes.
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Introduction

In this course I plan to describe aspects of smooth K-theory.
I will start with a discussion of the algebra of smoothing operators in its various

forms and properties including �nite-dimensional approximation, the Fredholm
determinant, group of invertible perturbations of the identity and hence to de�nitions
of odd and even K-theory.

Subsequently I will discuss:-
1. The loop group and delooping sequence and the Chern character.
2. Semiclassical quantization and Bott periodicity. Thom isomorphism and

Atiyah-Singer theorem.
3. The quantization (looping) sequence and Quillen's line bundle.
4. Segal's representation of the loop group and the K-theory gerbe.
As time (and the enthusiasm of the audience) permits I will discuss twisting of

K-theory and bordism.
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1. Lecture 1: The smoothing group
Wednesday, 27 August, 2008

My �rst goal is to introduce the in�nite-dimensional but `smooth' group, G�1:
This is a classifying space for odd K-theory and is central to the content of these
lectures. This basic classifying group comes in many di�erent manifestations, more
or less geometric. I will �rst start with some words of orientation, then I discuss the
`sequential', really least geometric, version of the underlying `Schwartz' algebra and
then the group. In subsequent lectures much smoother-looking geometric versions
of the algebra and group will appear, associated with (�nite-dimensional) manifolds.

Complex K-theory, which is what will be discussed for the most part here, is
closely connected with the algebras of N �N complex matrices M(N;C) and more
particularly the group of invertible matrices, GL(N;C) and the subgroup of unitary
matrices U(N) � GL(N;C):

I leave you to remind yourself of the basic properties of matrices, multiplication,
determinant, invertibility, polar decomposition, retraction onto U(N) etc.

Now, the odd K-group of say a compact manifold K1(X) can be de�ned in terms
of all the smooth (or continuous) maps from X into GL(N;C) (or into U(N;C):
One `di�culty' inherent in this �nite-dimensional approach to K-theory is that
one needs to stabilize everything. That is, one has to consider the embedding of
GL(N;C) in GL(N + 1;C)

(1.1) GL(N;C) 3 A 7�!
�
1 0
0 A

�
2 GL(N + 1;C):

Of course, this can be iterated to get GL(N;C) 7�! GL(N +M;C) by interpreting
1 as Id 2 GL(M;C): The need for these stabilization maps tends to make things
intrisically non-smooth. Instead, the group G�1 is an a priori stabilization which
I want to take the time to discuss carefully { since it is so fundamental to what will
follow.

So to the sequential version, which is a direct generalization of matrices but
which I will not use directly later { although it is isomorphic to the more geometric
versions that I will use, as we shall see. As basic space consider 	�1(N) where
N = f1; 2; 3; : : : g; which for the moment just means rapidly decreasing sequences

(1.2) a : N� N �! C; sup
i;j

iN jN jaij j <1; 8 N;

where the map is written as a double sequence.
This is a rather standard Fr�echet space { let me remind you about this. First,

it is countably normed as is clear from the de�nition

(1.3) ka��k(N) = sup
i;j

iN jN jaij j are norms.

Thus a subset is open if it contains an open ball around each of its points, with
respect to one of the norms (depending on the point). The additional requirement
for a Fr�echet space is completeness. Indeed, 	�1(N) is a complete metric space
with respect to the metric

(1.4) d(a; b) =
X
N

2�N
ka� bk(N)

1 + ka� bk(N)
:

If you haven't seen this it is worth doing as an exercise { at least check that this is
a metric and that the open sets with respect to it are the same as stated above.
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In fact 	�1(N) is a Montel space, as are many related spaces. Namely it has the
Heine-Borel property that every closed bounded set is compact. This is equivalent
to the condition that any sequence which is bounded with respect to each of the
seminorms is convergent { hence convergent with respect to eavh of the seminorms.
This is straightforward to check, namely the boundedness with respect to k � k(N+1)

implies that the `tails' of the sequence with respect to the k � k(N) norm are equi-
small and hence that it has a sequence which converges with respect to k � k(N): A
sequence which converges with respect to all the seminorms can then be found by
diagonalization.

Of course the important point is that the standard matrix product extends to
this space, so that there is a bilinear map

(1.5) 	�1(N)�	�1(N) �! 	�1(N); (a�b)ij =
1X
l=1

ailblj is jointly continuous.

The joint continuity of such a bilinear map reduces to estimates, for each N there
exists N 0 and C = C(N) such that

(1.6) ka � bkN � CkakN 0kbkN 0 :

In fact it is enough to check this for large N since the norms increase with N: So
take N � 1: Then the de�nitions of the norms imply that

(1.7) jailj � i�N l�1kak(N) =)
j
X
l

ailblj j � iN jN
X
l

jailjjblj j

� kak(N)kbk(N)

X
l

l�2 � Ckak(N)kbk(N):

Thus

(1.8) kabk(N) � Ckak(N)kbk(N) 8 N � 1:

Thus, 	�1(N) is a topological algebra.
As is well-known, the fact that the norms on the right in (1.6) are the same as the

norm on the left is especially helpful { although it is not necessary for continuity. It
has an important consequence for the unital extension of the algebra. That is, let
us formally add an identity { since I haven't made these matrices act on anything
yet, this is a formal identity. It really means changing the product on 	�1(N) so
that it looks like Id+	�1(N) using the natural identity

(1.9) (Id+a)(Id+b) = Id+ab+ a+ b:

Clearly then it makes sense to ask that Id+a be invertible in the sense that

(1.10) 9 b 2 	�1(N) such that (Id+a)(Id+b) = Id; i.e. ab+ a+ b = 0:

De�nition 1. The group G�1(N) � 	�1(N) consists of those elements a for which
Id+a is invertible in the sense of (1.10).

Next time I shall prove at least part of the following

Proposition 1. The group G�1(N) is an open dense subset of 	�1(N) in which
the product and the map a 7�! b = (Id+a)�1 � Id are continuous. There is an
entire analytic function

(1.11) 	�1(N) 3 a 7�! detFr(a) = det(Id+a) 2 C
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for which G�1 is the complement of the null space.

The de�nition and properties of the Fredholm determinant will have to wait a
little longer. Of course the main thing to observe here is how close this is to the
�nite dimensional case of GL(N;C) �M(N;C) { the main di�erence is that in the
�nite-imensional case the algebra is unital.

The condition on a (non-unital) Fr�echet algebra that the group of invertibles,
in this case G�1(N); is an open subset of the Fr�echet algebra, here 	�1(N); and
in particular that Id+a is invertible for the elements of a small open ball around
the origin, is often expressed by saying it is a `good' Fr�echet algebra. This seems
so lame to me that I refuse to follow such usage. If necessary I will refer to this
condition by saying the Fr�echet algebra is `Neumann-Fr�echet' since it is at least the
analogue of the convergence of the Neumann series for (Id+a)�1 when a is small
(and generally can be proved precisely this way).
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2. Lecture 2: Finite rank approximation
Friday, 29 August, 2008

From last time recall the de�nition of the sequential version of the `smoothing
group'

(2.1) G�1(N) =
�
a 2 	�1(N); 9 b 2 	�1(N) satisfying

(Id+a)(Id+b) = Id+a+ b+ ab = Id = (Id+b)(Id+a)
	
:

It is not quite obvious here that the existence of the right inverse, the �rst identity,
implies the existence of a left inverse as in the second identity, and the equality
of the two. In fact this is true as we will check later, but for the moment we just
require the existence of a two-sided inverse.

The main thing for today is to see that it satis�es variants of the `obvious'
properties of GL(N;C):

Proposition 2. The group G�1(N) is an open, dense, (path) connected subset of
	�1(N) in which the product and the map a 7�! b = (Id+a)�1�Id are continuous.

To prove these results we will use �nite dimensional approximation, so really the
same stabilization that was the reason for looking at a group like this in the �rst
place. Let �k be the projection on the space 	

�1(N) which `cuts o� the tails' after
k terms:

(2.2) (�k(a))ij =

(
aij if 1 � i; j � k
0 if i > k or j > k:

Clearly �k : 	�1(N) �! 	�1(N) is linear and continuous { in fact it decreases
each of the norms

(2.3) k�kak(N) � kak(N)

and �2
k = �k:

Proposition 3. A set K � 	�1(N) is precompact (has compact closure) if and
only if each of the norms k � k(N) is bounded on K and on such a set

(2.4) k�ka� ak(N) ! 0 uniformly as k !1 8 N:
Proof. Note that the di�erence a��ka has all entries with i; j � k vanishing. Thus
from the de�nitions of the norms,

(2.5) ka��kak(N) � k�1kak(N+1)

since at least one of i; j � k on all non-zero elements. This shows that (2.4) follows
from the assumption that all the norms are bounded on K: This in turn implies
sequential precompactness (which is precompactness for a metric space) of a set
satisfying these conditions by the usual diagonalization process. That is, given a
sequence a(n) in K; �ka(n) is in a bounded subset of a �nite dimensional space, so
we can extract successive subsequences such that each �ka(nk) converges. Passing
to the diagonal subsequence and relabelling it as a(n) it follows that we may assume
that �ka(n) �! �ka for each k and some �xed double sequence aij : It follows from
(2.5) that in fact a 2 	�1(N) and that a(n) converges to it in 	�1(N):

The converse is similar, maybe a little easier, and anyway of less interest in what
follows, so I leave it as an exercise. �
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To prove that G�1(N) is open we will also use another property of 	�1(N):

Lemma 1. The algebra 	�1(N) has the `corner property' that for any a; b; c 2
	�1(N) and any N;

(2.6) kabck(N) � Ckak(N)kbk(1)kck(N); N � 1:

Here C is actually independent of N but that is not really the point. As you will
see when we get to the geometric realizations of this setup, (2.6) corresponds to the
`smoothing property' of these operators

Proof. This is just the same sort of estimate as before:

(2.7) iN jnj(abc)ij j �
X
l;m

iN jailjjblmjjN jcmj j � (
X
l;m

l�2m�2)kak(N)kbk(1)kck(N):

�

Proof of Proposition 2. So, we want to show that for each point a 2 G�1(N) there
is an open ball centred at a with respect to one of the norms which is contained
in G�1: We will use a Neumann series argument. Clearly the group product is
continuous, since it is (a; b) 7�! a + b + ab: Thus, if Id+a 2 G�1 and U is a
neighourhood of Id 2 G�1 then (Id+a)U is a neighbourhood of Id+a: Thus it
su�ces to show that

(2.8) fa 2 	�1(N); kak(1) < 1g � G�1(N):

To see this consider the Neumann series for the inverse

(2.9) (Id+a)�1 = Id+

1X
j=1

(�1)jaj :

This is Cauchy with respect to the norm k � (1) provided kak(1) < 1: Of course,
to get (2.8) we need to show that it is Cauchy with respect to all the norms, since
that implies that it is Cauchy with respect to the distance. This is where Lemma 1
comes in, since if kak(1) = c < 1 then from (2.6)

(2.10) kaj+2k(N) � Ckak2(N)c
j

which implies that the sequence is Cauchy with respect to each k � k(N): Thus the
sequence in (2.9) does indeed converge. The limit is a two-sided inverse to Id+a:

The continuity of the inverse map follows from this argument and the continuity
of the product is clear.

Next we want to show that G�1(N) is connected. Here we can use the �nite
dimensional approximation to good e�ect. Since we know that �ka! a as k !1
and now that G�1(N) is open, it follows that ta + (1 � t)�ka 2 G�1(N) for
t 2 [0; 1] if k is large enough. Thus Id+�ka 2 G�1(N) is connected to a: From the
uniqueness of the inverse in a group, Idk�k +�ka 2 GL(k;C) when thought of as a
�nite dimensional matrix. Here we are using the fact that we can embed GL(k;C)
in G�1 by subtracting the identity in GL(k;C) from it, extending the resulting
matrix as zero for i; j > k and then adding the formal identity to it afterwards.

So, the connectedness of G�1(N) follows from the connectedness of each of the
GL(k;C) (well, we only need this for k large enough). This of course is well known.
One way to see it is to use a little spectral theory. If a 2 GL(k;C) then aa�

is positive de�nite, in particular is selfadjoint with positive eigenvalues, so has a
positive square root and de�ning u by a = (aa�)

1
2u makes u unitary. Moreover the
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curve t(a�a)
1
2 + (1 � t) Idk�k connects the positive de�nite factor to the identity

through positive, hence invertible, elements. Thus it is enough to show that U(k);
the group of unitary matrices is connected. The spectral decomposition of u gives an
orthonormal basis of eigenvectors on each of which u acts as ei� for some � 2 [0; 2�):
Rotating this to 1 on each eigenspace connects u to the identity. Thus each U(k)
and hence G�1(N) is connected. �

As for k � k matrices, it is nice to know that invertibility is determined by
the non-vanishing of a `character', which is to say a multiplicative map de�ned on
	�1(N) in the sense that

(2.11) det ((Id+a)(Idb)) = det(Id+a) det(Id+b):

This is often called the `Fredholm determinant'.

Proposition 4. There is an entire analytic function

(2.12) 	�1(N) 3 a 7�! detFr(a) = det(Id+a) 2 C
such that G�1 is the complement of its null space and if a = �ka then

(2.13) detFr(a) = det(Id+a) = det(Idk�k +�ka)

reduces to the usual determinant.

So the proof I have in mind is the �rst use I will make of di�erential forms on
G�1: There are other, possibly simpler, proofs but this one has the virtue of linking
up with the Chern classes later on { in fact that is what we are discussing here, the
�rst odd chern class.

I will therefore launch into a brief discussion of analysis on G�1(N): This is
fairly straightforward since G�1(N) is open in 	�1(N); it is therefore a complete
metric space, so we certainly know what continuity means. For di�erentiability I
will take a strong de�nition { there are lots of possibilities on Fr�echet manifolds
but many of them coincide here. So, �rst note that as an open set of a linear space,
the tangent space at any point can be identi�ed with 	�1(N) itself. For a function
f : U �! C where U � 	�1(N) is open, to be di�erentiable at a we will require
the existence of a continuous linear map Df(a) : 	�1(N) �! C such that

(2.14)

f(a+ b)� f(a)�Df(a) � b = o(kbk(N)) for N su�ciently large

()
9 N such that 8 � > 0 9 � > 0 for which

kbk(N) < � =) kf(a+ b)� f(a)�Df(a) � bk(N) � �kbk(N):

Note that ifN is large enough and � > 0 is small enough then a+b 2 U if kbk(N) < �:

The special properties of G�1(N) allow us to require as part of the de�nition of
once continuous di�erentiability, which or course requires di�erentiability at each
point, that (2.14) hold everywhere with the same N and that the derivative

(2.15) Df : U �	�1(N) �! C be continuous with respect to k � k(N)

on both factors. This does not make much sense unless U contains open k�k(N)-balls

around each of its points { which of course is the case for G�1(N):
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3. Lecture 3: K-groups and loop groups
Wednesday, 3 September, 2008

Reconstructed, since I did not really have notes { because I was concentrating
too hard on the 3 lectures on blow-up at MSRI!

(1) Odd K-theory
(2) Loop group
(3) Even K-theory
(4) Delooping sequence

Having de�ned the group G�1(N) and shown that it is open (and dense) in
	�1(N) we can de�ne the odd K-theory of a space simply as the set of smooth
equivalence classes of smooth maps. For the moment let us just consider a compact
smooth manifold X then a map

(3.1) f : X �! G�1(N) ,! 	�1(N)

is smooth if it is di�erentiable to in�nite order. For a map into a �xed topological
vector space this is quite a simple condition. Namely forget for that X is compact,
then we certainly know what a continous map is. Di�erentiability at a point �x 2 X
is the existence of the derivative, which is to be a continuous linear map,

(3.2) Df(�x) : T�xX �! 	�1(N)

such that in local coordinates near �x; for given � > 0 there exists � > 0 such that

(3.3) kf(x)� f(�x)�Df(�x)(x� �x)k(N) � �jx� �xj in jx� �xj < �:

Then we require that Df(�x) exists everywhere so de�nes a map

(3.4) Df : TX �! 	�1(N)

which we then require to be continuous and di�erentiable. Proceeding inductively
we can require the existence of higher derivatives by the same procedure, where
di�erentiablilty in the linear variables is trivially true. Thus the kth derivative is
required to be a map

(3.5) DkF (�x) : T�xX � T�xX � � � � T�xX �! 	�1(N)

for each point �x 2 X which is the derivative of the k � 1st derivative and which is
continuous in all variables.

Examples are immediately provided by smooth maps X �! GL(N;C) in the
usual �nite-dimensional sense, for any N because of the smooth inclusion

(3.6) GL(N;C) �! G�1(N):

So, having de�ned smoothness on compact manifold { including a compact
manifold with boundary, we then de�ne a smooth homotopy between two such
maps. If f0; f1 : X �! G�1(N) are smooth maps then they are said to be
smoothly homotopic if there exists a smooth map

(3.7) F : [0; 1]t �X �! G�1(N)

such that

(3.8) F (0; x) = f0(x); F (1; x) = f1(x) 8 x 2 X:
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De�nition 2. The odd K-theory of a compact manifold X is de�ned to be the set of
equivalence classes under smooth homotopy of smooth maps f : X �! G�1(N) :

(3.9) K�1(X) = ff : X �! G�1(N)g= � :
The same de�nition applies to compact manifolds with boundaries, or with corners.
For non-compact manifolds I will require the smooth maps to have `compact support',
meaning they reduce to the identity outside some compact set. The maps F in the
homotopies are then also require to be equal to the identity outside a compact set,
although of course the set is not itself �xed. I will use the slightly non-standard
notation

(3.10) K�1
c (X) = ff : X �! G�1(N); 9 K b X; f(x) = Id 8 x 2 X nKg= �

in this case.
Now, in fact K�1(X) is not just a set, but is an abelian group. That it is a

group is relatively clear. The commutativity of the group structure follows from
the approximation properties.

Proposition 5. Group composition in G�1(N) induces the structure of an abelian
group on K�1(X):

Proof. Given two smooth maps fi : X �! G�1(N); i = 1; 2; the product f1f2(x) =
f1(x)f2(x) is smooth in view of the smoothness of the product map on G�1(N):
To see that K�1(X) inherits a group structure from this, we need to check that
it is consistent with homotopy, i.e. is independent of the choice of representative.
However, that is obvious enough since if f 0i : X �! G�1(N); i = 1; 2 are two
other representatives of the same K-classes then, by de�nition, there homotopies
Fi : [0; 1]�X �! G�1(N); i = 1; 2 which are smooth and such that

(3.11) Fi(0; x) = fi(x); Fi(1; x) = f 0i(x):

Then, F1F2 is a smooth homotopy between the products, so the class [f1f2] 2
K�1(X) only depends on the classes [f1]; [f2] 2 K�1(X): This product makes
K�1(X) into a group since the inverse of [f ] is clearly [f�1] and the other group
conditions follow from G�1(N):

So, the remaing thing to show is that the product is commutative. To do so,
we show that each element [f ] 2 K�1(X) can be represented by a smooth map
f 0 : X �! GL(N;C) for some N (and hence for any larger N by stabilization).
This follows from the approximation result proved early. Namely, the image of f is
certainly compact (since X is assumed to be so) and thus

(3.12) �Nf(x) �! f(x) uniformly for x 2 X:
It follows from the openness of G�1(N) that for N large enough the smooth
homotopy F (t; x) = (1 � t)f(x) + t�Nf(x) takes values in G

�1(N) and so �Nf
also represents [f ] 2 K�1(X):

Now, having take two classes, represented by f and g: For N large enough, these
classes are represented by �Nf and �Ng which take values in GL(N;C): We can
also embed GL(N;C) in GL(2N;C) by stabilization and see that each of these classe
is represented by a map taking values in matrices like this

(3.13)

�� 0
0 IdN

�
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which are block N � N matrices. Now consider the following homotopy which is
really just `rotation by a 2� 2 matrix' for say f :
(3.14)

F (t; x) =

�
cos( 12�t) sin( 12�t)� sin( 12�t) cos( 12�t)

��
f(x) 0
0 IdN

��
cos( 12�t) � sin( 12�t)
sin( 12�t) cos( 12�t)

�
:

The outer matrices are inverses of each other (of course there are hidden IdN 's in
the 2� 2 matrices). At t = 0; F reduces to the suspended f but at t = 1 it is

(3.15)

�
Id 0
0 f(x)

�
:

Thus, f is homotopic to a map which commutes with g: The product is therefore
commutative. �

For the moment, I will not go into any detail, but these abelian groups (which
are written additively, so that the class [Id] = 0) behave like (and indeed form)
a cohomology theory. Thus, under a smooth map between compact manifold, h :
X �! Y; these odd k-groups pull back:

(3.16) h� : H�1(Y ) �! K�1(X); h�[f ] = [f � h]:
Check for yourself that this is well-de�ned.
As well as this bald de�nition of odd K-theory, which is only really justi�ed by

subsequent properties, I want to introduct even K-theory and also the delooping
sequence today. Even K-theory here will be de�ned in terms of the appropriate
loop group as a classifying space. Loops in general are just maps from the circle.
In the case of a group, for us G�1(N) one can restrict to smooth pointed loops,
which take the value Id at the base point, 1 2 S: In fact, for analytic reasons that
will appear later, it is best here to take an even smaller group the 
at-pointed loop
(smooth) loop group:

(3.17) G�1sus (N) = fb : S �! G�1(N); C1; b(1) = Id;
dkb

d�k
(1) = 0 8 k � 1g:

Thus these loops not only take the value Id at the point 1 2 S but all derivatives
vanish there as well, making the loop `
at'. I use the abbreviation `sus' for this
group to indicate that it is obtained by `suspension' from G�1(N) in a way that
will be clari�ed below.

Now, I did not do the following in the lecture, because I did not have my notes!

Lemma 2. The suspended group G�1sus (N) is open and dense in the Fr�echet algebra
(3.18)

_C1([0; 2�]; 	�1(N)) = fb : [0; 2�]� �! 	�1(N);
dkb

d�k
b(�) = 0; � = 0; 2� 8 k � 0g:

Proof. So, to do this properly I need to show that

(1) The space (3.18) is a Fr�echet algebra
(2) There is a natural map from the group in (3.17) into it.
(3) The range is open (and in fact it is dense).

So, this is just like the relationship between 	�1(N) and G�1(N): �

Having de�ned this suspended group, we can set by direct analogy with the odd
case above

(3.19) K�2(X) = ff : X �! G�1sus (N); C1g= �
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with the equivalence relation being smooth homotopy in the same sense. Thus f0
and f1 are homotopic if there exists

(3.20) F : [0; 1]�X �! G�1sus (N);F (0; x) = f0(x); F (1; x) = f1(x) 8 x 2 Xg:
I need to expand a bit on the things I said in the later part of the lecture. Namely

there is a natural injection

(3.21) K�2(x) �! K�1(S�X)

which corresponds to the fact that an element of G�1sus (N) is already a smooth map
of S into G�1(N) and hence a map from X into G�1sus (N) can be regarded as a map
from S�X into G�1(N): In the lecture I did not prove injectivity but I did say:

Lemma 3. For any compact manifold there is a natural short exact sequence

(3.22) K�2(X) �! K�1(S�X) �! K�1(X):

Proof. �

The relationship between the circle S and the interval [0; 2�]; which already
appears (at the moment implicitly) above gives rise to the delooping sequence.
This comes above by cutting the circle at 1: So, consider in place of (3.17) the
group

(3.23) ~G�1sus (N) =

f~b : [0; 2�]� �! G�1(N); C1; ~b(0) = Id;
dk~b

dtk
(t) = 0; t = 0; 2� 8 k � 1g:

Thus, these are smooth maps from the interval, hence `open loops', which take the
value Id at 0 and which are 
at at both ends. However the value at the far end,
t = 2�; is not speci�ed. The topology on this group is of the same type as is (not
yet) discussed above.

Proposition 6. The natural maps, given by the identi�cation S = R=2�N with
fundamental domain [0; 2�] and by restriction to 2�; give a short exact sequence of
groups

(3.24) f1g // G�1sus (N) // ~G�1sus (N)
j2� // G�1(N) // f1g:

Proof. Identifying S = R=2�Z gives a smooth map [0; 2�] �! S; explicitly � 7�! ei�;
under which 0 and 2� are both identi�ed with 1 2 S: Thus, elements of G�1sus (N);
being maps on S; pull back to [0; 2�]: In fact, comparing (3.17) and (3.23) this

map is injective into ~G�1sus (N) and has range the subset on which ~b(2�) = Id : The

restricition map in (3.24) is just evaluation at � = 2� so exactness at ~G�1sus (N) also
follows. The surjectivity of this map follows from the connectedness of G�1(N):
In fact the argument above, by approximation gave a piecewise smooth curve from
any given point of G�1(N) to Id : To prove surjectivity we need to show that this
curve, which can be assumed to be from [0; 2�] can be chosen smooth and 
at at
the ends. If it is smooth, reparameterization makes it 
at. Namely consider a map
 : [0; 2�] �! [0; 2�] with is smooth and constant near the ends with  (0) = 0;
 (2�) = 2�: Then if b0 : [0; 2�] �! G�1(N) is smooth, b0 �  is smooth and 
at
at the ends. The same construction allows a piecewise smooth curve to be mad
smooth, by making it 
at at the special points. This completes the proof of the
exactness of (3.24). �
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Add some words about the contractibility of ~G�1sus (N) and why this might be
important.
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4. Lecture 4: Delooping and Chern forms
Friday, 5 September, 2008

(1) Contractibility of ~G�1sus (N):
(2) Odd Chern forms.
(3) Even Chern forms { only started.
(4) Transgression under delooping; next time.

Last time I de�ned two versions of the loop group on G�1(N) and discussed
the delooping sequences. The central group in the sequence consists of open loops.
Identifying the circle with the quotient of the interval [0; 2�] there is in fact no
contuity condition corresponding to 0 = 2� so this group can be written as
(4.1)

~G�1sus (N) = fb : [0; 2�]s �! G�1(N); b(0) = Id;
dkb

dtk
(0) = 0;

dkb

dtk
(2�) = 0 8 k � 1g:

Thus, the value at the end, s = 2�; of the loop is `free' but the curve is required to
be 
at there and also to be 
at as it approaches Id at s = 0:

Proposition 7. The is a smooth global retraction

(4.2)
R : [0; 1]t � ~G�1sus (N) �! ~G�1sus (N);

R(1; b) = b; R(0; b) = Id 8 b 2 ~G�1sus (N):

Proof. The idea is to simply shorten the curves but we need to be a little careful
in order to maintain the 
atness conditions. First choose two smooth functions

(4.3)

 i : [0; 1] �! [0; 1]; i = 0; 1 with

 1(1) = 1 in s > 3=4;  1(s) = 0 in s < 1=2;

 0(s) = 0 in s > 3=4 and s < 1=4;  0(s) +  (s) = 1 in s � 1=2:

Then consider a smooth function f : [0; 2�] �! [0; 2�] with f(s) = 0 in s > 1=20;
f(s) = 2� in s > 2� � 1=20 and de�ne

(4.4) � : [0; 1]t � [0; 2�]s �! [0; 2�] by �(t; s) = f(s) 0(t) + s 1(t):

Clearly �(0; s) = 0; �(1; s) = s for all s 2 [0; 2�]: Moreover, �(t; 0) = 0 forall t;
�(t; 2�) = 2�; for t � 1=2 and for t � 1=2;

(4.5)
dk�

dsk
(t; 2�) = 0 8 k > 1:

Then the desired homotopy is given by

(4.6) R(t; a)(s) = a(�(t; s)) 2 ~G�1(N)

where the 
atness at s = 0 follows from the 
atness of a at s = 0 and the 
atness
at s = 2� follows from that of a for t � 1=2 and from that of � for t � 1=2: Thus
(4.2) follows, proving the Proposition. �

Now, let me turn, or return, to the Chern forms. As in a Lie group, the canonical
map g : G�1(N) �! 	�1(N) which embeds the group as an open dense subset of
the algebra trivializes the tangent bundle to the group, so we can identify

(4.7) dg : TG�1 = G�1 �	�1(N):

The `name' chosen for this identi�cation, dg; is supposed to be suggestive but can
be confusing. Really the `g' here just tells you at which point of the group you are
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supposed to be and the `d' indicates the identi�cation of tangent spaces. However,
it does give magical formul� which fortunately are correct.

So, the higher tensor spaces, multi-tangent bundles, are just the formal tensor
products. This means that if we want to have a cotensor at a point of G�1 it will
just be a continuous multilinear map

(4.8) 	�1(N)�	�1(N) � � �	�1(N) �! C:

The continuity of such multilinear maps automatically generates a completed tensor
product of the dual spaces, so we do not have to worry about formalizing this at
the moment. In short then a k-form on G�1 should be a smooth map

(4.9) G�1(N)�	�1(N)�	�1(N) � � �	�1(N) �! C

which is linear in each of the last k factors and which is totally antisymmetric in
these. Before worrying too much about di�erentials etc, let's just check that we
can manufacture some.

The simplest forms one could think of would be those `independent' of the �rst
factor in (4.9) { although such independence is illusionary since the trivialization
of the tangent bundle introduces a degree of twisting. Thus, since we have the
product in the algebra and the trace functional at our disposal we can just consider
(4.10)

	�1(N)�	�1(N) � � �	�1(N) 3 (b1; : : : ; bk) 7�!
X
�k3i

sgn(i) tr(bi1bi2 : : : bik):

Here I have explicitly introduced the exterior product by antisymmetrizing in all
the variables. So, at the identity of the group this can be written

(4.11) tr(dg ^ dg ^ : : : dg)(b1; : : : ; bk) at g = Id 2 G�1(N):

This does indeed de�ne a global form on G�1 but not a very interesting one as it
turns out. Rather we need to introduce factors of g�1 to map everything back to
the identity. So we consider the k-form

(4.12) tr(g�1dg ^ : : : g�1dg) = tr
�
(g�1dg)k

�
:

Written out at any point on the group it just looks like (4.10) with g�1's inserted
between the factors and then antisymmetrized in the tangent variables. Clearly
(4.12) is a rather simpler formula, especially when we suppress the wedge product
as well!

Now, from antisymmetry alone this form vanishes identically if k is even. You
can think of this as `moving' the �rst factor to last { which is okay because of the
properties of the trace { but in doing so one has to pass over an odd number of
terms each of which reverses the sign, so overall it is equal to its negative. Thus we
only consider the odd case and write

(4.13) Chodd2k+1 = Ch2k+1 = tr
�
(g�1dg)2k+1

�
; k = 0; 1; 2; : : : :

The `odd' here is redundant, since the forms are only in odd degree anyway.
Note that the insertion of the factors of g�1 makes this form left-invariant. That

is, consider the map from G�1 to itself given by multiplication on the left by
h 2 G�1(N); �xed but arbitrary. Ther is of course a similar right multiplication
map, which conventionally has an inverse inserted

(4.14)
Lh : G

�1(N) �! G�1(N); g 7�! hg

Rh : G
�1(N) �! G�1(N); g 7�! gh�1
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are both global di�eomorphisms.

Lemma 4. All the (odd) Chern forms in (4.13) are are bi-invariant.

Proof. Trivial enough. Namely (hg)�1 = g�1h�1 and d(hg) = hdg: Thus even the
product g�1dg = (hg)�1d(hg) is left-invariant. On the other hand under the right
action, R�h(g

�1dg) = h(g�1dg)h�1: Thus the forms are obviously left-invariant and
right-invariance follows from the invariance properties of the trace:

(4.15) R�h Ch2k+1 = tr
�
h(g�1dg)2k+1h�1

�
= Ch2k+1 :

�

Most importantly of all, of course, is that

Lemma 5. The (odd) Chern forms are closed.

Proof. The operator d is perfectly well-de�ned as in the �nite-dimensional case.
Let me just leave this as an exercise for the moment! In fact d makes good sense
on smooth forms valued in any vector space, such as 	�1(N): Thus we see,

(4.16) g�1 : G�1(N) ! G�1(N); dg�1 = �g�1dgg�1:
As usual, this just follows by di�erntiating the identity g�1g = Id : Thus the product
g�1dgg�1 is closed, in fact is exact. Similarly of course, dg is closed { being the
di�erential of a linear map. So,

(4.17) tr
�
(g�1dg)2k+1

�
= tr

�
g�1dg(g�1dgg�1dg)k

�
:

Since tr is a continuous linear functional d tr(F ) = tr(dF ) so we see that

(4.18) dCh2k+1 = tr
�
(dg�1)dg(g�1dg)k

�
= � tr �g�1dgg�1dg(g�1dg)k� = 0

since we are back to the case of an even number of factors. �

Where does this lead us? Each of these Chern forms de�nes a cohology class on
G�1(N) { of course we have not yet checked that they are non-zero. In fact they
are and so it is interesting to consider the pull-backs:

Proposition 8. The odd Chern forms de�ne maps for each k

(4.19) K�1(X) �! H2k+1(X;C)

for any compact manifold.

Proof. By de�nition an odd K-class is de�ned by a smooth map f : X �! G�1(N):
Thus we can simply pull the forms back to get

(4.20) f�Ch2k+1 = tr
�
(f�1df)2k+1

�
where now we can think of f as a map into 	�1(bN) (which happens to map into
G�1(N) of course). So, we only need to show that the cohomology class de�ned by
this form is the same for homotopic f 's. Given a homotopy F : [0; 1]t�X �! G�1

the Chern form pulls back to 
 = F � Ch2k which is a smooth closed form on
[0; 1]�X: Then if f0 and f1 are the restrictions to t = 0 and t = 1 it follows that

(4.21) f�1 Ch2k �f�0 Ch2k = d�

for a smooth form �: Indeed 
 = dt ^ v + v0 where v; v0 are forms on X which
depend on t as a parameter. That 
 is closed means that

(4.22)
@v0

@t
� dXv = 0; dXv

0 = 0:
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Hence

(4.23) f�1 Ch2k �f�0 Ch2k = v0(1)� v0(0) =
Z 1

0

@v0

@t
dt = dX�; � =

Z 1

0

v(t)dt:

�

In fact it is usual to sum these forms up, to give the Chern character mapping
from odd K-theory to odd cohomology { this involves questions of normalization
which I will postpone for a little while.

So, next consider the even analogue of these forms. Of course there are no even
forms on G�1(N) but these are forms on G�1sus (N): In fact these are induced by
the forms we already have on G�1(N) through the evaluation map

(4.24) ev : S�G�1sus (N) �! G�1; (�; g) �! g(�):

Since this map is smooth, we can pull the forms Ch2k+1 back to the product and
then we can push-forward to the suspended group by integrating over the circle.
Thus reduces the degree by one, so we de�ne

(4.25) Cheven2k =

Z
S

ev� Ch2k+1 on G�1sus (N):

Now, it is straighforward to write this form down in terms of dg; the same map on
G�1(N) and the parameter � 2 S :

(4.26) Ch2k =

Z
S

tr

�
g�1

@g

@�
(g�1dg)2k

�
:
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5. Lecture 5: Harmonic oscillator
Monday, 8 September, 2008

I have not really talked so far about the topology on the loop spaces. I hope to
get to this today, or at least do the preparation for it, and also consider the �rst
`geometric form' of G�1; namely the `isotropic smoothing algebra', or Schwarz
algebra, of operators on R:

� Schwartz space
� Harmonic oscillator
� Creation and annihilation operators
� Eigenfunctions
� Hermite polynomials
� Completeness
� Convergence of eigenseries
� The algebra 	�1(R) and group G�1(R):
� Loop groups again.

I will assume that you are somewhat familiar with the Schwartz space S(R); but
let me remind you of the de�nition and basic properties. In fact we might as well
consider S(Rn) for any n:

So, S(Rn) � C1(Rn) consists of all the (complex-valued) smooth functions of
rapid decay, meaning that all the norms

(5.1) kukp;1 = sup
z2Rn; 0�j�j�p

(1 + jzj2) p2 jD�u(z)j <1

are �nite. Here � = (�1; : : : ; �n) is a multi-index, so �i 2 N0 = f0; 1; 2; : : : g

(5.2) D�
z u = i�j�j

@�1

@z�11
: : :

@�n

@z�nn
u(z); j�j = �1 + � � �+ �n

where the powers of i are there for reasons to do with formal self-adjointness. This
sequence of norms is just like those considered on sequences above. Just as there,
S(Rn) is a complete metric space with the distance

(5.3) d(u; v) =
X
p

2�p
kukp;1

1 + kukp;1
where convergence of a sequence with respect to this distance means exactly the
same as convergence with respect to each of the norms kukp;1 (with no uniformity
in p): The dual space, the space of continuous linear maps

(5.4) U : S(Rn) �! C;

is the space of tempered (or temperate) distributions, S 0(Rn): There is a natural
inclusion, almost always treated as an identi�cation

(5.5) S(Rn) ,! S 0(Rn); u 7�! Uu : S(Rn) 3 f �!
Z
Rn

u(x)f(x)dx:

Since it is treated as an identi�cation we normally write Uu = u:
Now consider the algebra

(5.6) 	�1iso (R) = S(R2)
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where the product is

(5.7) ab(x; x0) =

Z
R

a(x; x00)b(x00; x0)dx00:

These are the Schwartz smoothing operators on R: They act on S(R) in the obvious
way, as integral operators

(5.8) a : S(R) �! S(R); (au)(x) =
Z
R

a(x; x0)u(x0)dx0:

Then (5.7) is operator composition.
The spectral theory of the harmonic oscillator

(5.9) H = � d2

dx2
+ x2

on the line can be discussed in an essentially algebraic way. This is based on the
two �rst order operators,

(5.10) A =
d

dx
+ x and C = � d

dx
+ x;

respectively the annihilation and creation operator. The idenitites

(5.11) H = CA+ 1; [A;C] = 2[
d

dx
; x] = 2; Ae�

x2

2 = 0

are easily checked. Since

(5.12)

Z
R

(e�
x2

2 )2dx =

Z
e�x

2

dx =
p
�

the function

(5.13) h1 = ��
1
4 e�

x2

2

has norm 1 in L2(R) and satis�es

(5.14) Hh1 = h1:

This is the ground state of the harmonic oscillator. The higher eigenfunctions
are obtained by applying the creation operator. Thus
(5.15)

Ckh1(x) satis�es

H(Ckh1) = Ckh1 + CACkh1 = Ckh1 + 2Ckh1 + C2ACk�1h1 = (1 + 2k)Ckh1

as follows from (5.11) by induction. Moreover it also follows inductively that

(5.16) Ckh1(x) = (2kxp + qk�1)(x))h1(x)

where qk�1 is a polynomial of degree at most k � 1: Certainly, Ckh1 2 S(R): The
L2 norm can be computed by integration by parts using the fact that A and C are
adjoints of each other

(5.17)

Z
R

(Ckh1(x))
2dx =

Z
R

hx(x)A
kCkh1(x)dx = 2kk!:

Moreover Ckh1 and Clh1 are orthogonal in L2 by a similar argument and hence
the

(5.18) hk = 2�
k
2 (k!)

1
2Ckh1; k = 0; 1; 2; : : :

form an orthonormal sequence of eigenfunctions of H:
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In fact this is a complete orthonormal basis of L2(R): To see this observe from

(5.16) that the span of the �rst k elements consists of all the products q(x)e�
x2

2

where q is a polynomial of degree at most k: In particular if u 2 L2(R) then
(5.19)

Z
u(x)hk(x)dx = 0 8 k ()

Z
u(x)xke�

x2

2 dx = 0 8 k:
Taking the Fourier transform and using Plancherel's formula and the fact that the
Fouier transform of h1 is a multiple of itself, (5.19) is equivalent to

(5.20)
dk

d�k
v(0) = 0 8 k; v(�) =

Z
e�ix�u(x) exp(�x

2

2
)dx:

Now v is entire, since the integral de�ning it is absolutely convergent for all � 2 C:
It follows that v � 0 and hence u � 0 by Fourier inversion. This shows that the hk
form a complete orthonormal basis of L2(R):

Lemma 6. If u 2 S(R) it follows that the Fourier-Bessel expansion of u in terms
of the hk converges in S(R) :

(5.21) u(x) =

1X
k=1

ckhk; ck =

Z
hk(x)u(x) =)

X
k

kpjckj <1 8 p:

Proof. This follows from Stirling's formula

(5.22) k! �
p
2�k

�
k

e

�k
:

which implies the existence of positive constants R; c and C such that

(5.23) cRkkk+
1
2 � 2kk! � CRkkk+

1
2 :

Fix p 2 N: Then hp+k = �(k; p)Cphk so integrating by parts from the de�nition of
the coe�cients in (5.21),

(5.24) cp+k = �(k; p)

Z
R

hk(x)A
pu(x)dx:

Now, in terms of the seminorms on S(R);
(5.25) jApu(x)j � 2p(1 + jxj)�2kukp+2;1
where the extra factor is to ensure integrability. Thus

(5.26) jcp+kj � �(k; p)2pkukp+2;1:
Combining (5.23) and (5.26) it follows that

(5.27) jcp+kj � Cpk�p=2kukp;1:
Thus the coe�cients decrease rapidly.

Estimating directly it also follows that

(5.28) khkkp;1 � Cpkp=2+1
so the sequence does indeed converge in S(R): �

Proposition 9. The map

(5.29) 	�1(N) 3 aij 7�!
X
ij

aijhi(x)hj(x
0) 2 	�1(R)

is an isomorphism.
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Proof. This requires the same sort of argument as in the previous proof, but now
applied in both variables. �

So everything I have said for 	�1(N) carries over to 	�1iso (R) and we can de�ne
the group G�1iso (R) which is similarly isomorphic, as a topological group and by
a smooth isomorphism, to G�1(N): The trace functional is the integral over the
diagonal

(5.30) 	�1iso (R) 3 a 7�! tr(a) =

Z
R

a(x; x)dx:

Thus the Chern character forms look the same as before but now involve lots of
integrals instead of sums.

Now, if I get this far, the loop group on 	�1(N) can also be written is `Schwartz
form'. Namely we can take an isomorphism

(5.31) (0; 2�) �! R; T (�) = arctan((� � �)=2)
which identi�es smooth functions on [0; 2�] which vanish with all their derivatives
at the end points with S(R): Basically only the `polynomial' behaviour of T at
0 and 2� (and the fact that it is a di�eomorphism of the open sets of course) is
important here.
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6. Lecture 6: Higher loop groups and determinant
Wednesday, 10 September, 2008

Before picking up where I left o� last time, let me outline where I will head after
the coming week-long break. What we need to justify the de�nition of the odd
K-theory of a space as the homotopy classes of maps into G�1(N) is to prove Bott
periodicity :

(6.1) �j(G
�1(N)) =

(
f0g j even

Z j odd.

We already know that G�1(N) is connected and using the Fredholm determinant
it is reasonably easy to show the result for �1: The general case will following from
this by constructing a weak homotopy equivalence

(6.2) G�1sus(2)(N) �! G�1(N):

I have not de�ned the group on the left yet, but will do so today. It is just an
iterated loop group; see (6.8).

At the end last time I talked about turning 
at loops into Schwartz functions.
The basic statement is simple enough. Consider the di�eomorphism of the open
interval to the line

(6.3) T : (0; 2�) 3 � 7�! tan

�
� � �
2

�
:

The derivative is 1
2 sec

2( ���2 ) > 0 on (0; 2�): As � # 0; �T (�) ! �2 and similarly
at the other end, (2� � �)T (�)! 2:

Lemma 7. Pull-back under T in (6.3) gives a topological isomorphism
(6.4)

T � : S(R) �! _C1([0; 2�]) =

�
u 2 C1([0; 2�]);

dku

d�k
(e) = 0; e = 0; 2�; 8 k � 0

�
:

Proof. Clearly under T � an element v 2 S(R) pulls back to be smooth in the
interior. The derivatives of T all grow at most polynomially at the end points from
which it follows easily that T �v 2 _C1([0; 2�]) and the converse is similar. �

Of course this proof could do with a bit of expansion!
Anyway, it follows from this Lemma, or a rather a generalization of it, that the

suspended group can be moved to the real line.

(6.5)

b 2 G�1sus (N) = fb 2 _C1([0; 2�]; 	�1(N); (Id+b(�)) 2 G�1(N)g
()

b = T �b0; b0 2 S(R; 	�1(N)) and Id+b0(t) 2 G�1(N) 8 t 2 R:
The point here, as usual, is that having values in 	�1(N) is really no di�erent
from usual complex-valued functions.

It is also important to note that the even Chern forms, de�ned on G�1sus (N) are
independent of such a change of parameterization, even though it is from a compact
to a non-compact space. Namely they are all given by push-forward of forms on
this manifold, and this is independent of choice. At a more prosaic level the forms
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look like

(6.6)

Z 2�

0

tr(: : :
dg

d�
: : : )d� =

Z
R

tr(: : :
dg

dt
: : : )dt

with the Jacobians cancelling.
Now, one reason why this change of point of view, which is all I have really done

here, is that combined with the shift last time from the sequential to isotropic forms
of G�1 it makes things look much more uniform. Thus we can write

(6.7)

G�1(R) = fa 2 S(R2); (Id+a)�1 = Id+a0; a0 2 S(R2)g
G�1sus (R) = fb 2 S(R3); (Id+b(t; �)) 2 G�1(R) 8 t 2 Rg

~G�1sus (R) =
�
~b 2 C1(R3); (Id+~b(t; �)) 2 G�1(R) 8 t 2 R and

9 ~a� 2 S(R3); a1 2 	�1(R) such that

~b(t) = a�(t) in t < 0; ~b = a1 + a+(t) in t > 0
	
:

In the second case, t is the �rst variable, which is just a parameter, and the other
two are `non-commutative' in the sense of the operator product. Of course the
assertion here is that these two groups are, as has already been shown for the �rst
two, isomorphic to G�1(N); G�1sus (N) and

~G�1sus (N); respectively, using the Hermite
expansion and in the second two cases the compacti�cation of R corresponding to
T�1: I leave the last case to you.

Now, since the suspended group is just the invertible Schwartz perturbations of
the identity, it is reasonable to de�ne higher loop groups in the same way:

(6.8) G�1sus(p)(R) = fb 2 S(Rp+2); (Id+b(�; �)) 2 G�1(R) 8 � 2 Rpg; p 2 N:
Having earlier shown that the spaces on N and R are the same I will simplify the

notation and now write 	�1; G�1 and G�1sus(p) for either case { and some more

which will appear later.
Next I meant to discuss the Fredholm determinant rather brie
y { actually I

spent the rest of the lecture doing so!

Theorem 1. There is a unique C1 functions, which is in fact entire analytic,
det(a) = detFr(Id+a)

(6.9) det : 	�1 �! C

satisfying the multiplicativity condition

(6.10) detFr ((Id+a)(Id+b)) = detFr(Id+a)detFr(Id+b) 8 a; b 2 	�1
and the normalization

(6.11)
d

dt
detFr(Id+ta)

��
t=0

= tr(a):

The last condition prevents one from replacing det by a power.

Proof. The multiplicativity means that at any point (Id+b) the derivative can be
computed:-

(6.12)
d

dt
detFr(Id+b+ ta)

��
t=0

=

detFr(Id+b)
d

dt
detFr(Id+t(Id+b)

�1a)
��
t=0

= detFr(Id+b) tr
�
(Id+b)�1a

�
:
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This is just the �rst odd Chern form discussed earlier. Namely, the total derivative
must satisfy

(6.13) ddetFr(g) = detFr(g) tr
�
g�1dg

�
:

Of course, (6.13) is just the standard formula for the logarithmic derivative of
the determinant for N �N matrices.

So, to de�ne the function detFr we can use the connectedness of G�1 to choose
a smooth curve

(6.14) � : [0; 1] �! G�1; �(0) = Id; �(1) = g

and then set

(6.15) detFr(g) = exp

�Z
�

tr
�
g�1dg

��
= exp

�Z 1

0

tr

�
��1(t)

d�(t)

dt

�
dt

�
:

Since the integrand is smooth the integral on the right certainly exists. However,
we need to show that the result does not depend on the choice of path. We will do
this in two stages, �rst showing homotopy invariance.

Thus, suppose that �(t; s); t; s 2 [0; 1] is a smooth homotopy in G�1 with
�(0; s) = Id; �(1; s) = g �xed. The homotopy invariance follows from the fact that
Ch1 is closed, but let me prove it directly for reassurance. Thus we just compute
the derivative

(6.16)

d

ds

Z 1

0

tr

�
��1(t)

d�(t)

dt

�
dt

=

Z 1

0

tr

�
���1(t; s)d�(t; s)

ds
��1(t; s)

d�(t; s)

dt
+ ��1(t; s)

d2�(t; s)

dtds

�
dt

=

Z 1

0

tr

�
���1(t; s)d�(t; s)

dt
��1(t; s)

d�(t; s)

ds
+ ��1(t; s)

d2�(t; s)

dtds

�
dt

=

Z 1

0

d

dt
tr

�
��1(t; s)

d�(t)

ds

�
dt = 0:

Here the trace identity has been used and of course the constancy at the ends.
It also follows directly that the result is independent of the parameterization of

the curve. We can use this, as discussed above, to reparameterize the curve so that
it is 
at at both ends. Alternatively, this could have been required in the original
de�nition. This 
atness allows us to `add' to curves and keep smoothness. Thus if

(6.17) �i : [0; 1] �! G�1 are smooth with
dk

dtk
�i(t

0) = 0 8 k � 1; t0 = 0; 1;

�i(0) = Id; �i(1) = gi; i = 1; 2

then we can simply de�ne

(6.18) � : [0; 1] =

(
�1(2t) 0 � t � 1

2

a1�1(2t� 1) 1
2 � t � 1

and conclude (using left invariance of Ch1) that

(6.19) detFr(g1g2) = detFr(g1)detFr(g2)

once we have shown independence of the choice of homotopy class of path.
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To show this independence it su�ces, using (6.18) to see that if � is a closed
smooth curve into G�1 starting and ending at the identity then

(6.20)

Z 1

0

tr

�
��1(t)

d�(t)

dt

�
dt 2 2�iZ:

Since we have already shown homotopy invariance it su�ces to show this where
�(t) = Id+a(t) is replaced by Id+�Na�N : This reduces to the case of the determinant
on GL(N;C) where I assume it is well-known and I leave it to you. �

Below is what I meant to cover today, instead of spending so long discussing the
Fredholm determinant.

So, that takes care of what was left over from last time. What I wanted to
do today was consider the e�ect of the delooping sequence on the Chern forms.
Written in terms of this isotropic version of the groups the delooping sequence is

(6.21) G�1sus (R)
// ~G�1sus (R)

R // G�1(R):

So far I have de�ned Chern forms on the �rst and last groups. The even Chern
forms were de�ned by pull-back and integration and the same idea works for the
middle group. However, I will call the resulting form an `eta form'.

Thus, for each k � 0 there is a form on ~G�1sus (R) given explicitly by

(6.22) �2k = �
Z
R

tr

�
g�1

@g

@t
(g�1dg)2k

�
dt:

The main thing to observe here is that the integral is absolutely convergent. This
follows as before from the fact that the term @g=@t is Schwartz in t; since both
the identity term and the constant term in the expansion as t ! 1 are killed by
di�erentiation. Thus the whole integrand, evaluated on 2k tangent elements is itself
an element of S(R3):

Now, the main di�erence between the eta form and the Chern forms is that the
latter were closed. The eta form is a `transgression form'.

Proposition 10. The eta forms in (6.22) restrict to the subgroup G�1sus (R) to the
even Chern forms and have `basic' derivatives in the sense that

(6.23) d�2k = R�Ch2k+1 :

Proof. The �rst statement is immediate, since we are using the same formula, (6.22)
to de�ne both even Chern and even eta forms. To prove the second part we need
to compute the derivative. Let me remind you of the proof that the even Chern
forms are closed { obviously we just follow that and see what happens.

We know that the odd Chern form is closed. When pulled back under the
evaluation map from G�1 to R� ~G�1sus this becomes the condition

(6.24) D tr((g�1Dg)2k+1) = 0; D = dt
@

@t
^+d:

Expanding out the form according in terms of the product we �nd

(6.25) ev�Ch2k+1 = dt ^A(t) +B(t) =) @B

@t
= dA(t) and dB(t) = 0:

Integrating over t we �nd by de�nition

(6.26) �2k =

Z
tr(A(t))dt =) d�2k =

Z
tr(dA(t))dt =

Z
tr(
dB(t)

dt
)dt = B(1):
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In the case of the Chern forms A and B are Schwartz. Here A is Schwartz, since
there is a t-derivative somewhere. However, B(t) involves no t derivative, so it has
a possibly non-zero limit as t!1: Clearly in fact

(6.27) B(1) = tr((g�11 dg1)2k+1) = R�Ch2k+1 :

�
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7. Topic 1: Determinant and eta
In place of lecture for Friday, 12 September, 2008

A natural question to ask yourself is:- Was it really necessary to construct the
Fredholm determinant by hand? In fact Boris did suggest something pretty close
to that! Indeed the answer is no, it was not really necessary, but how else would
you appreciate the following?

Recall the delooping sequence

(7.1) G�1sus
// ~G�1sus

R // G�1:

Now, I showed that the �rst odd Chern form, Tr(g�1dg) can be `lifted' to the central
group { not by using R don't be confused on this { by using the evaluation map
and push-forward. This de�nes, in general, the eta forms or in this case the eta
invariant on the central group:-

(7.2) � : ~G�1sus �! C; �(~g) =

Z
R

tr

�
~g�1(t)

d~g(t)

dt

�
dt:

Is this really an eta invariant you ask? Well, in this context it is, it is not exactly
THE eta invariant { that is essentially the same thing for the quantization sequence
as we shall see later.

Exercise 1. Show that the eta invariant as de�ned in (7.2) is log-multiplicative:-

(7.3) �(gh) = �(g) + �(h):

So, how does this construct the determinant? Well, I showed before that

(7.4) d� = R� Ch1 :

In particular, combined with (7.3) this just means

(7.5) �
��
G�1sus

is locally constant.

Exercise 2. Show by �nite dimensional approximation (remember that S(R) behaves
like _C1[0; 1])) that

(7.6) � : G�1sus �! 2�iZ:

So we can de�ne an integer-valued `index' map (really it is the winding number of
the Fredholm determinant)

(7.7) ind =
�

2�i
: G�1sus �! Z:

This can be added to the exact sequence above to get a commutative diagram:

(7.8) G�1sus
//

ind

��

~G�1sus
R //

�

��

G�1

det

��
Z

2�i� // C
exp // C�:

Now, what about

(7.9)

SG�1 = fg 2 G�1; det(g) = 1g ,! G�1;

~G�1sus;�=1 = f~g 2 ~G�1sus ; �(~g) = 0g;
G�1sus;ind=0 = fg 2 G�1sus ; �(g) = 0g:
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Exercise 3. Show that ~G�1sus;�=0 is contractible and that the combined diagram

(7.10) fIdg

��

fIdg

��

fIdg

��
fIdg // G�1sus;ind=0 //

ind

��

~G�1sus;�=0
R //

�

��

SG�1

det

��

// fIdg

fIdg // G�1sus //

ind

��

~G�1sus
R //

�

��

G�1

det

��

// fIdg

f0g // Z
2�i� //

��

C
exp //

��

C� //

��

f1g

f0g f0g f1g
is commutative and has exact rows and columns.

The �rst row is a reduced classifying sequence for K-theory.

Exercise 4. (Needs a bit more analysis) De�ne the unitary subgroup of G�1; show
that G�1 retracts to it and construct a diagram as in (7.10) based on the unitary
group and its loop groups and their subgroups.
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8. Topic 2: Higher dimensional harmonic oscillator
In place of lecture for Monday, 15 September

Carry through the discussion of the higher-dimensional isotropic smoothing operators,
forming the algebra 	�1(Rn); the associated group G�1iso (Rn) and corresponding
loop groups. Similarly, for any compact manifold X; for the moment without
boundary, discuss 	�1(X); G�1(X) and ~G�1sus (X) etc.

Here are some steps to help you along the way.

(1) Show that S(R2n) becomes a non-commutative Fr�echet algebra which will
be denoted 	�1iso (Rn); with continuous product given by operator composition
as in the 1-dimensional case

(8.1) a � b(z; z0) =
Z
Rn

a(z; z00)b(z00; z0)dz00:

(2) Discuss the higher dimensional harmonic oscillator using the n creation and
annihilation operators

(8.2) Cj = �@zj + zj ; Aj = C�j = @zj + zj ;

H = H(n) =

nX
j=1

CjAj + n; [Aj ; Cj ] = 2; j = 1; : : : ; n:

Show that H has eigenvalues n+2N0 with the dimension of the eigenspace
with eigenvalue n+2k equal to the dimension of the space of homogeneous
polynomials of degree k in n variables.

(3) Compute the constants such that the functions

(8.3) h0 = c0 exp(�jzj2=2); h� = c�C
�h0; � 2 Nn0

is orthonormal in L2(Rn) and show that they form a complete orthonormal
basis.

(4) Show that for any u 2 S(Rn) the Fourier-Bessel series
(8.4) f =

X
�

hf; h�ih�

converges in S(Rn) and that this gives an isomorphism

(8.5) S(Rn) �! ffc�g; sup
�
j�jN jc�j <1; 8 N 2 Ng; j�j =

X
j

�j :

(5) Show, either directly or by discussing the appropriate `higher dimensional'
versions of 	�1(N) based on sequences as in (8.5), that 	�1iso (Rn) is
topologically isomorphic to the algebra 	�1(N):

(6) Brie
y describe and discuss the group G�1iso (Rn):
(7) Introduce the (higher, pointed, 
at) loop groups of G�1sus(k);iso(R

n):

(8) Show that

(8.6) tr(a) =

Z
Rn

a(z; z)dz

is the trace functional on 	�1iso (Rn):
(9) Can you show that it is unique up to a constant multiple as a continuous

linear functional which vanishes on commutators?
(10) See how everything else we have done so far looks in this setting!
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(11) Extend these results further to any compact manifold, using the eigendecomposition
for the Laplacian. I will come back to this and disuss it more seriously later.
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9. Topic 3: Clifford algebras
In place of lecture for Wednesday, 17 September

Cli�ord algebra. If you know all about Cli�ord algebras, go to item 17 below.

(1) Let V be a real vector space, of dimension n; equipped with a Euclidean
struture { that is a positive-de�nite symmetric bilinear form

(9.1) h : V � V �! R:

We will associate with V two algebras, the real and complex Cli�ord algebras.
The latter can also be de�ned for a complex vector space with a positive
de�nite hermitian bilinear form. In fact only non-degeneracy of the form is
really needed but the Euclidean case is the one we want.

(2) Recall the full tensor algebra on V: This consists of the formal direct sum
of the tensor products

(9.2) T =

1X
k=0

(V �)
k:

Thus an element of T is a sequence with kth term an element of (V �)
k and
with all but �nitely many terms zero. This is an algebra in the obvious way,
with component-wise addition and tensor product. Of course the sequences
should be thought of as �nite sums terminating at some point.

(3) Note that I have not �xed the coe�cients here. Thus (9.2) corresponds to
real coe�cients, with (V �)0 = R: We are actually more interested in the
complex version

(9.3) TC = C
 T
in which V � is replaced throughout by its complexi�cation.

(4) The tensor product of two copies V � 
 V � is the space of bilinear forms on
V and so decomposes into the symmetric and antisymmetric parts, S2V �

and �2V �: The former has dimension 1
2n(n + 1) and the latter dimension

1
2n(n� 1); with S2V � spanned by elements of the form

(9.4) w1 
 w2 + w2 
 w1; w1; w2 2 V �:
(5) If h� is the dual metric, induces on V � by h as a metric on V consider

(9.5) J = fw1 
 w2 + w2 
 w1 � 2h�(w1; w2) 2 T :
This is a linear space, with complexi�cation JC given by the same terms
with complex coe�cients. Note that it is more conventional to replace the
� sign in (9.5) by a +: If that is the way you like it, bad luck.

(6) In T consider the ideal generated by J

(9.6) J = T 
 J 
 T � T ; JC = C
 J � TC:
(7) Finally then we have the Cli�ord algebras, real and complex:

(9.7) Cl(V ) = T =J ; Cl(V ) = TC=JC = C
 Cl(V ):

(8) Show by an inductive argument (or otherwise) that as linear spaces the
Cli�ord algebras are isomorphic to the corresponding (real and complex)
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exterior vector spaces

(9.8) ��V � =

nX
k=0

�kV �

of sums of totally antisymmetric k-linear forms on V:
(9) Show that the odd an even parts of the tensor product descend to the

quotient so that the Cli�or algebras are Z2-graded

(9.9) Cl(V ) = Cleven(V )� Clodd(V )

with the product graded in the sense that the product of two even, or two
odd, elements is even and the product of an odd and an even element is
odd.

(10) Show that the Cli�ord algebras are �ltered by degree where an element is
of degree k or less if it can be written as a sum of products each consisting
of at most k elements of V � :

(9.10) Cl(k)(V ) = fu 2 Cl(V );u =
X
l�k

c�w1 : : : wl;

Cl(k)(V ) Cl(l)(V ) � Cl(k+l)(V ); Cl(V ) =

nX
j=0

Cl(n)(V ):

(11) Check that

(9.11) Cl(0) = R; Cl(1) = V � � R =) V � ,! Cl(V ):

(12) Show that an element of V �; injected into Cl(V ) has an inverse if and only
if it is non-zero.

(13) Show that the associated graded algebra is canonically the exterior algebra

(9.12)
X
j

Cl(j) =Cl(j�1) = ��V as algebras.

(14) Show that if V is given an orientation, so (using the metric as well) �nV � =
R (or C) this map de�nes the supertrace

(9.13) str : Ch(V ) �! Cl(V )=Cl(n�1)(V ) = �nV � = R; str(ab� (�1)�ba) = 0

where a and b are either even or odd and the sign is + unless they are of
opposite persuasions.

(15) Proceeding inductively (or otherwise) construct the fundamental spin representations,
which are to say algebra isomorphisms to the matrix algebras

(9.14)
Cl(R) = C� C; Cl(R2) =M(2;C); Cl(R3) =M(2;C)�M(2;C);

Cl(R2k) =M(2k;C); Cl(R2k+1) =M(2k;C)�M(2k;C):

(16) Work out, if you have the time and energy, the 8-fold periodicity analogous
to (9.14) for the real Cli�ord algebras!

(17) There is plenty more about Cli�ord algebras, but why are they useful here?

In the even dimensional case, so V = R2p; the injection of V � into Cl(1)(V )
leads to an embedding of the unit sphere

(9.15) S
2k�1 = fw 2 R2k; jwjh� = 1g �! Cl(R2k) = GL(2k;C) �! G�1:

(18) We will show that (9.15) generates all the homotopy groups of G�1:
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10. Lecture 7: Semiclassical quantization
Friday, 19 September, 2008

We will show that there is a way to directly `pass from' S(R2) with its commutative
product to 	�1iso (R); which is the same space with the operator product. In fact
this will `work' much more generally, but it should be understood at the outset
that this is not a map. It does de�ne maps at various levels but `semiclassical
quantization' in this sense is not itself a map.

Going back to the de�nition of 	�1iso (R) recall that I just de�ned this directly in
terms of the operator product. We have already discussed smooth families of such
operators. For one parameter families this just corresponds to C1([0; 1];S(R)):We
will give this space another family of products in which the product depends on the
parameter. Namely the `semiclassical operator product' is initially only de�ned for
� > 0 since the integrals look singular.

I will try to motivate it after writing it down. First let me change coordinates,
to `Weyl coordinates' on R2 which emphasize the diagonal

(10.1) f(z; z0) = F (
1

2
(z + z0); z � z0); F =Wf; F (t; s) = f(t+

1

2
s; t� 1

2
s):

Clearly, W is a linear isomorphism of S(R2):
De�nition 3. A smooth family A 2 C1((0; 1]; 	�1iso (R)) is said to be a semiclassical
family of smoothing operators if it is of the form

(10.2) A�u(z) = ��1
Z
R

F (�;
�

2
(z+ z0);

z � z0
�

)u(z0)dz0 with F 2 C1([0; 1];S(R2)):

Note that as an operator A� only makes sense for � > 0 but the kernel function F
is required to be smooth down to � = 0; thus the singularity at � = 0 is of a very
particular kind. Since F is determined by its restriction to � > 0; it is actually
determined by the family of operators A�:

Lemma 8. If A and B are semiclassical families of smoothing operators then so
is the composite A� �B�:

Proof. Suppose A corresponds to the kernel function F 2 C1([0; 1];S(R2)) and B
to G in the sense of the de�nition above. The composite operator, for each � > 0
has kernel in the ordinary sense

(10.3) (A� �B�)u(z) =

Z
R

c(z; z0)u(z0)dz0;

c(�; z; z0) = ��2
Z
R

F (�;
�

2
(z + z00);

z � z00
�

)G(�;
�

2
(z00 + z0);

z00 � z0
�

)dz00:

Thus the kernel function de�ned, H; de�ned from (10.2) by c is

(10.4) H(�; t; s) = �c(�; ��1t+
�

2
s; ��1t� �

2
s) =

��1
Z
R

F (�;
t

2
+
�2

4
s+

�

2
z00; ��2t+

1

2
s� z

00

�
)G(�;

�

2
z00+

1

2
t��2 s

4
;
z00

�
���2t+ 1

2
s)dz00:

Changing variable of integration z00 = �r + ��1t this reduces to

(10.5) H(�; t; s) =

Z
R

F (�; t+
�2

2
(r +

1

2
s);

1

2
s� r)G(�; t+ �2

2
(r � 1

2
s); r +

1

2
s)dr:
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The absolute convergence, and rapid decay of the result, is clear for � > 0 and
for � small follows uniformly from fact that the integrand is bounded by

(10.6) CN (1 + jt+ �2(r + s=2j)�N (1 + jr � s=2j)�N (1 + jt+ �2

2
(r � s=2)j)�N

� (1 + jr + s=2j)�N
� C 0(1 + jtj)�N (1 + jrj)�N (1 + jsj)�N :

Derivatives can be estimated in the same way. Thus (10.6) de�nes a continuous
bilinear map

(10.7) C1([0; 1];S(R2))� C1([0; 1];S(R2)) �! C1([0; 1];S(R2)):
This shows that the semiclassical smoothing operators form an algebra. �

I will denote this algebra as 	�1sl;iso(R); with the parameter suppressed into a
su�x { remember it is by no means simply a smooth parameter as � # 0:

Notice what the product looks like at � = 0: The limiting rescaled kernel of the
product is simply

(10.8) H(0; t; s) =

Z
R

F (0; t;
1

2
s� r)G(0; t; r + 1

2
s)dr:

This is a product on S(R2) so we have found another one! However, notice that it is
commutative { changing variable from r to �r e�ectively reverses the product. Not
surprisingly this product can actually be reduced to the usual pointwise product
on S(R2) by the simple expedient of taking the Fourier transform in s: For any
semiclassical family, (10.2), we de�ne the semiclassical symbol to be the Fourier
transform of the limit at � = 0 :

(10.9) �sl(A)(t; �) =

Z
R

F (0; t; s)e�is�ds:

Then for the product

(10.10) �sl(AB)(t; �) =

Z
R

H(0; t; s)e�is�ds

and then (10.8) becomes

(10.11) �sl(AB)(t; �) =Z
R

Z
R

e�i(
1
2 s�r)�F (0; t;

1

2
s� r)e�i( 12 s+r)�G(0; t; r + 1

2
s)drds = �sl(A)�sl(B):

Proposition 11. The algebra of semiclassical smoothing operators with symbol
homomorphism to the commutative algebra S(R2) gives a short exact (and multiplicative)
sequence

(10.12) 0 // �	�1sl;iso(R)
� � // 	�1sl;iso(R) // // S(R2) // 0:

So, how do we get our (weak) homotopy equivalence? We simply `turn on' the
non-commutativity.

Exercise 5. (Will be done on Monday). Show that if a 2 S(R2;M(N;C)) is such
that (Id+a(t; �))�1 exists for all (t; �) 2 R2 then if A 2 	�1sl;iso(R;CN ) is a (matrix-
valued) semiclassical family with �sl(A) = a (which exists by (10.12)) then Id+A� 2
G�1iso (R;CN ) for � > 0 small. This works uniformly on compact sets, so if f : X �!
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S(R2;M(N;C)) ,! G�1sus(2) then the quantized map f� : X �! G�1 (where these

are di�erent realizations of G�1) for � > 0 small, is well de�ned up to homotopy.
This leads to the homotopy equivalence

(10.13) Qsl : �j(G
�1
sus(2)) �! �j(G

�1) 8 j;
which will prove Bott periodicity for us (with a bit more work).

Exercise 6. Consider the di�erential operators on R with polynomial coe�cients

(10.14) P =

NX
k;j=0

ckjx
kDj

x; Dx = �i d
dx
:

Give x and Dx `homogeneity one' and so �lter these operators by the combined
order { this is the isotropic �ltration.

Now, show that if A is a semiclassical family of smoothing operators then so is
�NPA if P has total order N in this sense. Compute the semiclassical symbol of
�NPA:

Exercise 7. Show that the de�nition of semiclassical families of smoothing operators
extends directly to operators on Rn simply by reinterpretation of the formul�.

Exercise 8. In preparation for what I will do on Monday, if A andB are semiclassical
smoothing families as de�ned above, we have shown that the functionH 2 C1([0; 1]�;S(R2))
�xing its kernel is determined by the corresponding functions F and G for A and
B: Show that the Taylor series of H at � = 0 is determined by the Taylor series of
A and B and derive a formula for it { you will get a variant of the `Moyal product'
(although several di�ernt things go under this name). The most important thing
for us is the second term in the expansion (well, given that we already know the
�rst term!)
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11. Lecture 8: Bott element
Monday, 22 September, 2008

The �rst thing I want to do today is to use the three Pauli matrices to construct
the Bott element. Let's not worry about what this element is, or even where it is,
for the moment. The initial objective is to �nd something non-trivial on R2:

The Pauli matrices, all elements of M(2;C); I will denote

(11.1) 
1 =

�
1 0
0 �1

�
; 
2 =

�
0 1
1 0

�
and 
3 =

�
0 �i
i 0

�
:

Clearly they are linearly independent over C and, together with Id2�2 spanM(2;C)
as a linear space. Their products satisfy the cyclic conditions

(11.2)


1
2 = i
3; 
2
3 = i
1; 
3
1 = i
2;


2
1 = �i
3; 
3
1 = �i
1; 
1
3 = �i
2

21 = 
22 = 
23 = Id; 
1
2
3 = i Id :

and hence the Cli�ord identities

(11.3) 
i
j + 
j
i = 2�ij ; i; j = 1; 2; 3:

This shows (see ) that they give a representation, to wit the spin representation, of
the complex Cli�ord algebra for R2: I will not use this explicitly here, but it is one
way of getting a better understanding of what is going on. Each of the self-adjoint
involutions 
i has determinant �1 and so has two one-dimensional eigenspaces with
eigenvalues �1:

Let us now choose a handy smooth function on R satisfying

(11.4) � : R �! R; �(t) = 0; t < �2; �(t) = �; t > �1; �0(t) � 0:

So, ei�(t) is a smooth 
at pointed loop into the circle from the line.
Now consider the map from R2 into M(2;C) given in terms of polar coordinates

(11.5)

(t; �) = r(cos �; sin �);

b(t; �) = cos(�(�r))
1 + sin(�(�r)) cos(�)
2 � sin(�(�r)) sin(�)
3;

b(t; �) =

�
cos(�(�r)) sin(�(�r))ei�

sin(�(�r))e�i� � cos(�(�r))
�

Let's hope I have made a sensible choice of signs!
The �rst thing to observe is that �r is running from �1 to 0 as we come inwards

from in�nity, so

(11.6) b(t; �) =

(

1 j(t; �)j > 2

�
1 j(t; �)j < 1:

It follows that b : R2 �! M(2;C) is smooth and is in fact a compactly-supported
perturbation of 
1 :

(11.7) b� 
1 2 C1c (R2;M(2;C)):

Secondly, the Cli�ord identities show that

(11.8) b2 = cos2(�(�r))
21 + sin2(�(�r)) cos2(�)
22 + sin2(�(�r)) sin2(�)
23
+A(
1
2 + 
2
1) +B(
2
3 + 
3
2) + C(
3
1 + 
1
3) = Id :
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Thus, b is in fact a family of self-adjoint involutions. Moroever, it follows (without
computation) that det(b(t; �)) = �1; so again it has one-dimensional eigenspaces
with eigenvalues �1: Let me denote the spectral decomposition by

(11.9) b(t; �) = b+(t; �)� b�(t; �);

b+ �
�
1 0
0 0

�
2 C1c (R2;M(2;C)); b� �

�
0 0
0 1

�
2 C1c (R2;M(2;C)):

Here, b� are the orthogonal projections onto the �1 eigenspaces; probably b+ best
deserves to be called the Bott element. Its range is a 1-dimensional (over C of
course) subbundle of C2 over R2 which is trivial (just the �rst component) near
in�nity but not globally trivial, as we shall see, if one only allows trivializations
which are constant near in�nity.

Exercise 9. Try to show directly that b+ is not homotopically trivial, in the sense
that there is no homotopy through families of projections to a constant projection
where the constant projection has to be always constant at in�nity (either �xed
forever there, or just constant for each value of the parameter, it doesn't matter). I
think the easiest way to do this is to �nd an homotopy invariant which shows that
such a deformation is not possible. The obvious one is the total curvature of the
line bundle. The curvature is a 2-form on R2 of compact support. I will compute
it later, probably not today.

We can proceed with either the involution b or the projection b+: Since it is more
in the spirit of what we have done so far, consider the involution. It is de�nitely of
the form

(11.10) b(t; �) = 
1 + �(t; �); � 2 S(R2;M(N;C))

so we can apply `semiclassical quantization' to the perturbation �: Remember what
this means: It just is the statement that

(11.11) 9 D 2 	�1sl;iso(R;C2) s.t. �sl(B) = �:

Here we need to work component by component in the 2 � 2 matrices. This we
already know, from the surjectivity of the semiclassical symbol map, but we can do
quite a lot more.

Lemma 9. The semiclassical family D in (11.11) can be chosen so that (as operators
on S(R;C2))
(11.12) (
1 +D�)

2 = Id :

That is, the quantization can also be chosen to be a family of involutions. Notice
that we are `quantizing' the constant matrix to the same constant matrix { really
componentwise a multiple of the identity as an operator { which is not by any
means a semiclassical family of smoothing operators. However, it is consistent
with the way we (or rather you) showed that di�erential operators with polynomial
coe�cients compose with semiclassical families. This we are just demanding that
the identity be quantized to the identity and this is consistent with the semiclassical
symbol map, etc.

Exercise 10. Show (without doing any work) that in the same sense as in the
Lemma, the projections b� can be quantized to commuting projections (also called
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idemptotents if we do not demand they be selfadjoint) B� with

(11.13)
B+ =

�
1 0
0 0

�
+D+; D+ 2 	�1sl;iso(R;C2); �sl(D+) = b�

B� = Id�B+; B = B+ �B�; B2
� = B�:

Exercise 11. Check, if only mentally, that it is consistent to extend the semiclassical
symbol map to constant matrices, where the symbol is just the matrix itself, in the
sense that this gives us a multiplicative map symbol

(11.14) �sl;iso :M(N ;C) + 	�1sl;iso(R;C
N ) �!M(N ;C) + S(R2;M(N ;C))

for this algebra into the algebra S(R2;M(N ;C)) with constant multiples of the
identity appended. We will do this more systematically later.

Proof. To do this I will need to check another couple of important facts about
semiclassical quantization, but let's proceed anyway. For the �rst step we don't
have much choice. Using the surjectivity of the symbol map, choose a D as in
(11.11), but denoted D0: The choice of symbol, together with the multipicativity
and the exactness of the symbol sequence shows that

(11.15)
E1 = (
1 +D0)

2 � Id = 
1D0 +D0
1 +D2
0 2 	�1sl;iso(R;C2) satis�es

�sl(E1) = 0 =) E1 = �E01 2 �	�1sl;iso(R;C2):
Thus our �rst choice `works to �rst order'. We wish to modify D0; the initial
choice, by choosing D1 = �D0

1 2 �	�1sl;iso(R;C2)) to get the desired identity (11.12)

to second order. Clearly adding �D0
1 changes the computation to

(11.16)

E2 = (
1 +D0 + �D0
1)
2 � Id = E1 + �(
 +D0)D

0
1 + �D0

1(
 +D0) + �2(D0
1)
2

= �(E01 + (
 +D0)D
0
1 +D0

1(
 +D0)) + �2(D0
1)
2:

Thus to ensure that E2 = �2E02 2 �2	�1sl;iso(R;C2) we wish to choose D0
1 so that

(11.17)
�sl(E

0
1 + (
 +D0)D

0
1 +D0

1(
 +D0)) = 0()
b�sl(D

0
1) + �sl(D

0
1)b = ��sl(E01):

Here I have used the original choice of �sl(D0) = �: The symbols are still non-
commutative, but only because they take values in 2 � 2 matrices; this is just
matrix algebra. So why is such a choice possible? The matrix on the left in the
last identity is not arbitrary. Indeed, recalling that b = b+ � b�; Id = b+ + b� it is
necessarily diagonal with respect to this decomposition, since it is just

(11.18) 2b+�sl(D
0
1)b+ � 2b��sl(D

0
1)b�:

Thus, (11.17) can only be solved if �sl(E
0
1) is also diagonal. Fortunately it is,

because of the associativity of the (operator) product which shows that

(11.19)
B00E1 = B00((B

0
0)
2 � Id) = ((B00)

2 � Id)B00 = E1B
0
0 =)

b�sl(E1) = �sl(E1)b =) �sl(E1) = b+�sl(E1)b+ + b��sl(E1)b�:

Thus indeed we can choose D0
1 to satisfy (11.17), for instance just require

(11.20) �sl(D
0
1) = �

1

2
b+�sl(E1)b+ +

1

2
b��sl(E1)b�:
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So, to complete the `formal' part of the construction we just repeat this argument
inducively. Suppose we have shown the existence of D0

j 2 	�1sl;iso(R;C2) for 0 � j �
k so that (11.12) holds to order k (or is it k + 1?)

(11.21) (
1 +
X

0�j�k

�jD0
j)
2 � Id = Ek+1 2 �k+1	�1sl;iso(R;C2):

Then we want to choose D0
k+1 to get to the next step. Adding ek+1D0

k+1 changes
the left side by

(11.22) �k+1
�

1 +D0)D

0
k+1 +D0

k+1(
1 +D0)
�

mod �k+1	�1sl;iso(R;C
2):

The choice (11.20), with 1 replaced by k+1 throughout works for the same reason.
Thus, we can �nd a full formal solution.

Now, to proceed further we need �rst to pass from the formal series

(11.23)

1X
j=0

ejD0
j

to an actual element of 	�1sl;iso(R;C
2): This is Borel'e lemma.

Lemma 10. [ �E. Borel] Given any sequence D0
j 2 	�1sl;iso(R;C

N )) there exists an

element D0 2 	�1sl;iso(R;CN )) such that

(11.24) D0 �
kX

j=0

�jD0
j 2 �k+1	�1sl;iso(R;CN ):

Proof. I will not do this, since it is just Borel's lemma when applied to the functions
F 0j(�; t; s) representing the opertors. Namely if F 0j 2 C1([0; 1];S(R2)) is such a

sequence, with no constraints, then there exists F 2 C1([0; 1];S(R2)) such that

(11.25) F �
X

0�j�k

�jF 0j 2 �k+1C1([0; 1];S(R2)) 8 k:

�

With this D0 for our sequence, or series, as constructed above we conclude that

(11.26) (
 +D0)2 � Id 2 �1	�1sl;iso(R;C
N )) =

1\
j=0

�j	�1sl;iso(R;C
2):

That is, this one element works to all orders.

Lemma 11. The residual space

(11.27) �1	�1sl;iso(R;C
N )) =

1\
j=0

�j	�1sl;iso(R;C
2) =

1\
j=0

�jC1([0; 1]; 	�1iso (R;C2))

is just the space of smooth families, in the ordinary sense, of Schwartz smoothing
operators on R vanishing to in�nite order at � = 0:

Exercise 12. I will almost certainly not have time to do this but it is straightforward.
Think in terms of the kernel of the semiclassical family written out as

(11.28) a(�; z; z0) = ��1F (�;
�(z + z0)

2
;
z � z0
�

):
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The function on the left is unque, it is the kernel of the operator and is certainly
Schwartz for � > 0: The assumption is that the one function on the left can be
written in the form

(11.29) �k��1Fk(�;
�(z + z0)

2
;
z � z0
�

)

for each k where Fk 2 C1([0; 1];S(R2)): What we want are the estimates on a

(11.30) sup ��N jDp
� z

j(z0)kDl
zD

m
z0aj <1

for all indices. Just check that any �nite set of them follows from (11.29) by taking
k large enough. The converse is easy.

So, now we know that our summed-up choice of quantization, D0 satis�es

(11.31) (
1 +D0)2 � Id = E0 2 �1C1([0; 1]; 	�1iso (R;C2))

where the, perhaps improper, notation is too suggestive not to use. We still want
to actually solve the problem, to get rid of the error term on the right. Just to
keep you oriented, remember that �sl(D

0) = � and we are way beyond changing the
leading term.

So �nally the claim is that we can add an element of �1C1([0; 1]; 	�1iso (R;C2))
to D0 to get rid of E0: This is now `genuinely non-linear' where up to this point we
have been linearizing.

So, �rst notice that if d > 0 and z 2 C is such that jz ��1j � d then

(11.32) (B0 � z)�1 =
�
(1� z)�1 1

2
(B0 + Id)� (1 + z)�1

1

2
(B0 � Id)

�
(Id+F );

F 2 �1C1([0; 1]; 	�1iso (R;C2)); 0 < � < �0(R) > 0:

Here the operator on the left `should have' eigenvalues 1 � z and �(1 + z) on the
positive and negative pieces of B0 if this were an involution, so the �rst term on
the right side is formally the inverse of this. To prove (11.32) compute the product

(11.33)

(B0 � z)
�
(1� z)�1 1

2
(B0 + Id)� (1 + z)�1

1

2
(Id�B0)

�
= (B0 � z)

�
1

1� z2B
0 +

z

1� z2 Id
�

=
1

1� z2 (B
0)2 � z1

1� z2 Id = Id+
1

1� z2 ((B
0)2 � Id):

As a result of our work so far, (B0)2 � Id = E0 2 �1	�1iso (R;C2): Thus, by using
Neumann series, the operator on the right in (11.33) is invertible, with inverse of
the same form { at least for 0 � � � �0 for some �0 > 0 depending on d and
other constants. Thus (11.32) follows, with F 2 �1C1([0; �0]; 	

�1
iso (R;C2)) and

holomorphic in jz ��1j > d:
Finally then we can use this to construct the quantization D; or B = 
1+D we

want. Just set

(11.34) B+ =
i

2�

Z
jz�1j= 1

2

(B0 � z)�1dz; B = 2B+ � Id :

I probably will not even get to this point today, but a few things remain. Namely
we need to show that B+ makes sense and is a projection, that

B �B+ 2 �1C1([0; �0]; 	
�1
iso (R;C2))
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and that B satis�es all our requirements. I leave this as an exercise in contour
shifting { notice that the fact that �0 < 1 is only a technical inconvenience, we can
simply rescale the parameter (starting at 1

2�0) to make B exist out to � = 1: Mostly
the semiclassical families are only of interest near � = 0: �
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12. Lecture 9: Adiabatic algebra and group
Wednesday, 24 September

To carry through the argument for Bott periodicity that I have been edging
towards, I have decided to take a slightly higher road than I initially intended. I
hope this will actually be pretty clear but the �rst step is to throw together what we
have done so far and work with an adiabatic algebra of smoothing operators. This
is the same as the semiclassical algebra except that `adiabatic' refers to a situation
in which the `semiclassical degeneration' occurs in only some of the variables. The
name arises from Physics and refers to a formal motion which is so slow that the
system remains in equilibrium. Here this just means that some of the variables
become commutative. I will get to more geometric versions of this later in the
semester. In fact we might as well jump into the higher dimensional case, which
really makes very little di�erence.

De�nition 4. A one-parameter family A 2 C1((0; 1]; 	�1(Rd+k)) is an adiabatic
family of smoothing operators, with respect to the the �rst d variables, if its
Schwartz kernel is of the form
(12.1)

a�(�; z; z
0; Z; Z 0) = ��dF (�;

�(z + z0)

2
;
z � z0
�

; Z; Z 0); F 2 C1([0; 1];S(R2d+2k)):
So the case discussed up to this point corresponds to d = 1 and k = 0; although

we allowed matrix values { which we could include here at only notational expense.
If k = 0 but d > 1 we are in a higher dimensional semiclassical setting.

Proposition 12. The adiabatic operators as in (12.1) form an algebra, denoted
	�1ad;iso(R

d : Rk); under operator compostion for � > 0:

Proof. The proof generalizes easily from the case above where d = 1 and k = 0:
Let me give the de�ning isomorphism (12.1) a name:

(12.2) � : 	�1ad;iso(R
d : Rk) �! C1([0; 1];S(R2d+2k))

which we are pretty free to regard as an identi�cation { indeed that is what I have
been doing implicitly up to this point. What we showed when d = 1 is that operator
composition for � > 0 induces a product which can be (corrected) generalized and
written out explicitly:
(12.3)

H = �(A �B) =Z
Rd�Rk

F (�; t+
�2

2
(r +

1

2
s);

1

2
s� r; Z; Z 00)G(�; t+ �2

2
(r � 1

2
s); r +

1

2
s; Z 00; Z 0)dZ 00

F = �(A); G = �(B):

Recall that this just arises by noting the relationship of the Schwartz kernel, a; of
A and F = �(A) :

(12.4)
a(�; z; z0; Z; Z 0) = ��dF (�;

�(z + z0)

2
;
z � z0
�

; Z; Z 0);

F (�; t; s; Z; Z 0) = �da(�; ��1t+
�

2
s; ��1t� �

2
s; Z; Z 0);

substituting into the formula for the product and changing variable. The same
estimates as before show that this product is indeed a continuous bilinear map

(12.5) C1([0; 1];S(R2d+2k))� C1([0; 1];S(R2d+2k)) �! C1([0; 1];S(R2d+2k)):
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�

One thing I did not get to before is the extraction of the `Moyel product' from
the formula (12.4). Notice that (apart from the explicit dependence of �(A) on �)
� only occurs through �2: Computing the Taylor series therefore gives

(12.6) Ĥ(�; t; �) '
1X
j=0

�2j
X

j�j+j�j=j

c�;�(@
�
t @

�
� F̂ (�; t; �)) � (@�t @�� Ĝ(t; �)):

where I have not (yet) computed the coe�cients properly. Here the product is just
the product in the suspended algebra 	�1sus(2d);iso(R

k):

A little later I will need (only in the 1-dimensional case in fact) the two leading
terms. The �rst leads to the product law for the adiabatic symbol

(12.7)

Ĥ(�; t; �) = F̂ (�; t; �) � Ĝ(�; t; �)

+�2
dX

j=1

�
@tj F̂ (�; t; �) � @�j Ĝ(�; t; �)� @�j F̂ (�; t; �) � @tj Ĝ(�; t; �)

�
+O(�4)

Ĥ(�; t; �; Z; Z 0) =

Z
Rd

H(�; t; s; Z; Z 0)e�is��ds:

This implies the analogous symbolic property to 1-dimensional case:-

(12.8)

�ad : 	
�1
ad;iso(R

d : Rk) �! 	�1sus(2d);iso(R
k);

�ad(A)(t; ~a) =

Z
Rd

�(A)(0; t; s; Z; Z 0)e�is��ds

satis�es

(12.9) �ad(AB) = �ad(A) � �ad(B) in 	�1sus(2);iso(R
k):

This sum in (12.7) correspnd to the Poisson bracket, as it should! Of course I
hardly need pause to say that �ad gives a short exact sequence

(12.10) �	�1ad;iso(R
d : Rk) �

� // 	�1ad;iso(R
d : Rk)

�ad // // 	�1sus(2);iso(R
k):

Now, one thing I have been pushing, rather relentlessly, in these lectures so far
is that one should take these sorts of algebras `seriously'. In particular look at the
corresponding group and see what you get. Let me do again what we did earlier,
perhaps with a little more care. Namely the algebra 	�1ad;iso(R

d : Rk) does not have
a unit. So simply append a unit by taking the direct product and considering

(12.11) 	�1;y
ad;iso(R

d : Rk) = C+	�1ad;iso(R
d : Rk)

where the product is the obvious one and in particular, Id = 1 + 0 is the unit.
Less abstractly one can consider C as being the complex multiples of the identity
as operators on S(Rd+k) depending trivially on the parameter �: Then one can
consider the group
(12.12)

G�1;y
ad;iso(R

d : Rk) = fA 2 	�1;y
ad;iso(R

d : Rk); 9 B 2 	�1;y
ad;iso(R

d : Rk); AB = BA = Idg:
In fact it follows that if A = z Id+A0 is invertible in this sense then z 2 C� and
Id+z�1A0 is invertible. Thus we really do not lose anything by considering the
group of the type we have been considering all along:-

(12.13) G�1ad;iso(R
d : Rk) = fId+A0 2 G�1;y

ad;iso(R
d : Rk)g ,! 	�1ad;iso(R

d : Rk):
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This is all just formal. What is important, as I indicated earlier, is that this group
happens to be open in terms of the inclusion (12.13) and hence is a nice topological
(and of course smooth) group. We need to check this, but in fact lots of amusing
things happen here so let me list this more formally.

Theorem 2. The inclusion in (12.13) is open and the two maps, the adiabatic
symbol (12.8) and the restriction map

(12.14) R : 	�1ad;iso(R
d : Rk)

��
�=1�! 	�1iso (Rd+k)

lead to a commutative diagram where the lower two maps are surjective, and admit
compact lifting, and the upper two spaces are weakly contractible:
(12.15)

fA 2 G�1ad;iso(Rd : Rk);�ad(A) = Idg
� u

((QQ
QQ

QQ
QQ

QQ
QQ

fA 2 G�1ad;iso(Rd : Rk);R(A) = Idg
I i

vvnnn
nn
nn
nn
nn
n

G�1ad;iso(R
d : Rk)

R

vvmmm
mmm

mmm
mmm

m
�ad

((PP
PP

PP
PP

PP
PP

G�1iso (Rd+k) G�1sus(2d);iso(R
k):

Recall that weak contractibility here means that for any smooth map from a
compact manifold into the space there is an homotopy to a constant map { in
this case taking the value Id : The diagonal sequences are therefore exact. Note
that compact lifting would usually be stated, at least in the topological literature,
in the form that these sequences are `Serre �brations'. It means precisely that if
f : X �! G is a smooth map into one of the bottom two spaces, then it can be
lifted to ~f : X �! G�1ad;iso(R

d : Rk) so that R ~f = f or �ad ~f = f respectively. Of
the �ve or so things to be proved here, three are reasonably straightforward and the
remaining part, amounting to the (Serre) exactness of the `R' sequence, depends
heavily on the construction I did last time. I will postpone the proof, probably
until next time.

Remark 1. (Fr�ed�eric Rochon) The two diagonal sequences in (12.15) are in fact
�brations, not just Serre �brations. So, if you know a little topology, the Serre
lifting condition does in fact follows from the surjectivity. I will prove it directly
anyway but this observation makes it clear why the proof of the lifting condition is
no harder than the proof of surjectivity!

So, suppose we have managed to prove the theorem, then what? Basically it
amounts to a weak homotopy equivalence between the bottom two spaces. That is,
the diagram induces a map, which is an isomorphism,

(12.16) pad : [X;G�1sus(2d);iso(R
k)]

'�! [X;G�1iso (Rd+k)]

for any compact manifoldX: Namely, take a smooth map f : X �! G�1sus(2d);iso(R
k):

The `Serre property' asserts that it can be lifted to ~f : G�1ad;iso(R
d : Rk) so the map

in (12.16) is supposed to be induced by

(12.17) [f ] 7�! [R ~f ]:
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Of course, we need to check that this is well-de�ned. For �xed f two liftings ~f(1)

and ~f(2) are such that F = ~f(2)�1 ~f(1) : X �! satis�es �ad(F ) � Id : So the
stated weak contractibility in the Theorem implies that this is homotopic to the
constant identiy map { hence ~f(1) and ~f(2) are homotopic. It follows that R ~f(1)

and R ~f(2) are homotopic so the image class in (12.17) is well-de�ned given f: On
the other hand if f0 and f1 are homotopic, so represent the same class [f ] on the
left, then an homotopy F : [0; 1] � X �! G�1sus(2d);iso(R

k) can also be lifted and

shows that the resulting image classes are the same. Thus (12.17) does lead to a
well-de�ned map (12.16). Of course, the argument is reversible in the sense that
there is a similar map de�ned the other way. These two maps are then inverses of
each other. Recalling that we have de�ned

(12.18) K�1�2d(X) = [X;G�1sus(2d);iso(R
k)] 8 d � 0;

with the result indepedent of the choice of k we conclude:

Corollary 1 (Bott periodicity). For any compact manifold semiclassical quantization
induces an isomorphism for any d :

(12.19) pad : K
�1�2d(X) �! K�1(X):

In fact the Theorem and the isomorphism (12.19) extends to the case of non-
compact manifolds X:We just need to consider the `homotopy groups of maps with
compact support'

(12.20) K�1�jc (X) = [X;G�1sus(j);iso(R)]c

=
n
f : X �! G�1sus(j);iso(R); f(x) = Id; x 2 X nK; K b X

o
= �

where the equivalence relation is through homotopies also reducing to the identity
outside some compact subset. Then (12.19) extends to

(12.21) pad : K
�1�2d
c (X) �! K�1c (X)

In fact,

Lemma 12.

(12.22) K�1�j
c

(X) � K�1
c
(X � Rj) 8 j � 0:

Proof. Left as an exercise, but said in brief as follows. Schwartz functions can
always be approximated by functions of compact support. �

There are many ways to rewrite these isomorphism including the form of Bott
periodicity mentioned earlier.

Corollary 2.

(12.23) �j(G
�1) =

(
f0g j even

Z j odd

Proof. Assuming we know that G�1 is connected and that �1(G
�1) = Z then we

just note that

(12.24)
�2j(G

�1) = K�1�2j(pt) = K�1(pt) = f0g;
�2j+1(G

�1) = K�1�2j�1(pt) = K�2(pt) = �1(G
�1) = Z:

�
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13. Lecture 10: Bott periodicity
Friday, 26 September

I will start the notes, if not the lecture, with an extended reply to a question
from the end of the last lecture.

Question 1. (Jesse Gell-Redman) What has this got to do with index theory?

Answer 1. My �rst answer is that we need to develop K-theory in order to understand
the index theorem, however I am trying to do more than that. This question is out
or order of course, I don't mean parliamentary order here, just logical order. Still,
let me run ahead a bit, taking this as an opportunity to indicate where I am trying
to go { since for one thing you might not wish to come along!

The second answer is that `this' meaning Theorem 2 really is an index theorem,
or at least is closely related to one. Let me try to describe this relationship, even
though I will use some as-yet-unde�ned objects. The index theorem most closely
related to Theorem 2 is Fedosov's index theorem on isotropic operators. Well, the
original theorem was about the numerical index but let me jazz it up to the families
theorem. First, an isotropic pseudodi�erential operator corresponds to equal scaling
for z and Dz on Rn; as I have indicated earlier in relation to isotropic smoothing
operators. So, whatever they are, isotropic pseudodi�erential operators of order 0
are bounded operators on L2(Rn) and they have symbols. Since they are `isotropic'
the symbol is just a homogeneous function on R2n n f0g; or equivalently on S2n�1;
with values in M(N ;C): The operator is Fredholm if and only if the symbol is
invertible. Let X be a parameter space, then the symbol of an elliptic family of
such operators, parameterized by X; is a smooth map

(13.1) a : X � S2n�1 �! GL(N ;C) ,! G�1:

This de�nes a K-class, [a] 2 K�1(X�S2n�1): If we had the K�unneth formula at
our disposal, which we do not, we would know that K�1(X � S2n�1) � K�1(X)

K0(S2n�1)�K0(X)
K�1(S2n�1); whereK0(X) is the soon-to-be-introduced group
based on vector bundles, or projections. Now, both K-groups of the sphere are Z
so this means that K�1(X � S2n�1) � K�1(X)�K0(X): This can be understood
more directly here in terms of two maps

(13.2) K�1(X) K�1(X � S2n�1)S�oo cl // K0
c(X � R2n):

The map on the left is just pull-back by choosing a point, say the South Pole,
on the sphere. The map on the right is a version of the `clutching construction'
which in this context just means a map made explicitly with matrices which turns
an isomorphism into a bundle. The maps in (13.2) are each isomorphisms when
restricted to the null space of the other, so the K-space splits as indicated.

Now, the elliptic family of symbols can be quantized to a family of operators
which are not only Fredholm but have constant rank null spaces. The null spaces
then form a bundle over X as do the null spaces of the adjoints and the formal
di�erence of these (we will get to this next week) de�ne an element of K0(X); this
is the index (in K-theory) and it only depends on the class of the symbol [a]: This
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gives us the little diagram

(13.3) K�1(X)

K�1(X � S2n�1)
indiso

��

S�

OO

K0(X):

where I put in the upward map because one consequence of the discussion below is
that the null space of this isotropic index map is the same as the map on the right
in (13.2). Now we can add the clutching construction above and another variant of
the clutching construction both above and below to get a bigger diagram

(13.4) K�1(X)

K�1(X � S2n�1)

indiso

��

S�

OO

cl // K0
c(X � R2n)

'

pevensl

zzuu
uu
uu
uu
uu
uu
uu
uu
uu

cl

'
// K1

c(X � R2n+1)

'

poddsl

zzuu
uu
uu
uu
uu
uu
uu
uu
u

K0(X)
cl

'
// K�1c (X � R)

where I have added in two more maps. Namely, the `odd' semiclassical Bott
periodicity map { on the far right { that we are currently discussing and its even
brother in the middle that we will soon get to. The ''s indicate isomorphisms.

So, there is your index theorem. The main claim is that this diagram commutes,
so the index for isotropic operators is equal to the product going around the right.
In this context the Bott periodicity maps are `topological' and the index map is
`analytic'. Of course the semiclassical de�nition makes the periodicity maps rather
analytic too, but that is one thing I am trying to get at! So, how to prove it?
The Atiyah-Singer approach was to give enough properties of these maps that
they forced into uniqueness, the general principle being that if you have a natural
construction { so it is universal in X { and it is non-trivial and has a few more
properties then there is only one possibility. The proof I will give later is more
analytic, as you might guess. Basically we can deform the isotropic pseudodi�er-
ential operators, following the clutching construction, into families of projections
valued in smoothing operators and then into the group of invertible perturbations
by smoothing operators { and this corresponds precisely to the three maps along
the top.

To make the picture more symmetric I can add in the odd version of the isotropic
index theorem, for elliptic self-adjoint operators or suspended operators, and get a
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bigger commutative diagram:
(13.5)

K�1(X) K�1c (X � R)

K�1(X � S2n�1)

indeveniso

""F
FF

FF
FF

FF
FF

FF
FF

F

S�

OO

cl // K0
c(X � R2n)

' pevensl

��

cl

'
// K1

c(X � R2n+1)

'poddsl

��

K�1c (X � R� S2n�1)cloo

S�

OO

indoddiso

zztt
tt
tt
tt
tt
tt
tt
tt
tt

K0(X)
cl

'
// K�1c (X � R)

What I am really after in the course is not only to do these things, and of course
the geometric versions of them which include the Atiyah-Singer theorem, but also
to do it in such a way as to carry the Chern charcter along. Diagrams such as
(13.5) need to be `subsumed' into a smooth K-theory.

Jesse, does this start to answer your question?

Just so that we don't get too lost, let me very brie
y outline the proof of
Theorem 2 { which I should �nish on Monday.

(1) The group G�1ad;iso(R
d : Rk) is open in 	�1ad;iso(R

d;Rk) : � I have not
given the appropriate product estimates in this algebra. Instead I show for
perturbations near 0 in the algebra the operators on L2 for each � 2 (0; 1]
are invertible and then show that the inverse is in the group.

(2) The map �ad : G�1ad;iso(R
d : Rk) �! G�1sus(2d);iso(R

k) is surjective and any

compact map into the image lifts:- Invertibility of the adiabatic symbol
implies invertibility of the operator for small � > 0 and uniformly on
compact sets. Modify the family in � > 0 to get the lifting property.

(3) The subgroup fA 2 G�1ad;iso(Rd : Rk);�ad(A) = 0g is weakly contractible:-
Show that on compact sets one can `cut the family o�' near � = 0 preserving
invertibility. Then we are reduced to contractibility of the half-free loop
group shown earlier.

(4) The map R : G�1ad;iso(R
d : Rk) �! G�1iso (Rd+k); given by restriction to � =

1; is surjective and any compact map into the image lifts:- This is the most
involved part. The main thing to show is that the semiclassical quantization
of the Bott element, introduced last week, is a rank one perturbation of the
matrix projection at in�nity, and so can be deformed to

(13.6)

�
1 0
0 0

�
+�1

�
0 0
0 1

�
where P1 is the projection onto the group state of the harmonic oscillator.
Then it follows that the element

(13.7)

�
1 0
0 0

�
+ g(x)�1

�
0 0
0 1

�
+ (1��1)

�
0 0
0 1

�
is in the image, where everything has been tensored by M(N;C) and g
is an arbitrary map X �! GL(N;C) of compact support. However, any
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element in the image space is homotopy to one of these, so we have the
lifting property.

(5) The subgroup fA 2 G�1ad;iso(Rd : Rk);R(A) = Idg is weakly contractible:-
This is where we use Atiyah's clever rotation, and this follows rather miraculously
from the previous step it.

So, to work. Let me go through the simpler parts of the proof of Theorem 2
�rst, probably leaving the last step until Monday. For convenience I will break the
result up into pieces and I will likely not go through the `easier' part in as much
detail in the lecture as in the notes.

Lemma 13. The group G�1ad;iso(R
d;Rk) is open in 	�1ad;iso(R

d;Rk):

Proof. There may be a more direct proof than the one I will give here { if you �nd
one please let me know! Since we are in a group we know that the issue is only
the invertibility of Id+A where A lies in some small metric ball around the origin.
As we know this just means that for one of the norms on C1([0; 1];S(R2d+2k);
and for some � > 0; kAk(N) < � implies the existence of B 2 	�1ad;sl(R

d;Rk) such

that (Id+B) = (Id+A)�1: We will get this by using the `old-fashioned' method of
invertibility acting on L2(Rk+d):

Thus, we �rst need to show that each element of 	�1ad;sl(R
d;Rk) de�nes a uniformly

bounded operator on L2 for � 2 (0; 1]: Note that � is a parameter so the only problem
is at � = 0 were the operator blows up. Just to make sure there is no confusion,
we are considering A� as an operator on say L2(Rd+k) through the usual integral
formula

(13.8) (A�u)(z; Z) = ��d
Z
Rd�Rk

A(�;
�(z + z0)

2
;
z � z0
�

; Z; Z 0)u(�; z0; Z 0)dz0dZ 0

and we want to get a uniform estimate on the L2 norm as � # 0: This follows from
Schur's lemma (not the one in representation theory of course) which says that the
norm satis�es
(13.9)

kA�k2L2 � sup
z;Z

Z
Rd+k

ja(�; z; z0; Z; Z 0)jdz0dZ 0 � sup
z0;Z0

Z
Rd+k

ja(�; z; z0; Z; Z 0)jdzdZ;

assuming I have not missed out a constant. So, we just need to show that the right
side is small if some norm on A is small. There is symmetry between the two terms
so it su�ces to consider the �rst and to see that

(13.10)

sup
z;Z

Z
Rd+k

ja(�; z; z0; Z; Z 0)jdz0dZ 0

= sup
z;Z

Z
Rd+k

��djA(�; �(z + z0)

2
;
z � z0
�

; Z; Z 0)jdz0dZ 0

sup
z;Z

Z
Rd+k

jA(�;��2s=2 + �z; s; Z; Z 0)jdsdZ 0 � CkAk(N)

where we have just made the change of variable of integration from z0 to s =
(z � z0)=�: Here N is just large enough to ensure convergence of the integrals.

So, from this it follows that if kAk(N) < � for some � > 0 then the family

Id+A� has an inverse as operators uniformly on L2; Id+B�; where B� is small
with A: So, it remains to show that this inverse actually comes from an element
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B 2 G�1ad;iso(Rd : Rk): To do this we just need to construct the inverse near � = 0
since we already know what happens for � > �0 > 0: The adiabatic symbol,

(13.11) �ad;iso(A) 2 	�1sus(2d);iso(Rd)
is small with kAk(N) and hence

(13.12) (Id+�ad;iso(A))
�1 = Id+�ad;iso(B) in G

�1
sus(2d);iso(R

d):

Now we can choose B0 2 	�1sus(2d);iso(R
d) with this symbol, as usual, and we only

need to invert

(13.13) (Id+B0)(Id+A) = Id+�A0:

To do this we can use Neumann series to remove the Taylor series at � = 0 :

(13.14)
X
j

(�1)j�j(A0)j :

Sum this series using Borel's lemma and then we are back to a trivial case Id+A00

where A00 2 �1C1([0; 1]; 	�1iso (Rd+k); which is automatically invertible for small �
with inverse of the same type. Of course, we could have done this from the start.
However, summing the Taylor series invovles norms of all orders and the problem
is uniformity. However, we already know the existence of the L2 inverse uniformly
down to � = 0: Here we have shown that this inverse, being unique, is in fact an
element of G�1ad;iso(R

d : Rk) without directly getting a bound on B:
This might make one wonder about the continuity of the inverse map, A �!

(Id+A)�1� Id : However, the construction above works uniformly on compact sets
and so the sequential continuity of the map follows { and we are in a complete
metric space so all is well. �

The last part of this proof is very close to proving the properties of the `adiabatic'
sequence.

Lemma 14. The adiabatic symbol gives a surjective map

(13.15) �ad;iso : G
�1
ad;iso(R

d : Rk) �! G�1sus(2d);iso(R
k);

and any smooth map X �! G�1sus(2d);iso(R
k) on a manifold, reducing to the identity

outside a compact set, can be lifted under (13.15) and the elements mapping to Id
under (13.15) form a weakly contractible subgroup.

Proof. The argument in the proof of the Lemma above shows that if

b 2 G�1sus(2d);iso(Rk)
then any element B 2 Id+	�1ad;iso(Rd : Rk) which has �ad;iso(B) = b is invertible on

some smaller interval [0; �0] which depends on the choice of B: However, � is just
a parameter so we can `expand' it by choosing a di�eomorphism [0; �0] �! [0; 1]
which is the identity near 0: Thus in fact the adiabatic symbol map is surjective.
The same argument works uniformly on compact sets gives the lifting property.

The uniquess of the lift, up to homotopy, is the weak contractibility of the kernel-
group. That is, we need to show that a smooth map

(13.16) f : X �!
n
A 2 G�1ad;iso(Rd : Rk);�ad;iso(A) = Id

o
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is smoothly homotopic to the identity, where if X is not compact both the map and
the homotopy are required to restrict to the identity outside some compact subset
of X:

This looks very like the contractibility of the half-open loop group and it may
be that there is a global retraction of a similar sort to used there. At the moment
I do not know it, so we actually reduce to that case using the compactness of the
supports. So, given a map as in (13.16) we can insert a cuto�, choosing

(13.17) � 2 C1([0; 1]); �(�) = 1 in � <
1

4
; �(�) = 0 in � >

1

2
; 0 � �(�) � 1

and consider the family

(13.18) ft(x) = Id+�t�(�=�) + �(1� �(�=�))A(�; x); f(x) = Id+�A(�; x):

The uniformity in the construction of inverses above (and the factor of �) shows that
� > 0 is chosen small enough then this is an homotopy in the group in (13.16). At
t = 1 it is f and at f = 0 it is in the 
at loop group, since it reduces to the identity
near � = 0: The earlier contraction argument therefore allows it to be retracted to
the identity. �
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14. Lecture 11: Adiabatic periodicity map
Monday, 29 September

Last time I started the `easier', or perhaps better to say `routine', part of the
proof of Theorem 2 { giving the adiabatic diagonal sequence, from top left to bottom
right in
(14.1)

fA 2 G�1ad;iso(Rd : Rk);�ad(A) = Idg
� u

((QQ
QQ

QQ
QQ

QQ
QQ

fA 2 G�1ad;iso(Rd : Rk);R(A) = Idg
I i

vvnnn
nn
nn
nn
nn
n

G�1ad;iso(R
d : Rk)

R

vvmmm
mmm

mmm
mmm

m
�ad

((PP
PP

PP
PP

PP
PP

G�1iso (Rd+k) G�1sus(2d);iso(R
k):

Observe that this already gives us a map { following the arguments of last lecture
{

(14.2) [X;G�1sus(2d);iso(R
k)]c �! [X;G�1iso (Rd+k)]c:

So once we see the same properties for the other sequence we conclude that this
must be an isomorphism. In fact for the moment I will only do this for d = 1:
Addendum to Lecture 11: GL(N;C) and the Bott element From Paul

Loya

Here we present the proof on Sept. 26-th that the restriction map to " = 1:

R : G�1ad;iso(R;R
k)! G�1iso (R

k+1);

is surjective at the level of homotopies using the Bott element.
Preparing for the Bott element: Lemmas from Lecture 14

The following lemma is Lemma 16 in Lecture 14.

Lemma 15 (Finite Rank Approximation). Let � be the orthogonal projection
onto an N -dimensional subspace of S(Rd) and choose an identi�cation of linear
maps on the range of � with M(N;C), and consider the map

M(N;C) 3 A 7�! Id��+A� 2 Id+	�1iso (Rd);
where A� on the right is the matrix A acting on the range of � through the chosen
identi�cation of linear maps on the range of � with M(N;C). This map restricts
to a map

GL(N;C) 3 A 7�! Id��+A� 2 G�1iso (Rd);
and for any topological space X, induces a map

[X;GL(N;C)]c ! [X;G�1iso (R
d)]c

that is de�ned independent of the choice of the N -dimensional subspace of S(Rd)
chosen and the choice of identi�cation of linear maps on the range of � with
M(N;C). Moreover, any element of [X;G�1iso (R

d)]c is in the image of this map
for a su�ciently large N .

The following lemma is Lemma 17 in Lecture 14.
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Lemma 16. If �1 is the orthogonal projection onto a 1-dimensional subspace of
S(Rd), then the map1

G�1iso (R
k) 3 h 7�! Id��1 + h�1 2 G�1iso (Rk+d)

induces an isomorphism

[X;G�1iso (R
k)]c ! [X;G�1iso (R

k+d)]c

that is de�ned independent of the choice of the 1-dimensional subspace.

Proof of the theorem: The Magical Bott element

Recall that the Bott element is an operator B 2 H�1ad (R) = finvolutions in2 
1+
	�1ad (R;C2)g, which has the property that

B+j"=1 �
�
1 0
0 �1

�
and

B�j"=1 �
�
0 0
0 1��1

�
where �1 2 	�1iso (R) is the projection onto a one-dimensional subspace of S(R1)
(say the ground state of the harmonic oscillator).

Theorem 3. The restriction map to " = 1:

R : G�1ad;iso(R;R
k)! G�1iso (R

k+1);

is surjective at the level of homotopies. That is, for any topological space X and
any element [g] 2 [X;G�1iso (R

k+1)]c there is an element [~g] 2 [X;G�1ad;iso(R;R
k)]c

such that [R~g] = [g].

Proof. By �nite rank approximation, any element of [X;G�1iso (R
k+1)]c is homotopic

to an invertible matrix through Lemma 15 and by further stabilization we may
assume that

g = F0

�
IdN 0
0 g0

�
; where g0 : X ! GL(N;C);

IdN is the N �N identity matrix, and

F0 : GL(2N;C)! G�1iso (R
k+1)

is the map in Lemma 15 de�ned by some choice of 2N -dimensional subspace of
S(Rk+1) | it's not important now what subspace we choose although at the end
of this proof we'll take a subspace in S(Rk+1) = S(Rk � R1) spanned by 2N
independent functions in S(Rk) times a function in S(R1). The reason we take g
in terms of a 2� 2 matrix (of N �N matrices) is because the Bott element is given
in terms of 2� 2 matrices. We shall �nd a map

~g : X ! G�1ad;iso(R;R
k)

such that [R~g] = [g]. To de�ne ~g, let

F1 : GL(2N;C)! G�1iso (R
k);

1On the right-hand side, as operators on S(Rk+d) = S(Rk�Rd), �1 only acts on the Rd factor
and h on the Rk factor.

2Recall that 
1 =

�
1 0
0 �1

�
and note that 	�1

ad
(R;C2) consists of 2� 2 matrices of operators

in 	�1
ad

(R).
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be the map in Lemma 15 induced by some choice of 2N -dimensional subspace of
S(Rk), and then de�ne

~g = F1g1;

where

g1 =

�
IdN 0
0 g0

�
(IdN 
B+) + IdN 
B�:

Let's pause to think about this! Note that B� are 2 � 2 matrices whose entries
are operators in Id+	�1ad (R), so IdN 
B� are 2N � 2N matrices of the same sort.

Using that B = 
1 modulo a 2�2 matrix of operators in 	�1ad (R) one can check that

g1 = Id2N +R where R is a 2N � 2N matrix of operators in 	�1ad (R). Moreover,
g1 is invertible with inverse�

IdN 0
0 g�10

�
(IdN 
B+) + IdN 
B�:

It follows that

~g = F1g1 2 G1ad;iso(R;Rk):
Now we claim that

~gj"=1 � g = F0

�
IdN 0
0 g0

�
:

To see this, recall that

B+j"=1 �
�
1 0
0 �1

�
and B�j"=1 �

�
0 0
0 1��1

�
:

Therefore,

g1j"=1 =
�
IdN 0
0 g0

�
(IdN 
B+)j"=1 + IdN 
B�j"=1

�
�
IdN 0
0 g0

��
IdN 0
0 IdN �1

�
+

�
0 0
0 IdN � IdN �1

�
= Id2N � Id2N �1 +

�
IdN 0
0 g0

�
�1:

Hence,

~gj"=1 = F1g1j"=1 � Id��1 +

�
F1

�
IdN 0
0 g0

��
�1:

In other words, if

F2 : [X;G
�1
iso (R

k)]c ! [X;G�1iso (R
k+1)]

is the isomorphism induced by the map, which we also denote by F2,

(14.3) G�1iso (R
k) 3 h 7�! Id��1 + h�1 2 G�1iso (Rk+1)

found in Lemma 16 with d = 1, then we see that

~gj"=1 = F2

�
F1

�
IdN 0
0 g0

��
:

To summarize, we are left to show that�
F2

�
F1

�
IdN 0
0 g0

���
=

�
F0

�
IdN 0
0 g0

��
:
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Thus, our theorem is �nished o� by proving that the composition

[X;GL(2N;C)]
F1! [X;G�1iso (R

k)]
F2! [X;G�1iso (R

k+1)]

is exactly the same as the map

[X;GL(2N;C)]
F0! [X;G�1iso (R

k+1)];

in other words, we need to prove that the following diagram commutes:

[X;GL(2N;C)]
F1 //

F0

66
[X;G�1iso (R

k)]
F2 // [X;G�1iso (R

k+1)] :

To prove this we just have to look at what the maps F0; F1; and F2. Let � be the
orthogonal projection onto any 2N -dimensional subspace of S(Rk). Then F1 is the
map induced by

GL(2N;C) 3 A 7�! Id��+A� 2 G�1iso (Rk):
Therefore, at the homotopy group level, F2F1 is the map (see (14.3) for F2) induced
by

GL(2N;C) 3 A 7�! Id��1 +
�
Id��+A�

�
�1 2 G�1iso (Rk+1)

= Id���1 +A��1 2 G�1iso (Rk+1)
On the other hand, ��1 is the orthogonal projection onto a 2N -dimensional
subspace of S(Rk+1) (namely, the space of functions of the form f(x) g(y) where
(x; y) 2 Rk � R1 with f and g in the range of � and �1, respectively). Hence, we
can take the map F0 to be induced by

GL(2N;C) 3 A 7�! Id���1 +A��1 2 G�1iso (Rk+1);
which is exactly F2F1. This completes the proof. �

Extra: Bott periodicity for the general linear group

This section is not needed for the Bott element but might be useful to be written
down. In this section we prove that �0(GL(N;C)) = f0g and �1(GL(N;C)) = Z.

Lemma 17. There is a smooth map

T : S2N�1 n f�e1g ! GL(N;C) ; v 7! Tv

such that Te1 = Id and for all v 2 S2N�1 n f�e1g, Tvv = e1.

Proof. Given v 2 S2N�1, for all x 2 CN , de�ne

Tv(x) = x+ (x � v)(e1 � v) + (e1 � v)(x � v)� x � e1
1 + e1 � v (e1 + v):

Here \�" denotes the usual Hermitian inner product on CN (linear in the �rst slot
and conjugate linear in the second slot). Using this formula, it's easy to show that
Tv depends smoothly on v 2 S2N�1 n f�e1g, Te1 = Id, and Tvv = e1. �

Using this smooth map Tv we prove prove the following theorem. (I haven't seen
a proof of this theorem that uses the linear map Tv. Has anyone?)
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Theorem 4. If 0 < k < N , then the inclusion map

GL(k;C)! GL(N;C) ; A 7!
�
Id 0
0 A

�
induces an isomorphism between homotopy spaces

[S1;GL(k;C)]! [S1;GL(N;C)]:

Proof. By iteration we may assume that k = N�1. Our theorem follows immediately
from the following two claims, which we'll prove using the lemma: For any N > 1,

(1) Any element of [S1;GL(N;C)] has a representative of the form

�
1 0
0 g(x)

�
,

where g : S1 ! GL(N � 1;C).
(2) Two maps g0; g1 : S

1 ! GL(N�1;C) are homotopic if and only if the maps�
1 0
0 g0(x)

�
and

�
1 0
0 g1(x)

�
are homotopic as maps into GL(N;C).

Let f : S1 ! GL(N;C) be a continuous map. Since f(S1) is a compact subset of
GL(N;C), an open set in the set of all N �N matrices, it follows that any N �N
matrix su�ciently close to the image f(S1) must lie in GL(N;C). Using this fact
plus a standard compactness argument, it is straightforward to show3 that f is
homotopic to a map (again denoted by f) such that the �rst column w1(x) of f is
not a positive real multiple of �e1. Hence, v(x) = w1(x)=kw1(x)k is never equal to
�e1. By Lemma 17 we have Tv(x)w1(x) = kw1(t)k, so for all x 2 S1,

Tv(x)f(x) =

�kw1(x)k �
0 g(x)

�
;

where � is unimportant components and g : S1 ! GL(N�1;C). We may homotopy
the �rst column to e1, so

f(x) � T�1v(x)

�
1 0
0 g(x)

�
Now v(x) 2 S2n�1nf�e1g �= R2n�1 so we can homotopy v(x) to the constant vector
e1 within S2n�1 n f�e1g. Since Te1 = Id it follows that T�1v(x) � Id. This proves

Claim 1.

We now prove 2. Certainly the \only if" part holds, so assume that

�
1 0
0 g0(x)

�
and

�
1 0
0 g1(x)

�
are homotopic as maps into GL(N;C), which means there is a

continuous map F : S1 � [0; 1]! GL(N;C) such that

(14.4) F (x; 0) = f0(x) =

�
1 0
0 g0(x)

�
and F (x; 1) = f1(x) =

�
1 0
0 g1(x)

�
:

By a similar argument as we stated in the previous paragraph we may assume that
w1(x; t), the �rst column of F (x; t), is never a positive multiple of �e1. Hence,
v(x; t) = w1(x; t)=kw1(x; t)k is never equal to �e1. By Lemma 17, we have

Tv(x;t)F (x; t) =

�
1 �
0 g(x; t)

�
;

3If fN1(x) denotes the N -th row, 1-st column element of f(x), all you have to do is replace
this function by a new function such that fN1(x) 6= 0 for x 6= 1.
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where g(x; t) 2 GL(N � 1;C). Since v(x; 0) = e1 = v(x; 1) and Te1 = Id, it follows
that g(x; 0) = g0(x) and g(x; 1) = g1(x). Thus, g : S1 � [0; 1] ! GL(N � 1;C)
provides a homotopy between g0 and g1. �

Corollary 3. �0(GL(N;C)) = f0g and �1(GL(N;C)) = Z.

Proof. The second statement follows from Theorem 4 (with k = 1) and the fact
that �1(GL(1;C)) = [S1;GL(1;C)] = Z (which can be proved using for example
the winding number). The proof of Theorem 4 also works if we replace S1 with a
point, so the �rst statement follows from the fact that �0(GL(1;C)) = f0g. �
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15. Lecture 12: Atiyah's rotation
Wednesday, 1 October

Let me try to clarify what we have done so far as regards the proof of Bott
periodicity. Last time we proved that there is a map

(15.1) pad : [X;G�1sus(2d);iso(R
k)]c �! [X;G�1iso (Rd+k)]c

obtained by semiclassical quantization. Indeed let me quickly recall how this map is
de�ned { I have generalized from homotopy classes of smooth maps from a compact
manifold to homotopy classes of compactly-supported smooth map from a general
manifold, but this makes very little di�erence to the argument. To de�ne (15.1)
take a representative, f : X �! G�1sus(2d);iso(R

k) and choose, as we can, a family

~f : X �! Id+	�1ad;iso(R
d : Rk) which has adiabatic symbol f: Last time I showed

that in fact ~f is invertible for � 2 (0; �0]; �0 > 0; with inverse given by a similar
family. We can expand the parameter so that �0 = 1 and then (15.1) is obtained by

restriction to � = 1: It doesn't matter where we restrict, provided ~f� is invertible
for that � and smaller. So, we showed that this induces a map (15.1).

Now, we also showed that the map (15.1) is surjective for d = 1: To do this we
proved that for a given map with compact support g : X �! G�1iso (Rd+k) we can
�rst make a smooth homotopy, and then `lift' it to a family which takes the form

(15.2) ~g = Id+A(t; �)g�1(x) +A0(t; �)g(x) +A00(t; �) 2 G�1sus(2);iso(Rk)

and where the perturbation is compactly supported on R2: Note that this family
has the nice property that g = Id implies ~g = Id which is important now that we
want to treat compactly supported families. Thus we proved (modulo properties of
the Bott element which have not yet been checked) that

(15.3) pad(~g) = [g];

thus establishing surjectivity.
Now we want to prove injectivity of pad; which reduces to the weak contractibility

of a certain subgroup of G�1ad;iso(R
d : Rk): This can be done by rather tedious,

if imaginative, computation but Atiyah realized that it is a consequence of the
multiplicativity of K-theory. Now, I have not discussed this multiplicativity but we
can just proceed directly and then sort out what we have done afterwards.

Stripped down in this way, Atiyah's idea goes as follows. Look at ~g in (15.2). It
is itself a compactly supported smooth map

(15.4) ~g : X � R2 �! G�1iso (Rk):

So, we can (after homotopy to �nite rank) apply the same construction to it. Let
me call the result

(15.5) G(t0; � 0; t; �; x) = Id+A(t0; � 0)~g�1(x; t; �) +A0(t0; � 0)~g(x; t; �) +A00(t0; � 0):

So this is a function on R4 � X with compact support. We recover ~g (if you like
up to homotopy) by quantizing it in the variables (t0; � 0): However, let us make a
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rotation between (t0; � 0) and (t; �); substituting in (15.5)

(15.6)

t0 7�! t0 cos � + t sin �;

� 0 7�! � 0 cos � + � sin �;

t 7�! �t0 sin � + t cos �;

� 7�! �� 0 sin � + � cos �:

This linear change of variables leads to a smooth map

(15.7) ~G : [0; �=2]� R4 �X �! G�1iso (Rk):

So, we can think of this as an homotopy in the variable � and in particular, we can
quantize it in (t0; � 0) uniformly in �; R2 and X: At � = �=2 the (t0; � 0) variables are
replaced by (t; �) in the sense that

(15.8) ~G(�=2; t; �; t0; � 0; x) =

Id+A(�t;��)~g�1(x; t0; � 0) +A0(�t;��)~g(x; t0; � 0) +A00(�t;��):
Thus, at � = �=2 we are simply quantizing ~g and ~g�1: However, by construction
the quantization (which we may choose) of ~g is g and hence that of ~g�1 is g�1:

Finally then see what happens. If ~g is such that pad~g = Id then we can �nd ~G(�)
which at � = 0 quantizes to ~g and at � = �=2 quantizes to Id : Thus in fact ~g is
homotopic to the identity and we have proved that (15.1) is an isomorphism, well
for d = 1 and modulo the discussion of projections { which I will proceed to do.

Maybe it is worthwhile going back and checking, modulo the same issues of
course, that I have now proved Theorem 2 since that looks more substantial. So,
I claim that, for d = 1; I can pretend to have done everything except the weak
contractibility of the subgroup

(15.9) N = fA 2 G�1ad;iso(R : Rk);R(A) = Idg:
That is, consider a compactly supported smooth map into it. We need to show
that it can be deformed to the constant-at-the-identity map. This is almost what
we have shown. Namely we have shown that if 
 : X �! N is such that R(
) = Id
then �ad(
); which is what we discussed above, is homotopic to the identity in
G�1sus(2);iso(R

k): Now, quantizing this family of symbols (including the homotopy)

gives us an homotopy in G�1ad;iso(R : Rk) which I can call �(t; x): At t = 0 it is 
 and

at t = 1 it is Id : We are almost there, but it is not (necessarily) an homotopy in
N : It starts there and �nishes there but we have done nothing to control R(�(t; x))
for t 2 (0; 1): Fortunately we have the lifting map. That is we can lift R(�(t; x)) to
a family �0 : [0; 1] �X �! G�1ad;iso(R : Rk) so that R(�0(t; x)) = R(�(t; x)) and so

that �0(0; x) = �0(1; x) = Id since R(�(t; x) = Id there. Then (�0(t; x))�1�(t; x) is
a new homotopy from 
 to Id which is in N :

Okay, so it is on to projections to check the little facts about the Bott projection
and its quantization.

Let me formalize what we were doing earlier as regards projections and set
(15.10)

H�1(Rk) =
�
a 2 	�1iso (Rk;C2); I1 + a is an involution

	
; I1 =

�
1 0
0 �1

�
:
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This is not a group, but it has certain features making it similar to G�1iso (Rk):
Notably it is an in�nite dimensional manifold `modelled on (two copies of) S(R2k):
This I will discuss next time.

De�nition 5. The K-groups (not quite immediately obvious that they are groups)
associated to a smooth manifold X are the compactly-supported homotopy classes
of smooth maps

(15.11) K0
c(X) = [X;H�1(R)]c:

Of course we will quickly show that one could just as well take

(15.12) K0
c(X) = [X;H�1(Rk)]c

for any k and the results are naturally isomorphic. If X is compact one can drop
the `c' su�x { and historically it is even dropped in the general case, meaning that
in the literature K0(X) denotes what I am calling K0

c(X):
The work I did on the Bott element now extends directly.

Proposition 13. There is a well-de�ned (adiabatic) periodicity map

(15.13) pad : K
0
c
(X � R2d) �! K0

c
(X):

Proof. A class in K0
c(X � R2d) is represented by a compactly-supported map X �

R2d �! H�1(R): The discussion in Lecture 8 shows that this can be quantized to
an adiabatic family of involutions. We need to check homotopy invariance of the
result but this follows the same lines. �

Now we have lots of groups and lots of identi�cations between them:-

(15.14)
pad : K

0
c(X � R2d) = K0

c(X); pad : K
1
c(X � R2d) = K1

c(X);

cl : K0
c(X) �! K1

c(X � R): cl : K1
c(X) �! K0

c(X � R)
We do need to make sure that these maps are consistent under compostion { so
we can regard them as identi�cations (with some care!). Typically the top row are
regarded really as identi�cations { this is Bott periodicity { and the bottom row as
maps.
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16. Lecture 13: Involutions and K0

Friday, 3 October

Last time I introduced the space of smooth involutionsH�1(R); let me immediately
note some properties of it.

Proposition 14. There is a surjective index, or relative dimension, map

(16.1) ind : H�1(Rk) �! Z; ind(I1 + a) =
1

2
tr(a)

which labels the components, H�1k (Rk); of H�1(Rk): The base component, where
the index vanishes, is a homogeneous space

(16.2) H�10 (Rk) = G�1iso (Rk;C2)=
�
G�1iso (Rk)�G�1iso (Rk)

�
through conjugation and the other components are isomorphic to the base component
{ but not naturally so.

Proof. We use �nite rank approximation to prove this. In the construction of the
quantized Bott element I used the idea which lies behind:

Lemma 18. For each I 2 H�1(Rk) there is a neighbourhood

0 2 B � 	�1(Rk;C2)

such that if b 2 B then the complex integral

(16.3) J(b) = � Id��iR
jz�1j= 1

2

�
1

2
(I + b)� (z � 1

2
) Id

��1
dz

is an element of H�1(Rk):

Proof. As Boris said: Just use the functional calculus!
If b = 0 in (16.3), then the inverse of 1

2I � (z � 1
2 ) Id = (1 � z)B+ � zB� is

(1 � z)�1B+ � z�1B� where I = B+ � B� is the decomposition into projections.
The inverse is uniformly bounded on jz � 1j = 1

2 so remains invertible there if
perturbed by b=2 in a small ball around the origin. Thus the integrand in (16.3)
does exist and is of the form

(16.4)

�
1

2
(I + b)� (z � 1

2
) Id

��1
= (1� z)�1B+ � z�1B� + 
(z; b)

where 
(z; b) is holomorphic near jz � 1j = 1
2 and valued in smoothing operators.

The integral of the �rst term on the right in (16.4) is �B+ so J(b) = I + b0 with
b0 2 	�1(Rk;C2): Moreover, b0 is small with b and depends continuously on it. It
remains to check that J(b) is an involution. The square can be written

(16.5) J(b)2 = Id+2
1

�i

Z
jz�1j= 1

2

�
1

2
(I + b)� (z � 1

2
) Id

��1
dz

+
1

(�i)2

Z
jz�1j= 1

2

Z
jt�1j= 1

2+�

�
1

2
(I + b)� (z � 1

2
) Id

��1
�
1

2
(I + b)� (t� 1

2
) Id

��1
dzdt
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where the t contour has been moved slightly where � > 0: Applying the resolvent
identity�

1

2
(I + b)� (z � 1

2
) Id

��1�
1

2
(I + b)� (t� 1

2
) Id

��1
=

(z � t)�1
�
1

2
(I + b)� (z � 1

2
) Id

��1
� (z � t)�1

�
1

2
(I + b)� (t� 1

2
) Id

��1
and inserting this into the the last term allows it to be evaluated by residues as

(16.6)
1

(�i)2

Z
jz�1j= 1

2

Z
jt�1j= 1

2+�

�
1

2
(I + b)� (z � 1

2
) Id

��1
�
�
1

2
(I + b)� (t� 1

2
) Id

��1
dzdt

= �2 1

�i

Z
jz�1j= 1

2

�
1

2
(I + b)� (z � 1

2
) Id

��1
dz:

Thus indeed, J(b)2 = Id : �

This `retraction onto H�1(Rk)' allows any element I1+ a to be connected to a
�nite rank perturbation of I1: Namely, if k is large enough, depending on a; then

(16.7) I1 + (1� t)a+ t�ka�k

is su�ciently close to I1 + a; for t 2 [0; 1]; for the Lemma to apply. Moreover it
follows directly from the formula for J(b) that

(16.8) J(�ka�k) = I +�ka
0�k

is indeed a �nite rank perturbation. Thus, as an involution it is equal to

(16.9) I1(Id��k) + �kA�k

where the second term is an involution in M(2;C) 
 M(k;C); the latter being
matrices acting on the range of �k in S(Rk):

For �nite rank involutions the �rst statements in the Proposition become obvious.
In a given vector space they correspond to a decomposition as a direct sum, of the
1 and �1 eigenspaces, of dimensions d+ and d�; d++ d� = N being the dimension
of the space on which the involution acts. Moreover, for �xed N any two such
decompositions are linearly equivalent if and only the positive eigenspaces have the
same dimension, d+: The trace of the involution, d+�d� = �2N +2d�; is an even
integer which determines the involution up to linear equivalence. It follows that for
the decomposition (16.9), in which �k acts as a multiple of the identity on the C2

factor,

(16.10) tr(J(�ka�k)� I1) = tr(�kA�k)� tr(I1�k) = 2p 2 2Z
determines the linear equivalence class.
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So, it remains to show that 1
2 Tr(a) is locally constant. However di�erentiating

the identity I2t = Id shows that

(16.11)

ItI
0
t + I 0tIt = 0 =) tr(I 0t) = 0;

hence
d

dt
tr(It � I) = 0:

since I 0t is o�-diagonal with respect to It:
This proves (16.1) and that the `index' map is constant on the components of

H�1(Rk):
In the case that ind(I1 + a) = 0 it follows from the discussion above that I + a

is connected by a smooth path I1 + a(t); t 2 [0; 1]; in H�1(Rk) to I1 itself, so
a(1) = a; a(0) = 0: For each I 2 H�1(Rk); if b is small enough and I+b 2 H�1(Rk)
then

(16.12) T = (I + b)+I+ + (I + b)�I� 2 G�1(Rk;C2)

where I + b = (Ib)+ � (I + b)� is the decomposition into projections. Moreover,

TI = (I + b)T =) (I + b) = T�1IT:

Thus, nearby involutions are conjugate under the action of G�1(Rk;C2):
Apply this at each point t 2 [0; 1] it follows that there is a �nite decomposition

of the interval such that I + a(t) at each lower end-point is so conjugate to the
upper end-point. Composing the action shows that I + a is conjugate to I1:

Thus we see that the action by conjugation of G�1(Rk;C2); is transitive on
H�10 (Rk): It is clear that the subgroup �xing I1 is the diagonal group G�1(Rk)�
G�1(Rk) which is (16.2).

In each H�1k (Rk) there is a `base point'

(16.13)

(
I1 + (Id�I1)�k 2 H�1k
I1 � (Id+I1)�k 2 H�1�k

; k > 0

Thus it su�ces to show that these are conjugate to I1: This can be done by
renumbering the bases { of course these conjugating operators are not inG�1(Rk;C2):

�

This result has quite a few consequences for our de�ntion of K0
c(X): However,

the �rst thing I need to do { to �nish the proof of Bott periodicity { is to go back
and look at the quantized Bott involution constructed in Lemma 9. What we want
to do is to compute 1

2 tr(D�); which we now know to be constant as a function of
� > 0: Of course we must somehow compute it in terms of the semiclassical limit
as � # 0: By construction D� comes from a semiclassical family, with kernels

(16.14) D� = ��1D(�;
�(t+ t0)

2
;
t� t0
�

)

valued in 2� 2 matrices. So, for � > 0
(16.15)

tr(D�) = ��1
Z
R

trD(�; �t; 0)dt = ��2
Z
R

D(�; T; 0)dT =
1

2��2

Z
R2

tr D̂(�; t; �)dtd�:

So, what we know is D̂(0; t; �) = �(t; �) and what we need to compute is the
(integral of the trace of) the coe�cient of �2 in the Taylor series expansion of

D̂(�; : : : ): Fortunately, the �2 term is the next after the leading term.
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In fact if you recall the construction of D what we did was start with D0 which
is a quantization of �; we can take it not to depend explicitly on �: Then we need
to compute the semiclassical symbol of the error term

(16.16) (I1 +D0)
2 � Id = �2E1; �sl(E1) =

1

2i
(@t�@�� � @��@t�) :

Now, the correction term is �2D1 where �sl(D1) has to satisfy

(16.17) b�sl(D1) + �sl(D1)b = �sl(E1)

which we did by noting that the right side satis�es

b�sl(E1) = �sl(E1)b so �sl(D1) =
1

2
b�sl(E1)

works. Thus combining these formul� we need to compute

(16.18) � 1

8�

Z
R2

tr (b (@t�@�� � @��@t�)) dtt�:
Since @t� and @�� are derivatives of b = I1+ � we know that b(@t�) = �(@t�)b; etc,
anticommute. So in fact the two terms in (16.18) are the same. Since � is written
in terms of polar coordinates, it is natural to change variable and use a similar
rearrangement to reduce to the integral

(16.19) � 1

4�

Z 1

0

Z 2�

0

tr (b(@r�)(@��)) drd�:

Now, recall what b = I1 + � is! It was de�ned in terms of Pauli matrices

(16.20) b(t; �) = cos(�(�r))
1 + sin(�(�r)) cos(�)
2 � sin(�(�r)) sin(�)
3:
There are three constant matrices in (16.20). Each of them has trace zero and
the product of any two of them (which is �i times the other one) has trace zero.
The product of all three 
1
2
3 = � Id2�2 has trace �2: Thus there are four terms
which can contribute. Namely the product of �0(�r) and

(16.21)

sin3(�) sin2 �
3
1
2 � sin(�) cos2(�) sin2 �
1
3
2

� sin3(�) cos2 �
2
1
3 + sin(�) cos2(�) cos2 �
1
2
3

= � sin(�) Id;
where � = �(�r): The integral is therefore

(16.22) �
Z 2�

0

Z �

0

sin2 � sin(�)d�d� = 8�:

Combining all this we conlude that

(16.23) ind(B) =
1

2
tr(D) = 1:

Phew, that proves Bott periodicity.
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17. Lecture 14: Even periodicity map
Monday, 6 October

Question 2. (Jesse Gell-Redman) The construction of the (odd) periodicity map
looks a bit �shy, would you care to clarify it?

Answer 2. Well, he was politer than that. Let me put things together, maybe a
little more carefully than I did before. First let me try to clarify a couple of things
{ the sense in which we are free to switch the number of variables in which our
smoothing operators act and are also free to work with �nite dimensional matrices.

Lemma 19. For any N and for any selection of N of the elements of the standard
basis of eigenfunctions of the harmonic oscillator, ei1 ; : : : ; eiN the inclusion

(17.1) GL(N ;C) 3 gij 7�! ĝ 2 G�1iso (R); ĝeil =

NX
p=1

gpleip ; ĝej = ej ; j 6= il;

is a group homomorphism which induces a map on homotopy classes

(17.2) [X; GL(N;C)]c �! [X;G�1iso (R)]c

which is independent of the choice of basis and such that every element in the target
group is in the image for N su�ciently large.

Proof. That the stabilizing map (17.1) is a group homorphism is clear enough and
so it induces a map (17.2). Any two choices of basis are conjugate. To see this it
su�ces to change one element at a time to another eigenfunction which is not in
the current set, and then �nally relabel. The relabelling is given by an element of
GL(N;C) acting by conjugation and the switching is given by a rotation between
the two elements. In either case on the image space this is conjugation by a �xed
(in terms of X) element of G�1iso (R): Since this group is connected, the conjugation
can be removed by a homotopy, constant in X: This proves that the induced maps
(17.2) are all the same. �

One can easily go further somewhat further, as we will later, and conclude that
as long as GL(N;C) is made to act on an N -dimensional subspace of the range of
�K ; for some k; and the identity on a complementary space, and on the range of
Id��k; the same map (17.2), at the level of homotopy, results.

Lemma 20. If 0 6= e 2 S(Rl) and �e = e 
 �e 2 	�1iso (Rl) is the orthogonal
projection onto e then the group homomorphism

(17.3) G�1iso (Rd) 3 Id+a 7�! Id+�e 
 a 2 G�1(Rd+k)

is a weak homotopy equivalence (Is it an homotopy equivalence?) which induces an
isomorphism, for any manifold X;

(17.4) [X;G�1iso (Rd)]c = [X;G�1iso (Rd+k)]c

which is independent of the choice of e:

Note that e is �xed but arbitrary. As in the proof above, we can deform any of the
maps (17.3) to any other by rotating e:

Note that the embeddings above are constant, i.e. we are not permitting twisting
which depends on the point in X: It is also worth re-emphasizing that in both
these maps the identity is `increased in size', I have been regarding these maps as
inclusions but one does need to be a little careful about this.
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So, what is the inverse of the adiabatic periodicity map exactly? It is based on
the lifting statement for restriction to � = 1

(17.5) R : G�1ad;iso(R : Rk) �! G�1iso (R1+k):

Namely, take a smooth map h : X �! G�1iso (R1+k) which is constant at the identity
outside a compact set. We can `lift' this back into one of the groups (17.1), that
is there is a homotopy ht where h0 is in the image of the group and h1 = h: So,
consider h0 instead.

Now, what do we know about b = 
1 + �; � 2 C1c (R2;M(2;C); the Bott
element. We showed that this involution is the semiclassical symbol of an involution
B = 
1 +D; D 2 	�1sl;iso(R;C

2): More precisely, D� 2 C1((0; 1]; 	�1iso (R;C2)) is a
smooth family of 2 � 2 matrices of isotropic smoothing operators on R; forming a
semiclassical family with symbol � and such that 
1 Id+D� is an involution for all
� 2 (0; 1]: Moreover, last time I �nally computed the relative index of this family,
showing it was 1; and hence that say 
 Id1+D 1

2
can be deformed to have

(17.6) R(B) = 
 Id1+2�1

�
0 0
0 1

�
(which has the same relative index) through involutions { here �1 is projection onto
the ground state of the harmonic oscillator (or onto some other element of S(R) of
your choice). Thus, modifying the parameter in � > 1

4 a bit we have a semiclassical
family, B; of 2� 2 matrices, in 1 dimension, which has semiclassical symbol b and
takes the value (17.6) at � = 1:

Now, much as above we want to turn this into an adiabatic family. First we
can undo B into the projections onto its positive and negative partis, B� and then
consider the semiclassical family of 2N � 2N matrices

(17.7) g0 = (h�10 (x)

�
1 0
0 0

�
+

�
0 0
0 1

�
)(h0(x)
B+ +B�) 2 G�1sl;iso(R;C2N ):

The �rst factor makes the semiclassical family have `unital part' { the leading
matrix multiple of the identity { be Id2N ; giving (17.7) and from (17.6)

(17.8) R(g0) = Id+�1 
 (h0 � IdN )

�
0 0
0 1

�
:

This is just h0(x) acting as an N �N matrix on CN ; extended to the second part
of the C2; plus the identity on everything else.

Now, we are free to embed M(2N;C) to act on a �nite span of the harmonic
oscillator eigenfunctions in S(Rk) however we want, and we can do this so that the
h0(x) in (17.8) is the h0 we started with. Moreover this embedding corresponds to
the same sort of map as (17.3) but now giving

(17.9) G�1sl;iso(R;C
2N ) �! G�1ad;iso(R : Rk;C2):

So, combining these steps the image, g; of g0 under (17.9) has R(g) = h0:
Modifying the family in � > 0 we can insert the extra homotopy to arrange that
R(g) = h as desired.

Let us note some stabilization results of the same type as discussed above, but
for the classifying spaces H�1(Rd): As for the corresponding groups there are
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isomorphisms { for the moment �xed, but at some point I will have to discuss the
possible choices {

(17.10)
H�1(R) �! H�1(Rd)

H�1(Rd;CN ) �! H�1(Rd):

They are obtained by relabelling basis elements or by extending the perturbation
to have rank 1 in the other `variables'. One can also think about this as going back
to our original sequential group and considering the corresponding

(17.11) H�1(N) =

�
a 2 	�1(N;C2);

�
1 0
0 �1

�
+ a is an involution

�
:

Now, we also have adiabatic and suspended versions of these spaces:-

(17.12)
H�1sus(p);iso(Rk) =�

a 2 	�1sus(p);iso(Rk;C2);
�
1 0
0 �1

�
+ a(T ) 2 H�1iso (Rk) 8 T 2 Rp

�
H�1ad;iso(Rd : Rk) =�

a 2 	�1ad;iso(Rd : Rk;C2);
�
1 0
0 �1

�
+ a(�) 2 H�1iso (Rd+k); � > 0

�
;

including of course those acting on C2 
 CN instead of just C2:
At this stage it probably has already occurred to you that we can `put things

together'. That is, we can de�ne a combined adiabatic-suspended-isotropic space
of involutions

(17.13) H�1sus(p);ad;iso(Rd : Rk) =
�
a 2 S(Rp; 	�1ad;iso(Rd : Rk;C2 
 CN ));�

1 0
0 �1

�
+ a(�) 2 H�1sus(p);iso(Rd+k;CN ); 8 � > 0

�
:

Here it is understood that if d = 0 or p = 0 one is reduced to the earlier cases.

Proposition 15. The space in (17.13) is classifying for K-theory of the parity of
p (provided k > 0); the base component (which is the whole space if p is odd) is
homogeneous

(17.14) H�1sus(p);ad;iso(Rd : Rk) =

G�1sus(p);ad;iso(R
d : Rk;C2)

��
G�1sus(p);ad;iso(R

d : Rk)�G�1sus(p);ad;iso(Rd : Rk;C2)
�

and for d = 1 (also for d > 1 shown later) the lower maps in the following diagram
are surjective, with the lifting property for compactly-supported families, and with
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the upper spaces weakly contractible:-
(17.15)�

�ad =

�
1 0
0 �1

��

((RR
RRR

RRR
RRR

RR

�
R =

�
1 0
0 �1

��

vvmmm
mmm

mmm
mmm

m

H�1sus(p);ad;iso(Rd : Rk)
R

uukkkk
kkk

kkk
kkk

k
�ad

))SSS
SSS

SSS
SSS

SS

H�1sus(p);iso(Rd+k) H�1sus(p+2d);iso(Rk):

Proof. Everything here, except the lifting property for R is fairly straightforward,
meaning it is much the same as before. For the momemnt I omit proofs from the
notes for these parts. To prove the properties of R we need some more properties
of involutions �
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18. Lecture 15: Vector bundles and K0
c
(X)

Wednesday, 8 October

We start with an involution which is a �nite rank perturbation of 
1; 
1 + a;
�ka = a�k = a: Thus, restricting to C2
�k which we can identify with any other
2k-dimensional vector space we have an involution

(18.1) I = I+ � I� acting on C2 
 Ran(�k) � C2k:
Then consider a further slice C2
 (�3k��k): Here we can identify Ran(�3k��k)
with C2k and so write the restriction of 
1 
 Id as

(18.2) 
1 
 (I+ + I�):

So the part of the involution in C2 
 Ran(�3k) is

(18.3)

(I+(x)� I�(x))� E+ 
 (I+ + I�)��E� 
 (�3k ��k);

E+ =

�
1 0
0 0

�
; E� =

�
0 0
0 1

�
:

Now, the I� part of the �rst block can be rotated rotated with the I� part of the
second block and thus there is an homotopy leading from (18.2) to

(18.4)
(I+(x) + I�(x))� E+ 
 (I+ � I�)��E� 
 (�3k ��k)

= (E+ + E�)��k + E+ 
 (I+ � I�)��E� 
 (�3k ��k):

This computation proves:-

Lemma 21. Any f 2 C1c (X;H�1iso (Rd) is homotopic through such maps to one of
the form

(18.5) ~f(x) = 
1 
 (Id��3k) +

�
I(x) 0
0 � Id

�

 (�3k ��k) +

�
Id 0
0 Id

�

�k

where I(x) is a smooth family of involutions acting on the 2k-dimensional space
which is the range of �3k ��k:

In consequence ~f commutes with 
1 and has positive and negative projections of
the form

(18.6)
~f+(x) = E+ 
 (Id��3k + I+ +�k) + E� 
�k

~f�(x) = E� 
 (Id��k) + E+ 
 I�;
which therefore commute (with each other of course and) with E+ and E�: One
really might as well write this in the more symmetric form

(18.7)

~f+(x) = E+ 
 (Id�P�(x)) + E� 
 (P+(x));

~f�(x) = E� 
 (Id�P+(x)) + E+ 
 (P�(x));

�lP
� = P��l = (P�)2 and P+P� = P�P+ = 0

where l = 3k: Then (18.6) shows that we can take P+ = �k; k � l; by considering
�I it follows similarly that one can arrange by homotopy that P� = �k instead.
Note that it follows from (18.7) that
(18.8)

ind( ~f(x)) =

1

2
tr
�
(E� + E+)
 P+(x)� (E+ + E�)
 P�(x)

�
= rank(P+)� rank(P�):
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This gives us the basic relationship between vector bundles and smooth families
of involutions, namely P+ 	 P� is a `superbundle' { the formal di�erence of two
bundles { which also determines the element of K0

c(X) �xed by ~f:
Said a di�erent way, the space H�1iso (Rk) of involutions itself has an involution

acting on it, namely

(18.9) H�1iso (Rk) 3 
1 + a 7�! 
1(
1 + a)
1 2 H�1iso (Rk):

This is however `trivial' as far as homotopy is concerned. Namely

Lemma 22. Any map f 2 C1c (X;H�1iso (Rk)) is homotopic to some

(18.10)
~f 2 C1c (X;H�1iso (Rk)) satisfying


1 ~f(x) = ~f(x)
1 and a = �ka = a�k

for some k:

Proof by Jesse and Paul, not proofread yet. First suppose that

fi : X ! H�1iso
�
R
d
�
; i = 0; 1;

are maps with f1 � f2. Then there is a map

F : [0; 1]�X ! H�1iso
�
R
d
�

F (0; x) = f0(x)

F (1; x) = f1(x)

f By the above lemma, there is a homotopy from F to a map eF so that eF has a
decompositioneF (t; x) = E+ 
 (Id� 2P�(t; x))� E� 
 (Id� 2P+(t; x)) ;

and that furthermore P� can be chosen so that P� � �k for some big k, so
in particular P�(0; x) = P�(1; x). It follows that the P+(t; �) de�ne isomorphic
bundles for all t by an open and closed argument (openness is always true, and the
closed part follows from the constancy of the rank.)

For the converse, suppose we have an equivalence of bundles

P 0
� � P 1

+ � S = P 1
� � P 0

+ � S = C
l;(18.11)

over a space X. Then we choose an identi�cation of Cl with a subspace of S(Rd)
so that �l is projection thereon, and de�ne

f i = E+ 

�
Id� 2P i

�

�� E� 
 �Id� 2P i
+

�
;

for i = 0; 1. The lemma then follows by using (18.11) and rotating blocks as follows.

f0 = E+ 

�
Id� 2P 0

�

�� E� 
 �Id� 2P 0
+

�
= E+ 


�
(Id� 2P 0

�)�l
�� E� 
 �(Id� 2P 0

+)�l
�

+E+ 

�
(Id� 2P 0

�)(Id� �l)
�� E� 
 �(Id� 2P 0

+)(Id� �l)
�
;

so just deal with the middle line, so that we only consider f0 (E+ 
 �k + E� 
 �k),
which is

= E+ 

�
IdCl � 2P 0

�

�� E� 
 �idCl � 2P 0
+

�
= E+ 


�
P 1
+ + S � P 0

�

�� E� 
 �P 1
� + S � P 0

+

�
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Everything here is in blocks, so you can rotate the two S's into one another, which
switches their signs. This and another substitution gives

= E+ 

�
P 1
+ � S � P 0

�

�� E� 
 �P 1
� � S � P 0

+

�
= E+ 


�
2P 1

+ � IdCl
�� E� 
 �2P 1

� � IdCl
�

= E+ 

�
IdCl � 2P 1

�

�� E� 
 �IdCl � 2P 1
+

�
Adding this back to the part we ignored gives the homotopy we wanted.

�

This is a direct consequence of Lemma 21.

Proposition 16. Any map ~f 2 C1c (X;H�1iso (Rk)) satisfying (18.10) is of the form

(18.7) and two such maps ~fi are homotopy if and only if there is a vector bundle S
over X which is identi�ed with Cp outside a compact set and a bundle isomorphism

(18.12) Ran(P+
1 )� Ran(P�2 )� S �! Ran(P+

2 )� Ran(P�1 )� S
which is the natural identi�cation outside a compact set; here the ranges of the
projections are considered as vector bundles over X:

Proof. �

The adiabatic Bott element constructed ealier

(18.13) B = 
1 
 Id+D; D 2 	�1sl;iso(R;C2)
is an involution, B2 = Id; and satis�es

(18.14)
�sl(B) = 
1 
 Id+�(t; �) = b(t; �)

R(B) = 
1 
 (Id��1) + Id
�1 2M(2;C) + 	�1iso (R;C2)

which is (18.7) with P� = 0; P+ = �1; l = 1:

Completion of proof of Proposition 15. To prove the even semiclassical lifting property
we can take an element in the form (18.7). Consider

(18.15)
~B = 
1 
 (Id�P+(x)� P�(x)) +B 
 P+(x)�B 
 P�(x)

2 C1c (X;M(2;C) + 	�1ad;iso(R : Rk):

I think this quantizes to the right thing and so proves the surjectivity of R in
(17.15). Injectivity follows using Atiyah's rotation again. �

Now, let me consider the clutching constructions. Perhaps I will take the time
to do this carefully, for the moment I have just written these down and am hoping
for the best!

First, from even to odd. There is an actual map

(18.16) cleo : H�1iso (Rk) 3 I = 
1 + a 7�!�
cos(�(t))� i sin(�(t))
1

��
cos(�(t)) + i sin(�(t))I

�
= Id+i sin(�(t))

�
cos(�(t))� i sin(�(t))
1

�
a 2 G�1sus;iso(Rk;C2):
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Here � 2 C1(R) is non-decreasing, vanishes for t su�ciently negative and is equal
to � for t positive. Similarly, from odd to even

(18.17) cloe : G
�1
iso (Rk) 3 g 7�!

I(t) =

8>>>><>>>>:

 
cos(�(t)) sin(�(t))g

sin(�(t))g�1 � cos(�(t))

!
t � 0 

cos(2� ��(�t)) sin(2� ��(�t))
sin(2� ��(�t)) � cos(2� ��(�t))

!
t > 0

2 H�1sus;iso(Rk):

Proposition 17. The clutching maps in (18.16) and (18.17) induce isomorphisms
in K-theory giving commutative diagrams for any manifold X :
(18.18)

[X;H�1iso (Rk)]c
cleo // [X;G�1sus;iso(R

k;C2)]c
cloe // [X;H�1sus(2);iso(Rk;C2)]c

EDGF
pad

��

K0
c
(X)

cleo // K1
c
(R�X)

cloe // K0
c
(R2 �X)BC@A

pad

OO

and

(18.19) [X;G�1iso (Rk)]c
cloe // [X;H�1sus;iso(Rk)]c

cloe// [X;G�1sus(2) iso(R
k;C2)]c

EDGF
pad

��

K�1
c
(X)

cleo // K0
c
(R�X)

cloe // K�1
c
(R2 �X)BC@A

pad

OO
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19. Lecture 16: The Chern character
Friday, 10 October

We now have two `series' of classifying spaces for K-theory. The (loop) groups
based on G�1 and the spaces of involutions H�1 and their looped (or suspended)
versions. I have previously introduced the Chern forms in the �rst case. Today I
want to introduce the basic Chern forms in the second and discuss their properties
{ leading to the de�nition of the Chern character. You might want to recall that
H�1 is a Fredholm manifold.

Now, the basis `zeroth' Chern form is the index, the relative dimension invariant
used to analyze the components of H�1 :

(19.1) ChH0 = ind : H�1 3 I 7�! 1

2
tr(I � 
1) 2 Z:

The higher forms do not require `regularization' { the subtraction of 
1 { because
they involve derivatives, so we can think of (19.1) as a regularized version of 12 tr(I):

Thus, consider the forms on H�1iso (Rk)

(19.2) ChH2k = 2�2k�1 tr(I(dI)2k) = 2�2k�1 tr(IdI ^ dI � � � ^ dI):
Recall that I2 = Id; so I(dI) = �(dI)I shows that I is an additional anticommuting
factor. Antisymmetry shows that an odd number of factors of dI would lead to zero,
so we only consider the even cases. Notice that dI = da; I = 
 + a; is a 1-form
valued in the underlying algebra 	�1iso (Rk;C2) so the trace does exist. Moreover it
follows directly that

(19.3) dChH2k = 2�2k�1 tr(dI(dI)2k) = 0

since all the terms dI are closed and the involution I and dI anticommute, so

(19.4)
(dI)2k+1 = I2(dI)2k+1 = �I(dI)2k+1I

=) tr((dI)2k+1) = � tr(I(dI)2k+1I) = � tr(I2(dI)2k+1) = � tr((dI)2k+1)
using the trace identity.

Why the factors of 2 in (19.2)? Consider what happens when we pull back these

forms under a map f 2 C1c (X;H�1iso (Rk)): Since ChH2k is closed, it follows that
under homotopy it changes by an exact form:

Exercise 13. Observe, following the discussion in Lecture 4 that the under for
an homotopy ft the parameter derivative d

dtf
�
t Ch

H is exact and hence so is the

di�ernece f�1 Ch
H�f�0 ChH :

So, in view of Lemma 21 we can assume that f is replaced by ~f in (18.7). Then,

(19.5) ~f�dI =

d(E+ 
 (Id�P�(x)) + E� 
 (P+(x)))� d(E� 
 (Id�P+(x)) + E+ 
 (P�(x)))

= 2
�
E� 
 dP+(x)� E+ 
 dP�(x)

�
:

Since E+E� = 0; the big wedge product in (19.2) decomposes into two pieces:

(19.6)

�
2
�
E� 
 dP+(x)� E+ 
 dP�(x)

��2k
= 22k

�
E�(dP

+)2k � E+(dP
�)2k

�
:

Now, recall that the di�erential of a projection satis�es

(19.7) PdP + (dP )P = dP =) PdP = dP (Id�P ); (Id�P )dP = dP (P ):
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Thus, inserting the identity as P� + (Id�P�) into the corresponding term and
expanding out we �nd

(19.8) E�(dP
+)2k =

E�
�
P+(dP+)(Id�P+)(dP+)P+)k + (Id�P+)(dP+)P+(dP+)(Id�P+)

�
:

Inserting this (for both signs) back into (19.2), note that the factor of I swithces
half the sings, then the trace identity shows that the two terms in (19.8) give the
same contribution. Thus in fact

(19.9) ~f� ChH2k =

tr
�
(P+(x)(dP+(x))(dP+(x))P+(x))k � (P�(x)(dP�(x))(dP�(x))P�(x))k

�
with the constants cancelling, which is why they were included in the �rst place.

Exercise 14. Show that if P (x) is a smooth family of projections, valued inM(N;C)
for some N then the curvature of the connection de�ned on the bundle EP =
Ran(P ) by ru = P (x)(du) for any section, is precisely P (x)(dP (x))(dP (x))P (x):

Thus in fact, (19.9) shows that ChH2k represents the di�erence of the trace of
the kth powers of the curvature of the two bundles. The standard de�nition of the
Chern character is then

(19.10) ChH =

1X
k=0

1

(2�i)kk!
ChH2k =

1

2
tr
�
exp(

I(dI)2I

4�i
)
�
:

The 2�i's are included to make the �rst Chern class, here ChH2 ; integral { this
is the usual normalization for the curvature of a line bundle. It is sometimes
omitted, but will then crop up somewhere else. This normalization corresponds to
the multiplicativity.

For pairs of vector bundles, or `superbundles', V+ 	 V�; on a compact manifold
the super tensor product is

(19.11) (V
(1)
+ 	 V (1)

� )
 (V
(2)
+ 	 V (2)

� ) =�
(V

(1)
+ 
 V (2)

+ )� (V
(1)
� 
 V (2)

� )
�
	
�
(V

(1)
+ 
 V (2)

1 )� (V
(1)
� 
 V (2)

+ )
�
:

Proposition 18. The universal Chern character (in deRham cohomology) pulls
back to de�ne a homomorphism of Abelian groups

(19.12) ChH : K0
c
(X) �! Heven

c
(X)

which is multiplicative under the super tensor product

(19.13) ChH([f ][g]) = ChH([f ]) ^ ChH([g]):
Proof. Compute after arranging that the projections all commute. �

We also want to understand the behaviour of the Chern character under the
clutching and periodicity maps. To do the latter, for instance to see what happens
under pull-back for (18.17) we need �rst consider the `suspended' versions of the
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Chern character. These are just obtained as case of the loop groups of G�1 using
the evaluation maps

(19.14)

evp : R
p �H�1sus(p);iso(Rk) �! H�1iso (Rk);

Ch
H(sus(p)
2k�p =

Z
Rp

ev�pCh
H
2k; Ch

H(sus(p)) =

Z
Rp

ev�p Ch
H;

giving a 2k� p form, or sum of such, on H�1sus(p);iso(Rk): The pull-back of this form

under a smooth map into H�1sus(p);iso(Rk) is the same as interpreting this as a map

from Rp � X into H�1iso (Rk); pulling back ChH2k and then pushing forward to X;
i.e. integrating over Rp:

Thus, under the map (18.17) we can pull back the whole once-suspended Chern
character to G�1iso (Rk):

Lemma 23. The pull back of the once-suspended Chern character

(19.15)

cloe
�ChH(sus) =

X
k

1

22k+2�ik!

Z
R

tr(I(dI(t))2k)

=
1

2�i

Z 1

0

(g�1dg) exp
�
s(1� s) (g

�1dg)2

2�i

�
ds:

Proof. From (18.17),

(19.16) dI(t) = � � sin(�(t)) cos(�(t))g
cos(�(t))g�1 sin(�(t))

�
�0(t)dt

+

�
0 sin(�(t))dg

� sin(�(t))g�1(dg)g�1 0

�
; t � 0;

where we can ignore the part in t > 0 since it is only a function of t: Proceeding term
by term, only one factor of dt can occur so there are 2k terms, depending on which
factor of dt is selected. If dt is taken from the p slot then then there are p�1 factor
of the second term in (19.16) before it and 2k � p � 1 after. These anticommute
with I and using the trace identity and antisymmetry it follows that these terms
are all the same. Thus, after taking the trace, we are reduced to computing

(19.17)
2k

22k+2�ik!

Z 0

�1

tr

�
I(t)

dI

dt
�0(t)dt�

0 � sin2k�1(�(t))(dg(g�1)2k�2dg
sin2k�1(�(t))g�1(g�1dg)2k�1g�1 0

��
Computing directly,

(19.18) I(t)
dI

dt
=

�
0 �g
g�1 0

�
so again the two terms from (19.17) are equal and reduce to

(19.19) � 1

22k+2�i(k � 1)!

Z �

0

sin2k�1(�)d�tr((g�1dg)2k�1

=
1

22k+2�i(k � 1)!

Z 1

0

(1� t2)k�1dt tr((g�1dg)2k�1
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Thus, the pull-back of the Chern character can be written

(19.20)

Z 1

0

(
g�1dg

4�i
) exp

�
(1� t2)(g

�1dg

4�i
)2
�
dt:

Here the variable of integration has been changed to cos t and the integral divided
into two equal parts, by symmetry. It is more conventional, to replace t by say
s = (1� t)=2 and hence arrive at (19.15). �

To compute the pull-back of the odd Chern character under the clutching map
(18.16) we can start by noting that the image g(t) = cleo(I) is the product of two
invertibles, g(t) = U0(t)U(t) where U0 does not depend on I { it is just there to
make the leading part the identity. Moreover

(19.21)
g�1(t)dg(t) = iU�1 sin(�(t))dI + U�1U�10

dU0
dt
U + U�1 dU

dt

iU�1 sin(�(t))dI + iU�1� cos(2�(t))� i sin(2�(t))
1)(I � 
)a�0(t)dt:
Expanding out tr((g�1dg)2k+1) one again gets a contribution of one dt from each
factor and by virtue of the trace identity these are all the same. Thus

(19.22) tr((g�1dg)2k+1)

= (2k + 1)i2k sin2k(�(t)) tr

��U�1U�10

dU0
dt
U + U�1 dU

dt

�
dt(U�1dI)2k

�
:

Consider the last 2k-fold wedge product as the k-fold product of

(19.23) U�1dI ^ U�1dI = dI ^ dI
since U�1dI = (dI)U : Using the trace identity to move the �rst factor of U�1 and
the same identity again we arrive at:-
(19.24)

tr((g�1dg)2k+1) = (2k + 1)i2k sin2k(�(t)) tr

��U�10

dU0
dt

+ U�1 dU
dt

�
dt(dI)2k

�
= �2(2k + 1)i2k+1 sin2k(�(t)) cos(�(t))�0(t)dt tr

�
I(dI)2k

�
+ dIT2k(I):

(I think!) Here the exact form comes from the terms with no `I' factor. It looks as
though I have not made a good choice of normalization here, as regards the i's for
a start.

Exercise 15. So, it remains to work out the constants here after integration, i.e.

(19.25) C2k = �2(2k + 1)i2k+1
Z �

0

sin2k(�) cos(�)d�

and to insert these into the formula for the odd Chern character to see whether we
do indeed recover the even Chern character!

Then look at the diagrams (18.18) and (18.19) and conclude what happens to
the Chern character under the periodicity maps.
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20. Lecture 17: Isotropic calculus and looping sequence
Monday, 13 October

I am including here more detail (and may add even more later) than I will give in
the lecture where I will assume some familiarity with pseudodi�erential operators.
In fact, in the lecture, I started at (20.27) and tried to explain the nature of the
space in the middle that we need to construct { and then talked a little about the
isotropic calculus (the case � = 1 of what follows) and the corresponding group.

Earlier, I worked out the product formula for semiclassical families of smoothing
operators, in terms of their `renormalized' kernels, a�(t; t

0) = ��nF (�; 12�(t+ t
0); (t�

t0)=�) where F is Schwartz on R2n and smooth in �: From (10.5) the product is

(20.1) H(�; t; s) =

Z
Rn

F (�; t+
�2

2
(r +

1

2
s);

1

2
s� r)G(�; t+ �2

2
(r � 1

2
s); r +

1

2
s)dr:

The `full symbol', or Weyl form of this product is obtained by taking the Fourier
transform in s and using the Fourier inversion formula:

(20.2) Ĥ(�; t; �) = (2�)�2n
Z
R2n

Z
R2n

F̂ (�; t+
�2

2
(r +

1

2
s); �1)e

i( 12 s�r)�1

� Ĝ(�; t+ �2

2
(r � 1

2
s); �2)e

i(r+ 1
2 s)�2e�i�sdrdsd�1d�2:

Introducing t1 = t + �2

2 (r +
1
2s) and t2 = t + �2

2 (r � 1
2s) in place of r and s as

variables of integration, so r + 1
2s = 2(t1 � t)=�2 and r � 1

2s = 2(t2 � t)=�2 and
drds = dt1dt2; gives

(20.3) Ĥ(�; t; �) = (2�)�2n
Z
R2n

Z
R2n

F̂ (�; t1; �1)Ĝ(�; t2; �2)

� exp

�
2i

�2
�
!(t1 � t; �1 � �; t2 � t; �2 � �)

��
dw1dw2;

!(t1; t2; �1; �2) = t1 � �2 � t2 � �1; dw = dtd�:

Here ! : R2n �R2n �! R is the standard (antisymmetric) symplectic form on R2n

and dw is the corresponding (Lebesgue) volume form on R2n: In fact the formula
makes sense for an arbitrary symplectic vector space, W; i.e. is invariant under the
application of the same symplectic transformation in all three copies of R2n: Thus
it can be written

(20.4) h(�; w) =M(f; g)(�; w) = (2�)� dimW

Z
W

Z
W

f(�; w1)g(�; w2)

� exp

�
2i

�2
�
!(w1 � w;w2 � w)

��
dw1dw2;

M : C1([0; 1];S(W ))� C1([0; 1];S(W )) �! C1([0; 1];S(W )):

Consider various `symbol spaces' associated to Rp; and ultimately any vector
space. First the Fr�echet topologies on `symbols with bounds' on Rp; namely

(20.5) kakm;k = sup
(t;�)2Rp;j�j�k

k(1 + jzj)�m+j�jjD�
z aj

is a sequence of norms. Denote by Sm1(Rp) the subspace of C1(Rp) on which all
these norms are bounded then
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(1) For each m; Sm1(Rp) is a Fr�echet space, increasing with m: In particular
these are complete metric spaces.

(2) S(Rp) is dense in Sm1(Rp) with respect to the topology of Sm
0

1 (Rp) for any
m0 > m:

(3) Pull back gives an action of GL(p;R) on these spaces, which therefore make
sense on any �nite dimensional vector space.

(4) Consider the quadratic compacti�cation qRp of Rp; with quadratic boundary
de�ning function �2q (e.g. �2q = (jzj2 + 1)�1: This is a compact manifold
with boundary which is di�eomorphic to a ball and has interior canonically
di�eomorphic to Rp;

(20.6) Q : Rp �! q
Rp:

It is de�ned to have the property
(20.7)

Q�C1(qRp) =
�
u 2 C1(Rp); u = ~u(

1

jzj2 ;
z

jzj ) in z 6= 0; ~u 2 C1([0;1)� Sp�1)	:
The quadratic compacti�cation is invariant under linear isomorphisms, i.e.
the action of GL(p;R) on Rp extends to act as di�eomorphisms on qRp:

(5) Similarly the radial compacti�cation, Rp; with boundary de�ning function
� (e.g. � = �q) is a compact manifold with boundary, again di�eomorphic
to a ball, with compactifying map giving a commutative diagram of smooth
maps

(20.8) Rp
R //

Q !!C
CC

CC
CC

C Rp

�}}{{
{{
{{
{{

qRp

with � a parabolic blow-down map for the boundary. The analogue of
(20.7) is

(20.9)

R�C1(Rp) = fu 2 C1(Rp); u = u0(
1

jzj ;
z

jzj ) in z 6= 0; u0 2 C1([0;1)� Sp�1)g:

The radial compacti�cation is again invariant under invertible linear transformations
and in addition translations on Rp lift to be smooth on it.

(6) Then (with the pull-back maps suppressed)

(20.10) ��mq C1(qRp) � ��mC1(Rp) � Sm(Rp)

are linearly invariant.
(7)
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Theorem 5. The bilinear formM de�nes continuous bilinear maps, consistent
under the natural inclusions,

(20.11)

M : C1([0; 1]; ��mq C1(qW ))� C1([0; 1]; ��m
0

q C1(qW ))

�! C1([0; 1]; ��m�m
0

q C1(qW ))

M : C1([0; 1]; ��mC1(W ))� C1([0; 1]; ��m
0C1(W ))

�! C1([0; 1]; ��m�m
0C1(W ))

M : C1([0; 1];Sm1(W ))� C1([0; 1];Sm
0

1 (W )) �! C1([0; 1];Sm+m0

1 (W )):

Note that this `consistency' is the reason for introducing the spaces Sm:
The map in the last line is de�ned by density from C1([0; 1];S(R2n); when
m and m0 are both increased by � > : Then the map itself follows by
restriction (and of course has to be shown to be continuous). Then the
other two maps are by restriction { when f and g are in the appropriate
space from (20.10) then so is M(f; g) and it depends continuosly on them
in the stronger topology.

Proof. Not included for the moment { ultimately it can be proved by some
form of the lemma of stationary phase. Much more is proved in the paper
of H�ormander [4]. There are other sources which are maybe a bit more
accessible. �

(8) The corresponding associative �ltered algebras will be denoted 	m
qisy(W );

	m
isy(W ) and 	m

1-isy(W ): Note that for a symplectic vector space these are
not naturally algebras of operators, just algebras. However, in the case of
W = R2n they are all operators on S(Rn) and then 	m

qiso(R
n) = 	m

qisy(R
2n)

etc. Moreover the action on S(Rn) extends and restricts, much as for the
product itself to give

(20.12)

	m
qiso(R

n)� ��kq C1(qRn) �! ��k�mq C1(qRn);

	m
iso(R

n)� ��kC1(Rn) �! ��k�mC1(Rn);

	m
1-iso(R

n)� Sk1(Rn) �! Sk+m1 (Rn):

(9) The various algebras of isotropic pseudodi�erential operators are what we
get by setting � = 1 (or up to invertible linear change of variable, any other
� > 0): The `classical' space of isotropic pseudodi�erential operators have
a leading symbol map

(20.13) �m;iso : 	
m
iso(R

n) �! C1(S2n�1; (d�)�m)

which should be thought of as a section of a certain trivial line bundle over
the sphere at in�nity { namely the products ��mf; f 2 C1(R2n modulo
the ��m+1f): This symbol is multiplicative in the obvious sense

(20.14) �m+m0;iso(AB) = �m;iso(A)�m0;iso(B); A 2 	m
iso(R

n); B 2 	m
iso(R

n)

and gives a short exact sequence

(20.15) 	m�1
iso (Rn)

� � // 	m
iso(R

n)
�m;iso// // C1(S2n�1; (d�)�m):
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(10) For the quadratic isotropic algebra we get the same thing, with an improved
`error estimate'

(20.16) 	m�2
qiso (Rn) �

� // 	m
qiso(R

n)
�m;qiso// // C1(S2n�1; (d�q)

�m):

For the corresponding algebras on a symplectic vector space the same
properties hold, now with R2n replaced by W and the sphere S2n�1 replace
by the `sphere of W ' which is SW = (W n 0)=R+; so for instance (20.16)
becomes the exact sequence

(20.17) 	m�2
qisy (W ) �

� // 	m
qisy(W )

�m;qiso// // C1(SW ; (d�q)
�m):

(11) The adjoint (or transpose) is an involution on each of the algebras described
above and it follows by duality that 	m

1-iso(R
n) acts on S 0(Rn):

(12) We are mostly interested below in the algebras of operators of order 0: For
these the symbol can be recovered in part by noting that

(20.18) 	0
iso(R

n) : C1(Rn) �! C1(Rn)

where C1(Rn) � S 0(Rn): Then restriction to the sphere at in�nity gives

(20.19) u 2 C1(Rn); A 2 	0
iso(R

n); (Au)
��
Sn�1 = �iso;0(A)

��
[(Rn;0)]

u
��
Sn�1

which allows the symbol on the equatorial sphere, � = 0; to be recovered.
To get the symbol at all other points of the sphere, except at the `vertical
subsphere' t = 0; one can take a real quadratic (homogeneous) polynomial

q: Then q(t)� q(t0) = (t� t0) � L( t+t02 ) where L is a linear map. There is a
mapping property extending (20.18):

(20.20) 	0
iso(R

n) : eiqC1(Rn) �! eiqC1(Rn)

and then as in (20.19)

(20.21) (e�iqAeiqu)
��
Sn�1 = �iso;0(A)

��
[(Rn;LRn)]

u
��
Sn�1 8 u 2 C1(Rn):

From this one can recover the symbol everywhere on the sphere at in�nity
by continuity.

(13) The Fourier transform is also an isomorphism on the space of isotropic
operators, thus

(20.22)
AF v̂ = f̂ if Av = f; v 2 S(Rn); A 2 	m

iso(R
n)

=) AF 2 	m
iso(R

n); �m;iso(AF (t; �) = �m;iso(A)(�;�t):
(14) For the full semiclassical (and `classical') there is both a conventional symbol

as described above and a semiclassical symbol reduced to the previous case
for smoothing operators { I will discuss these more later.

(15) There is yet another generalization of the isotropic algebras that we need
to consider. Namely we want to allow them to `take values in (isotropic)
smoothing operators. This is not so hard. I will denote the corresponding
algebras of operators in the form 	0;�1

qiso (Rn;Rp): These are smoothing in
the last variables. The kernels can be thought of as just Schwartz maps

(20.23) k 2 S(R2p; 	0
qiso(R

n):
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The composition is then given by composing in the isotropic algebra and
then in the usual way as smoothing operators

(20.24) k � k0(�; z; z0) =
Z
Rp

k(�; z; z00)k0(�; z00; z0)dz00:
Make sure you have a picture of how these isotropic operators, especially the ones

of order zero `work'. For the moment look at (20.24) and take n = 1; and for the
picture p = 1: Then the kernels can be consider as distributions on R2 � R2 where
everything is Schwartz in the last two variables. Recall that we are considering
the partial Fourier transform of the Schwartz kernels, so k = k(t; � ; z; z0) where
the product is given by (20.4) (or (20.3)) in the t; � variables with � = 1: So the
function k is C1 on the product of two disks and vanishes to in�nite order at the
boundary of the second (with the z; z0 variables).

Picture: Product of two disks.
The operator product takes two such functions and composes then { the composition

in the second disk(s) is usual composition of Schwartz-smoothing operators. The
composition in the �rst disk(s) is really the same, but we have taken a partial Fourier
transform of everything and then this same product extends to C1 functions up
to the boundary. Both parts of the product are non-commutative of course, but at
a point approaching the boundary in the �rst fact the product becomes more and
more commutative and, as I will discuss later, the Taylor series at the boundary of
the product only depends on the Taylor series of the factors. So the principal symbol
{ on in t; � { is a function on the circle with values in the smoothing operators on
R (or just as well Rp) and composes as loops:-

(20.25) �0;qiso(AB) = �0;qiso(A)�0;qiso(B)

in C1(S; 	�1iso (Rp); for A;B 2 	0;�1
qiso (R;Rp):

So, let me identify the looping, or quantization sequence in terms of these
algebras. This involves three groups, two of which we are already familiar with:-

(20.26) G�1iso (R1+p) // _G0;�1
qiso (R;Rp)

�0;iso // G�1sus;iso(R
p):

In this form it is not quite exact. What precisely is the central group? It is
made up from (20.25). First consider the subalgebra of 	0;�1

qiso (R;Rp) obtained

by denanding that the (partially-Fourier-transformed) kernel k 2 C1(qR2 � R2)
{ which by assumption vanishes to in�nite order at the boundary in the second
variable { also vanishes to in�nite order at one point, N 2 qR2; on the boundary
of the �rst disk, say the North Pole (i.e. nothing interesting happens at the North
Pole). As I say, this is a subalgebra because of the Taylor-series-locality at the

boundary. Then the group _G0;�1
qiso (R;Rp) is the operators (on S(R1+p) or instance)

of the form Id+A with A of this form and invertible, with inverse of the same form.
The �rst map in (20.26) is then inclusion. The Schwartz-smoothing operators

correspond to those kernels (before and after Fourier transform) which vanish to
in�nite order at the whole boundary of the �rst disk as well as the second. The
second map is just the principal symbol { given by the restriction to the boundary in
the �rst variable (but not in the second set of variables). The identity appears here
either formally, or as it turns out corresponding to the function with is constant in
the �rst variable (if you like 1 from the Fourier transform of a delta function) and
actually the identity, i.e. �(z � z0); in the second variable. Anyway, it is just the
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identity in the second variables. Thus the image of an element Id+A of the central
group is Id+s0;iso(A) which is the identity plus a function on the circle, 
at at N;
with values in the Schwartz-smoothing operators on Rp and as such invertible! This
gives the sequence (20.26).

Now, why go to all the gymnastics of the 
atness at N? Well, otherwise we would
not get the loop group out on the right for one thing. More seriously

Theorem 6. The central group in (20.26) is weakly contractible and the range is
precisley the component of the identity in the loop group.

Even when we adjust the targent group the resulting sequence is not exact, but
only for a silly reason. Namely we have not taken into account the higher terms
in the Taylor series at the boundary. When we do this we get the looping sequence
which is an exact sequence of groups:-

(20.27) fIdg �! G�1iso (R1+p) �! _G0;�1
qiso (R;Rp)

�0;iso�!
G�1sus �;iso(R

p)
ind�! Z �! f0g:

Here G�1sus �;iso(R
p) is a `star product extension' or formal quantization of the original

group G�1sus;iso(R
p): Namely it consists of formal power series in a formal variable �

(which can be identi�ed with the de�ning function for the boundary of qR2) where
the leading term is an element of the suspended group:-

(20.28) G�1sus �;iso(R
p) 3 a =

X
j�0

�jaj ; a0 2 G�1sus;iso(Rp); aj 2 	�1sus;iso(Rp); j � 1

and the product is given by di�erential operators { more about this later! However,
it is important to note that invertibility of such a formal power series is just
invertibility of the leading term and the lower order terms are just `a�ne junk'
from a topoligical point of view { they can be deformed away. However, as we shall
see, from an analytic viewpoint they turn out to be important.
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21. Lecture 18: The determinant bundle
Wednesday, 15 October

Even though I have not carefully explained everything that goes into the looping
sequence let me proceed to use it to de�ne the determinant bundle { and then see
what more we need to do. Here I will proceed in a way that is closely parallel to
the content of Section 7. There I used the delooping sequence to (re-)construct
the determinant on G�1: Let me recall that construction now tying in some of the
things that have come up in the meantime. The delooping sequence is

(21.1) G�1sus (R
k) // ~G�1sus (R

k)
R // G�1(Rk):

The clutching map in (18.16) has the property

(21.2) cleo
�

�
1

2�i

Z
R

tr(g�1
dg

dt
)dt

�
=

1

2
tr(I � 
1) = ind :

To see this, just compute away:-

(21.3)

cleo
�

�Z
R

tr(g�1
dg

dt
)dt

�
=

Z �

0

tr((cos��i sin�I)(� sin� + i cos�I)

� (cos�� i sin�
1)(� sin� + i cos�
1)d�

= i

Z �

0

tr(I � 
1)d� = (2�i) ind

where all the non-trace class terms consisently cancel out. Hence we can say
that this is the same `index functional' on G�1sus (R

k) as is represented by ind on
H�1(Rk): This will be more fully justi�ed by Fedosov's index theorem a bit later.

So we have de�ned the �rst vertical map in

(21.4) G�1sus (R
k) //

ind

��

~G�1sus (R
k)

R //

~�

��

G�1(Rk)

det

��
Z // C

exp(2�i�) // C�

and { we know that it maps into Z: The second vertical map, ~� we de�ned by
regularization { or extension { of the index functional. Namely we just used the
`same' de�nition but now on the `one-end-open' loops

(21.5) ~�(~g) =
1

2�i

Z
R

tr(~g�1(t)
d~g(t)

dt
)dt:

This still makes sense since d~g(t)=dt 2 S(R; 	�1(Rk)) because of the 
atness
condition on these half-open loops. Now, we can no longer see that this extended
functional takes integral values { indeed it doesn't { but we checked directly that
exp(2�i~�) descends to the quotient and there it satis�es all the properties we want
of the determinant, and reduces to it under �nite rank approximation. In particular
one crucial thing is that ~� is a log-character on the central group

(21.6) ~�(~g~h) = ~�(~g) + ~�(~h):
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Exercise 16. (For the enterprising) Show that the sequence obtained as the kernels
of the maps in (21.4):
(21.7)

fIdg // G�1sus;ind=0(R
k) // ~G�1sus;~�=0(R

k)
R // G�1iso;det=1(R

k) // fIdg
is a reduced classifying sequence for K-theory { meaning it is exact, that the central
group is weakly contractible and that the outer groups each just have the bottom
homotopy group removed.

So, we want to do the `same thing' but one step up in complexity. Be warned,
I am planning to do the next step up too! Now we start with the determinant at
the beginning of the looping sequence {

(21.8) C� C

��
G�1iso (R1+p) //

det

OO

_G0;�1
qiso (R;Rp)

�0;iso �// G�1sus �;iso;ind=0(R
p)

Here I have added a C and map to the central group and the �nal group is supposed
to be the image of the `full' symbol map (which now includes the whole Taylor series
at the boundary, hidden in the ~�): The C is supposed to represent the trivial line

bundle, i.e. the top space is really C � _G0;�1
qiso (R;Rp) but this is a bit messy to

write out; C is of course the �bre so it stands here for the trivial line bundle. The
determinant induces a relation on this space

(21.9) C� _G0;�1
qiso (R;Rp) 3 (z;A) �det (z det(g); Ag) 2 C� _G0;�1

qiso (R;Rp)

if g 2 G�1iso (R1+p):

This relation is multiplicative, because the determinant is:-
(21.10)

(z;A) �det (z det(g); Ag) �det ((z det(g)) det(h); (Ag)h) = (z det(gh); A(gh)):

The identifying maps in (21.9) are linear in z so the quotient is a one-dimensional
complex vector space for each � 2 G�1sus �;iso;ind=0(Rp) :
(21.11) L� = C�AG�1iso (R1+p)

� �det if �0;iso �(A) = � 2 G�1iso (R1+p)

which is independent of the choice of A mapping to �: Note that the exactness of
the diagram (21.8) means that the inverse image of any point � 2 G�1sus �;iso;ind=0
(accepting for the moment that this is the image) is of the form AG�1iso (R1+p) for
any particular A in the preimage.

This leads to the full diagram

(21.12) C� C

��

�det // L

��
G�1iso (R1+p) //

det

OO

_G0;�1
qiso (R;Rp)

�0;iso � // G�1sus �;iso;ind=0(R
p)

We need to be a little careful of the sense in which this is a line bundle, because local
triviality isn't so clear. However, except for in�nite-dimensional e�ects this is the
construction of the vector bundle associated to a representation (the determinant)
of the structure bundle of a principal bundle. To discuss local triviality we need to
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consider the Fr�echet topology on the base, etc. However let me state it as a result
before we press on to prove this, and more.

Claim 1. The determinant function on the structure group in (21.8) induces the
(locally trivial) determinant line bundle over the quotient group.

I hope the relation of this line bundle to Quillen's original de�nition from [10] will
become abundantly clear as we proceed; for now it may seem rather distant. In
fact what we are constructing here is a universal determinant bundle. One thing I
want to come back to and re�ne is the following

Claim 2. The determinant bundle, L; over G�1sus �;iso;ind=0(Rp) is universal for

smooth (complex line) bundles over smooth compact manifolds { i.e. any such
smooth line bundle is isomorphic to the pull-back of L under a smooth map into
G�1sus �;iso;ind=0(R

p) (hence de�ning an even K-class). This much is fairly easy.
In fact the same is true for a bundle with connection, it is isomorhic with its
connection, to the pull-back of L with the connection constructed below.

Note the notion of a Claim here is that I believe it to be true but probably do not
have a complete proof at hand { so there is always a danger it is not quite right!

Exercise 17. There is a similar construction to this one over the classifying space
H�1(Rk) due I believe to Graeme Segal. This can be found in [9], in the context
of trace class operators and groups. In the smooth case we can proceed as follows,
and you might like to �ll in the details. We have shown that in terms of the action
by conjugation on the zero index involutions

(21.13) H�1ind=0(Rk) = G�1(Rk;C2)=
�
G�1(Rk)�G�1(Rk)

�
where the two smaller groups are acting on the �rst and second components diagonally.
So, take the �bre at an involution to be

(21.14)

LI =
�
C� fG 2 G�1(Rk;C2); I = G�1
1Gg

�
= �det;

(z;G) �det (det(g1)
det(g2)

z; (g1 � g2)G) 8 gi 2 G�1(Rk); i = 1; 2:

Check that this is a line bundle { linearity and local triviality. Note that if we
took the product of the determinants instead of the quotient it we would produce
a trivial line bundle (since the determinants are consistent with that on the big
group). You could even try to see that the pull-back of the determinant line bundle
over the index zero component of G�1sus;iso(R

k;C2) under cleo in (18.16) is isomorphic

to the bundle from (21.14) { it is. Report back any success here, since I haven't
done this explicitly myself myself (yet). Note that there is a subtlety, since the line
bundle above is de�ned on the � extension of the image group, so you need to do
something about that �rst for this last part. You can see what to do about this, at
least in part, from the discussion below.

So, apart from proving the claim above, I want to do a little more { and this is
where the � part of the quotient group starts to come into its own. The analogy
between the treatment of the determinant via the delooping sequence and the
determinant bundle might seem somewhat forced. To make it more apparent that
they really are closely related, consider the problem of construction a connection
on L in (21.12). That is, we want to know how to di�erentiate sections. One can
construct a connection using local trivializations, but here we can do it directly
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because of the quotient construction of the bundle itself. Namely all we need is a
connection on the trivial bundle over the `big group' which descends to a connection
on the quotient. Since the trivial bundle is, ahem, trivial, any connection on it is
the sum of the trivial connection, d; and a 1-form:

(21.15) r = d� 
; 
 2 C1( _G0;�1
qiso (R;Rp); �1):

So what do we need for this connection to `descend' to a connection on L over
G�1sus �;iso;ind=0(R

p)? There are outstanding issues of local triviality etc., but basically
we need to know that when applied to the lift of a local section of L to the trivial
bundle over _G0;�1

qiso (R;Rp) we get the lift of a section. A lifted section, which is
just a complex-valued function, must have the transformation law along a �bre of
_G0;�1
qiso (R;Rp) given by

(21.16) e(Ag) = det(g)e(A) 8 g 2 G�1iso (R1+p)

so what we need is that

(21.17) det(g)�1d det(g)� 
(Ag) = 0 on AG�1iso (R1+p)

for all A: So, how do we construct such a 
? Basically, (21.17) just says that
restricted to a �bre,

(21.18) 
 = d log det = tr(g�1dg):

So the `obvious' thing to do is proceed as we did for ~�; somehow regularized the
formula on the right to get a 1-form on the central group. This we will do as
follows:-

Proposition 19. The trace functional on 	�1iso (Rp � Rk) has an extension to a
continuous linear functional

(21.19) Tr : 	0;�1
iso (Rp : Rk) �! C

by Hadamard regularization of the integral and

(21.20) 
 = �Tr(~g�1d~g) 2 C1(G0;�1
qiso (R;Rp); �1))

gives a connection on the trivial bundle through (21.15) which descends to L; the
curvature of this line bundle is the 2-form part of the Chern character.

Question 3. What does the line bundle L represent { why did Quillen call it the
determinant line bundle?

Answer 3. The determinant line at any point consists of all the possible, or perhaps
one should say reasonable, values of the determinant for the operator (or object)
in question. If the determinant bundle were trivial then it would be possible to
give a global de�nition of the determinant; if not (which is the case on the whole
space) then not. One thing I hope to do in the sequel is to �nd a big subgroup on
which the determinant bundle is trivial { although at this stage I am still not quite
convinced that it exists in a useful form.
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22. Lecture 19: Riesz regularization
Friday, 17 October

Today, let me go back and �ll in some of the gaps, or perhaps just paper over
some of the cracks.

First let me say a little more about symbols. I will probably not go through all of
this in the lectures but it may help clarify things a bit to separate the symbol spaces
from Rn: (Or it may not, depending on your tendencies!) From our point of view
symbols are the same things as `conormal functions at a boundary'. Suppose we
have a compact manifold with boundaryM ; in the case at hand this is a ball { say Rp

or qRp: Such a manifold comes equipped with a space of smooth functions C1(M)
with its Fr�echet topology of the uniform norm on derivatives over compact subsets of
coordinate neighbourhoods. Since it is a manifold with boundary there is a �ltration
by ideals which vanish to higher and higher order at the boundary. In particular
there is always a boundary de�ning function 0 � � 2 C1(M); @M = f� = 0g;
d� 6= 0 on @M: Then the boundary ideal is

(22.1) J (@M) = �C1(M) = fu 2 C1(M);u
��
@M

= 0g:
The successive ideals are the powers, in the sense of �nite spans of products

(22.2)
C1(M) � J (@M) � J 2(@M) � � � � � J k(M);

_C1(M) = \kJ k(M):

We can also add the negative powers, or `Laurent functions' at the boundary and
then think of

(22.3) ��kC1(M) = fu 2 C1(M n @M); �ku 2 C1(M)g
as the classical (perhaps more correctly `1-step-classical') symbols of order k; so
elements of J k(@M) are classical symbols of order �k; rather perversely.

Now, we can interpolate with the classical symbols of any complex order by
taking complex powers of �; �z = exp(z log �) 2 C1(M n @M) and then de�ne

(22.4) �zC1(M) = fu 2 C1(M n @M); ��zu 2 C1(M)g:
These are the classical symbols of complex order z: Notice that the only inclusions
we have are

(22.5) �z+kC1(M) � �zC1(M) 8 k 2 N0:
The topology on �zC1(M) is the topology of C1(M) after division by �z: The
common subspace of all these spaces is the `Schwartz space' of smooth functions
vanishing to in�nte order at the boundary:-

(22.6) _C1(M) � �zC1(M) is a closed subspace.

So there is no hope of it being dense!
To arrange density we introduce the `symbol (or conormal) spaces with bounds'.

Let Vb(M) be the space of smooth vector �elds on M which are tangent to the
boundary { so in local coordinates x = �; y1; : : : ; yn�1; dimM = n + 1; near the
boundary, Vb(M) is spanned over C1 coe�cients by x@x; @yj : Then set

(22.7) As(M) = fu 2 C1(M);V1 : : : Vk�
�su 2 L1(M) 8 Vi 2 Vb(M); 8 kg:
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This again is a Fr�echet space with supremum norms { Vb(M) is �nitely generated
as a module over C1(M) so there really are only countably many conditions here.
In fact

(22.8) ��t : As(M) �! As+t is an isomorphism 8 t; s 2 R:
Note that �z 2 ARe z(M) so there is only a real, not a complex, order here and

(22.9) �zC1(M) � As(M); s � Re(z):

So, now the density result is easy enough. Take a smooth function � 2 C1(R) with
 = 1 in x < 1

2 ;  = 0 in x > 1 and consider  � = (1��)(�=�) 2 C1(M) for � > 0:

This vanishes for � < 1
2� and is eventually equal to 1 on any compact subset of the

interior of M as � # 0: Then
(22.10) u 2 As(M) =)  �u! u in As0(M); s0 < s:

In particular _C1(M) is dense in �zC1(M) in the topology of As(M) for any s <
Re(z):

The algebra of isotropic pseudodi�erential operators discussed above is a non-
commutative product on the �ltration of Fr�echet spaces As(qR2n) for any n that
is, it is a consistent associative product

(22.11) As(qR2n)�At(qR2n) �! As+t(qR2n) 8 t; s 2 R
which restricts to de�ne products

(22.12) �zC1(qR2n)� �z0C1(qR2n) �! �z+z
0C1(qR2n) 8 z; z0 2 C:

You might ask: How can one characterize �zC1(M) insideAs(M); which contains
it for s < Re(z)?

Proposition 20. For a compact manifold with boundary there exists a vector �eld
R 2 Vb(M) such that Rf � f modulo J 2(M) for all f 2 J (M) and then for any
s < Re(z);

(22.13) �zC1(M) =

fu 2 As(M); (R�z)(R�z�1)(R�z�2) : : : (R�z�k)u 2 As+k(M) 8 k 2 N0g
Proof. Is not very hard! �

Following the line of thought related to �z for a boundary de�ning function
�; I will next consider Riesz-regularized integrals over M { which is a compact
manifold with boundary. Suppose 0 < � 2 C1(M ; 
) is a smooth density. In
case you don't know about densities I will add some exercises so that you can
familiarize yourself with them. For the moment just agree that they are objects
which in any local coordinates give a smooth (positive) multiple of the Lebesgue
measure in coordinates and that under change of coordinates the factor changes by
the absolute value of the Jacobian determinant. Alternatively you can assume that
M is oriented (which in our case of the balls it is) and that � is a smooth volume
form which is positive, in the sense that it de�nes the orientation. Either way, this
means that

(22.14) C1(M) 3 u 7�!
Z
M

u� 2 C
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is a continuous linear map on the Fr�echet space C1(M): In fact it extends by

continuity, and hence unambiguously, from the subspace _C1(M) to

(22.15)

Z
M

�� : As(M) �! C; 8 s > �1:

The limit at s = �1 is just the non-integrability of x�1 with respect to dx near 0
on the line.

So, how can we extend this functional? Well, the answer really is that one cannot
do it on the spaces As(M) for s � �1: However, one can extend the integral to

(22.16)

Z
M

� � : ��k(M) �! C; k 2 N:

Lemma 24. If u 2 ��k(M) and � 2 C1(M ; 
) then

(22.17) F (z; u�; �) =

Z
M

�zu� is holomorphic in Re z > k � 1

and has a meromorphic extension to Cnfk�Ng with only simple poles at the points
k � N: The residue at z = 0 (if any) is independent of the choice of �:

The residue at zero is the `boundary integral' or `residue integral' and will be
denoted

(22.18)
R
Z
u� = lim

z!0
zF (z; u�; �):

The regularized value at z = 0 is the regularized integral

(22.19)

Z
M

u� = lim
z!0

�
F (z; u�; �)� 1

z

R
Z
u�):

In contrast to the residue integral, this functional does depend on the choice of �
if k � 1: Note that these are both functionals on u� 2 ��kC1(M ; 
) which are
consistent on restriction from ��kC1(M ; 
) to ��k+1C1(M ; 
):

Proof. For any k holomorphy of F (z; u�; �) in Re z > k�1 follows from the absolute
convergence of the integral de�ning it in (22.17), the fact that any one deriviative
with respect to Re z or Im z is also absolutely convergent, since it only introduces
another j log �j of growth, and the holomorphy of the integrand. Now, we can split
the integral into a part near the boundary and a part away from the boundary
using �:-

(22.20)

F (z; u�; �) = F 0(z; u�; �) + F 00(z; u�; �);

F 0(z; u�; �) =

Z
�<�

�zu�; F 00(z; u�; �) =

Z
�>�

�zu�

where � > 0 is �xed and is chosen so small that there is a smooth product
decomposition, of M; in � � � : f� � �g ' [0; �]�� @M: The term F 00 is entire in z;
by the same reasoning as above. For the second term we can write the product
(22.21)

u� = (

LX
j=0

�j�ku0j + ��k+L+1vL)d�d�@M ; vk 2 C1([0; �]� @M); uj 2 C1(@M)

for any L � k: This comes from the product decomposition of the measure u�;
into the product of d�; a smooth measure, �@M ; on @M and function ��ku0 with
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u0 2 C1([0; �]� @M): Then (22.21) is just the Taylor series expansion up to order
L:

The remainder term here makes a contribution to F 0 of the form

(22.22) F 0L(z) =

Z �

0

�z+1+L�kv0kd�d�@M which is holomorphic in Re z > k�L�2
by the same reasoning. Thus in this half-space, which of course increases with L;

(22.23) F 0(z) = F 0L(z) +

LX
j=0

(z + j � k + 1)�1�z+j�k+1
Z
@M

u0jd�@M :

Since �z is entire, this shows that F 0 only has simple poles at the points z 2 k �N
in the half-plane Re z > k�L: Thus indeed F (z; u�; �) is meromorphic as claimed.

So, it remains to show that the residue at z = 0 { which of course can only be
non-zero if k 2 N { is independent of the choice of �: The other residue-functionals
are not independent in this way. Any two boundary de�ning fucntions are positive
smooth multiples of each other so a second can be connected to the �rst by a smooth
curve

(22.24) �s = ((1�s)1+sa)� = A(s)�; 0 < a 2 C1(M); 0 < A 2 C1([0; 1]s�M):

Inserting this into the de�nition of F we get

(22.25) F (z; u�; �s) =

Z
M

�zA(s)zu�

in the half-plane of holomorphy.
The arguments above now apply uniformly in s 2 [0; 1]; with the extra, entire,

factor of A(s)z: It follows by di�erentiation that all residues and the analytic
continuation are smooth in s: Now

(22.26)
d

ds
F (z; uv; �s) = z

Z
M

�z
dA(s)

ds
A(s)z�1uv:

The same argument regarding meromorphy can now be applied to the integral on
the right, so it can only have a simple pole at z = 0: The extra factor of z ensures
that there is no such pole, so the residue of F (z; uv; �s) at z = 0 is constant in s
and hence indeed independent of the choice of �: �
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23. Lecture 20: Trace defect formula
Monday, 20 October, 2008

Reminder. I am currently examining the algebra 	0;�1
qiso;iso(R

k;Rp) to establish, and

check various things about, the looping sequence (20.27) and hence the construction
of the determinant bundle in (21.12).

Last time I discussed the Riesz regularized integral of classical symbols on any
compact manifold with boundary and the residue integral at the boundary. Let us
apply this discussion to de�ne a regularized trace functional and a residue trace
functional on isotropic pseudodi�erential operators

(23.1)
Tr : 	m;�1

qiso;iso(R
k;Rp) �! C;

TrR : 	m;�1
qiso;iso(R

k;Rp) �! C; m 2 Z:
The �rst is supposed to be an extension of the trace functional which is given on
smoothing operators by

(23.2) Tr : 	�1iso (Rk+p) 3 a 7�! (2�)�k
Z
R2k

trRp(F (t; �))dtd�:

Here the two parts of the space are treated di�erently as far as the kernel is
concerned, with Weyl coordinates and Fourier transform used in the �rst part
(23.3)

F (t; �; z; z0) =

Z
Rk

e�is��f(t; s; z; z0); a(Z;Z 0; z; z0) = f(
Z + Z 0

2
; Z � Z 0; z; z0):

Passing to 	k;�1
qiso;iso(R

k;Rp) amounts to replacing the Schwartz condition by the

partially-Schwartz space �
�m=2
q C1(qR2k;S(R2p): Now, in terms of this quadratic

compacti�cation to a ball we know that �q = (1+ j(t; �)j2)�1 is a boundary de�ning
function { which is to say that x = R�2 is also a boundary de�ning function near
the boundary. The symplectic volume form is therefore

(23.4) jdtd� j = R2k�1jdRd�j = 1

2
x�k+1jdxd�j =)

jdtd� j = ��k+1q �; 0 < � 2 C1(qR2k; 
):

Thus the symplectic volume form is the product of a smooth non-vanishing volume

form and an element of ��k+1q C1(qR2k): Only in the case k = 1 is this a smooth

volume form. Thus we can use the Riesz regularized index, choosing4 �
1
2
q as the

de�ning function, to de�ne
So we could just take the regularized integral of the `symbol' (which is the whole

operator) and this would give a regularized trace. However, it is better to follow
an idea which comes originally from Seeley [11] but was e�ectively improved by

Guillemin [3]. Namely we observe that �
z=2
q 2 	�zqiso(Rk) { with no stabilization and

remembering the annoying 1
2 's. So we can consider the operator product, with A :

(23.5) �z=2q �A 2 	s+m;�1
1-iso (Rk;Rp); s > �Re z;

4This business about the square-roots and quadratic de�ning functions is quite irritating; I
will have to think of a clearer course of action
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where I am using the fact, which I forgot to include earlier, that the stabilized
operators are a module over the ustabilized ones (since the unstabilized ones just
act `as a multiple of the identity' in the second variables).

I have just claimed that the composite is an operator with symbol-with-bounds
in (23.5). Of course a lot more is true, since we know that the product is given by
a bidi�erential operator up to any preassigned order5

(23.6)

A �B = QN (A;B) +Q(N)(A;B); QN (A;B) =
X

j�j+j�j�N

c�;�D
�A �D�B;

Q(N) : As(R2k)�At(R2k) �! As+t+2N (R2k) 8 s; t 2 R;
where we actually know the coe�cients. The `remainder term' is continuous { as is
the explict expansion. The same formula applies to the suspended algebra provided
we interpret the product as the composition of smoothing operators.

Applying this to the product in (23.5) we conclude that as a function

(23.7) �z=2q �A = �z=2q PN (z; �q; A) +Q(N)(z)

where the leading term is a di�erential operator applied to A and a polynomial in
z while the remainder term is holomorphic as a map

(23.8) fRe z > Lg �! 	m�2N�L;�1
1-iso (Rk;Rp):

Lemma 25. For any A 2 	m;�1
qiso;iso(R

k : Rp)

(23.9) Tr(�z=2q �A)
is meromorphic in the complex plane with at most simple poles at z 2 m+ n� N:
Proof. The result follows in Re z > L for any L by using the splitting (23.7) for
large enough N; applying the discussion of Riesz regularization of the integral to
the �rst part and the holomorphy in (23.8) to the second part. �

So, now we can de�ne

(23.10)

TrR(A) = lim
z!0

zTr(�z=2q �A);

Tr(A) = lim
z!0

�
Tr(�z=2q �A)� 1

z
TrR(A)

�
as respectively the residue and the regularized value of the analytic continuation
of the trace to z = 0: The residue trace was de�ned in the case of the usual
pseudodi�erential algebra on a compact manifold by Wodzicki [12].

Proposition 21. If the order of A is less than �2k then Tr(A) = Tr(A): The
residue trace is a trace functional, TrR([A;B]) = 0; it vanishes on operators of
order less than �2k; is given explicitly by the residue integral

(23.11) TrR(A) = (2�)�k
R
Z
A!;

and the regularized trace satis�es the trace defect formula

(23.12) Tr([A;B]) =
1

2
TrR ([B; log �q]A) ; 8 A;B 2 	N;�1

qiso;iso(R
k : Rp):

5Again I should have included this earlier, I will!
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Proof. When the order of A is less than �2k; the trace of �z=2q � A is holomorphic
in a neighbourhood of z = 0: Evaluating there, �qz=2 = 1 is the identity in the

(unstabilized) algebra so indeed Tr(A) = Tr(A): Thus Tr is an extension of the
trace functional.

To compute TrR([A;B]) observe that this is, by de�nition, the residue at z = 0
of the analytic continuation of

(23.13) Tr(�z=2q � ([A;B]) = Tr([B; �z=2q ]A)� = Tr([A; �z=2q ]B)

where we have used the trace identity for Re z >> 0 and the uniqueness of analytic
continuation. Using the decomposition of the product in (23.6) the commutator
here can be written as a sum

(23.14) [B; �z=2q ] = QN (B; �
z=2
q )�QN (�

z=2
q ; B) +Q(N)(z)

where if N is large enough the second term is holomorphic and uniformly of order
less than �2k up to z = 0 after composition with A: Thus, the trace of this term
is regular at 0 so does not contribute to the residue; only the �rst two terms in
(23.14) contribute for N large enough. The leading, commutative product, term

cancels in the commutator so in every remaining term, �
z=2
q is di�erentiated at least

once. This produces a factor of z with the trace of the coe�cient having at most a
simple pole at z = 0 by the discussion above. Thus there is no pole at z = 0 and
TrR([A;B]) = 0 always.

Again if A is of order less than �2k then so is �
z=2
q � A near z = 0 where it

is holomorphic. The reside, and hence the residue trace of A; therefore vanishes.
Similarly for general A the di�erence between Tr(� � A) and the integral of the

commutative product �
z=2
q A involves all the terms in QN (�

z=2
q ; A) after the constant

term and the remainder. For N large enough, the latter can not contribute to the

residue at z = 0: All the other terms involve at least one derivative falling on �
z=2
q

so again cannot contribute to the residue trace of A: Thus (23.11) follows by the
de�nition of the Riesz regularization of the integral.

It remains to prove the trace defect formula (23.12). Following the discussion
above, especially (23.13), Tr([A;B]) is the regularized value of the analytic continuation
of the trace of the product of (23.14) and A: For large N the second term is
holomorphic near z = 0 and of low order so

(23.15) Tr(Q(N)(z)A) = Tr(Q(N)(0)A) is regular near z = 0:

However, Q(N)(z) is the `low order part of the comutator [B; �
z=2
q ]: At z = 0

�
z=2
q = 1 is the identity operator so all the leading terms vanish (since they involve
di�erentiation of 1 so this low order part also vanishes, since the whole commutator
vanishes. It follows that the right side of (23.15) vanishes at z = 0: Thus Tr([A;B])
is the regularized value at z = 0 of the analytic continuation of

(23.16) Tr
��
QN (B; �

z=2
q )�QN (�

z=2
q ; B)

� �A� :
Again, �

z=2
b is di�erentiated at least once, producing a factor of z: Thus the analytic

continuation is regular at z = 0: Writing

(23.17) d�z=2q = (
z

2

d�q
�q

)�z=2q
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it follows that if any subsequent derivative falls on the last factor then this produces
an overall factor of z2 and hence does not contribute to the regularized trace. Thus
the e�ect is the same as if all derivatives acting on the appropriate factor in QN in
(23.16) fall on log �q: That is, the regularized trace is the same as the regularized
value of

(23.18)
z

2
Tr
�
([B; log �q] � �z=2q ) �A

�
:

Again expanding out the product with A; the low order term is holomorphic { so

does not contribute { and any di�erentiation of �
z=2
q produces another factor of z

so also does not contribute. Thus the value of the integral at z = 0 reduces to the
residue trace and (23.12) follows. �

The case k = 1 is particularly simple, since then we can easily compute the right
side of (23.12). The di�culty of this computation is greater when k > 1 since the
residue trace occurs higher and higher in the Taylor series expansion of the symbol
of an element of 	0;�1

qiso;iso(R
k : Rp) as k increases.

Proposition 22. If k = 1 the trace defect formula (23.12) involves only the
principal symbols of A and B :

(23.19) Tr([A;B]) = c

Z
S

tr(
@b(�)

@�
a(�))d� = �c

Z
S

tr(
@a(�)

@�
b(�))d�;

a = �0(A); b = �0(b); A; B 2 	0;�1
qiso;iso(R;R

p):
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24. Lecture 21: Curvature and Chern class
Wednesday, 22 October, 2008

Reminder. Last time I computed the trace defect for the extension of the trace

functional to 	N;�1
qiso;iso(R

k;Rp) given by Riesz regularization. Today I want to use
this to compute the curvature of the determinant line bundle. First I have to make
sure of a few technical points, one of these is the proof that the range of the symbol
map in (20.27) is indeed the index zero component { I will use the trace defect
formula to compute the index.

Recall that 	0;�1
qiso;iso(R

k : Rp) is the space of functions with C1(qR2k;S(R2p)
with a non-commutative product. Choosing a point on the boundary of the qua-
dratic compacti�cation here { the North Pole { we can consider the subalgebra,
_	0;�1
qiso;iso(R

k : Rp); of functions that vanish in Taylor series there, so identi�ed with

(24.1)
n
a 2 C1(qR2k;S(R2p); a � 0 at fNg � R2p; N 2 @qR2k

o
:

I will probably skip the proof of the following result in the lecture. Not that it
is unimportant. However, its proof is generally similar to ones we have seen before,
although not reducible to them. In particular it makes use of the L2 boundedness
of these operators, which is signi�cant in itself (and one reason the proof is so long).

I should have used this notation before (but only on the insistence of Fr�ed�eric
Rochon am I introducting it now).

De�nition 6. A Fr�echet algebra, A; without identity, is said to be a Neumann-
Fr�echet algebra if the group of invertible elements in Id+A is open { it behaves
as if the Neumann series converges near the identity. These are often called `good'
Fr�echet algebras. Good grief! If it contains the identity then it is Neumann-Fr�echet
if the elements in a neighbourhood of the identity are invertible.

Proposition 23. The group _G0;�1
qiso;iso(R

k;Rp) of operators A 2 _	0;�1
qiso;iso(R

k;Rp)

such that Id+A has an inverse of the same form, is open in _	0;�1
qiso;iso(R

k;Rp);

i.e. this is a Neumann-Fr�echet algebra, and G�1iso (Rk+p) is a (relatively) closed
normal subgroup.

Proof. The Fr�echet topology is on _	0;�1
qiso;iso(R

k;Rp) comes from the C1 standard

toplogy of the supremum norms of derivatives, in this case on C1(qR2k) � R2p):
The rapid vanishing at the boundary in the second factor (of course uniformly in
the �rst factor) to give the Schwartz subspace and at one point in the �rst factor,
give a closed subspace. So we need to show that for a in a small neighbourhood of
0 in this topology, Id+b has an inverse with b 2 _	0;�1

qiso;iso(R
k;Rp):

To show this we �rst need to prove the L2 boundedness of elements this algebra,
which acts on S(Rk+p): This can be done using H�ormander's approach, which I
will outline at some point. In particular this shows that the L2 operator norm is
continuous on _	0;�1

qiso;iso(R
k : Rp); from which it follows that Id+a is invertible on

L2 for a in a neighbourhood of 0: So, it still needs to be seen that this inverse is of
the form Id+b; b 2 _	0;�1

qiso;iso(R
k : Rp):

To see this we �rst show that if Id+a is L2 invertible then it must be elliptic, in
the sense that Id+�0;iso(a) 2 G�1sus(2k�1);iso(Rp): This can be done by constructive

contradiction. That is, non-ellipticity means that Id+a(p) must be non-invertible as
a smoothing perturbation of the identity on S(Rp for some p 2 S2k�1nfNg ' R2k�1
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(since at p = N it is the identity). This in turn means there must be an element
of the null space. The constructive part is to use this to generate a sequence
uj 2 S(Rk+p) which has norm one in L2 but is such that (Id+a)uj ! 0 in L2:
The idea here is that the solution should `concentrated near p' in a sense that can
be understood in terms of the symbol of the operator. This violates invertibility.
Essentially what is being shown here is that the symbol map extends by continuity
to the closure of these operators in the bounded operators on L2; and so it must
be invertible. Again I plan to add a bit about this at some point.

Once we know that if Id+a is an invertible operator on L2 then it is necessarily
elliptic, we can apply usual methods. Namely we can construct a parameterix for
Id+a; Id+b0; such that

(24.2) (Id+b0)(Id+a)� Id = RR; (Id+a)(Id+b
0)� Id = RL 2 	�1iso (Rk+p):

Then it follows that the inverse is of the expected form since applying (24.2) on the
left and right

(24.3) (Id+a)�1 = Id+b0� (Id+a)�1RL = Id+b0�RL�b0RL+RR(Id+a)
�1RL:

The last term is in 	�1iso (Rk+p) because of the corner property of these operators.

This shows that _	0;�1
qiso;iso(R

k : Rp) (and indeed 	0;�1
qiso;iso(R

k : Rp)) is a Neumann-
Fr�echet algebra.

The last closure property follows directly from the characterization of the kernels.
�

Proposition 24. The quotient

(24.4) _G0;�1
qiso;iso(R

k : Rp)=G�1iso (Rk+p) = G�1sus(2k�1)�;iso(R
p)

is the group of formal power series in �q; with leading terms forming the component
of the identity (i.e. the part on which the index functional vanishes) in G�1sus(2k�1);iso(R

p);

with arbitrary lower order terms and a �-product; for the moment we only prove
this for k = 1 although it is true in general.

Proof. From Proposition 23 above, �rst group in (24.4) is an open subset of the
smooth functions in (24.1). The subgroup is just the subspace which vanishes in
Taylor series on the whole of the product of the boundary of the �rst factor with
the second factor. This is simply because a smoothing perturbation of the identity
is invertible if and only if it has an inverse in the larger space, i.e. it is an element
of the larger group. Thus the quotient is certainly a subset, and necessarily open,
of the space of formaly power series at the boundary of the �rst factor. The leading
term, which is the identity plus a function on the 2k�1 sphere, valued in smoothing
operators, must be invertible, and the perturbation vanishes to in�nite order at the
point N so it can be identi�ed with an element of G�1sus(2k�1);iso(R

p): The induced

product on the formal power series is given by the loop product of the leading terms,
since this is just the principal symbol, and a ? product in the lower order terms, in
the sense that the k the term in the product is give by bidi�erential operators on
the �rst k terms of the factors. More about star products below!

If g 2 _G0;�1
qiso;iso(R

k : Rp) then any lower order, formal power series, perturbation

of the image in the quotient can be realized as an actual function, a 2 	�1;�1qiso;iso (R
k :

Rp) with the correct Taylor series. Cutting o� near the boundary, this can be seen
to have arbitrariy small L2 norm, and, as discussed in the proof of (23) this implies

that G+ a 2 _G0;�1
qiso;iso(R

k : Rp):
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Thus it remains to show that the leading part of the quotient in G�1sus(2k�1);iso(R
p)

is the component of the identity, i.e. on the elements on which the index functional
vanishes. It is at this point that we reduce to the case k = 1: If g 2 _G0;�1

qiso;iso(R
k : Rp)

and h is its inverse then certainly

(24.5) Tr([g; h]) = 0 = c

Z
S

tr(
@h0
@�

g0(�))d� = �c
Z
S

tr(g�10 (�)
@g0
@�

(�))d�; c 6= 0:

Here the explicit trace defect formula in Proposition 22 has been used. The last
integral is the winding number of the determinant of g0; the leading term of g;
i.e. the index functional. Thus the range is contained in the component on which
the index vanishes.

To see the converse, we need to do a little analysis to reverse the argument
above. Namely given the symbol Id+a0 we can quantize it to a not-necessarily-
invertible operator Id+A: However, we know that this has a parametrix Id+B up
to smoothing errors,

(24.6) (Id+B)(Id+A); (Id+A)(Id+B) 2 Id+	�1iso (Rk+p):

Indeed, with an error term of order �1 this follows by choosing B with symbol
b = (Id+a)�1 � Id : Taking the formal Neumann series for the error term and
summing it allows the parametrix to be improved to (24.6). Now, if �N is the
projector onto the �rst N eigenfunctions of the harmonic oscillator on Rk+p it
follows that

(24.7) (Id+B)(Id+A)(Id��N ) = (Id+E(Id��N ))(Id��N ):

Since E is a smoothing opertor, Id+E(Id��N ) 2 G�1iso (Rk+p) for N large enough.
Composing on the left with the inverse gives, with a di�erent operator B0;

(24.8) (Id+B0)(Id+A0) = (Id��N ); A
0 = A�A�N ��N :

Here A0 has the same symbol as A but now must have null space precisely the range
of �N : Proceeding in the same manner with the adjoint, it follows that Id+A

0 must
have range of �nite codimension. Composing with an element of G�1iso (Rk+n) it can
be arranged seen that, a possibly di�erent, Id+A0; but with the same symbol, has
null space the range of �N and range that of Id��N 0 : Then B0 can be shifted by
a smoothing operator so that (24.8) holds and also

(24.9) (Id+A0)(Id+B0) = Id��N :

Then we see that the index, in the conventional sense,

(24.10) ind(Id+A0) = N �N 0 = Tr(�N ��N 0)

= Tr((Id��N 0)� (Id��N )) = Tr([Id+B0; Id+A0]):

Here we have used the fact that Tr is an extension of the trace functional. Now we
can apply the same argument as in (24.5) to see that this is a non-vanishing multiple
(�1 I think) of the `index' in the sense of the winding number of the determinant
of g; the symobl of Id+A0: Thus if this vanishes then N = N 0 and adding �N to
A0 gives an invertible lift of the symbol. �

The use of the trace defect formula in the proof above is very close to the
discussion of the curvature below and presages the treatment of `� forms' later
(I hope).
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Proposition 25. The subgroups

(24.11) _Gm;�1
qiso;iso(R

k+p) � _G0;�1
qiso;iso(R

k : Rp);

of elements where the perturbation of the identity is of order m 2 �N; are normal
and the quotient map gives a �bration

(24.12) _Gm;�1
qiso;iso(R

k+p) // _G0;�1
qiso;iso(R

k : Rp)

��
G�1sus(2k�1)�;iso(R

p)=
�
�m+1
q � 0

�
;

i.e. there is a smooth section in a neighbourhood of each point of the quotient.

Proof. The normality of these subgroups follows directly from the order properties
of the product. The handy thing is that the quotients all give �brations, whereas
in the case m = �1 it is a Serre �bration only { not locally trivial. It su�ce to
give a section of the projection over a neighbourhood of the identity, since this can
be translated to any other point. Since there are only �nitely many terms in the
power series in the quotient, they can be summed and cut o� near the boundary

on qR2k: Provided the terms are small enough, this gives an invertible perturbation
of the identity, following the arguments of Proposition 23, and hence a section {
meaning the sequence is a �bration. �

Lemma 26. The construction in (21.11), (21.12) carries over to the sequence
(24.12) for any m < �2k and constructs a locally trivial line bundle Lm over the
quotient in (24.12). Under any of the projection maps form0 < m; m0 2 �N[f�1g
(24.13) G�1sus(2k�1)�;iso(R

p)=
�
��m

0+1
q � 0

� �! G�1sus(2k�1)�;iso(R
p)=
�
��m+1
q � 0

�
;

Lm pulls back to be canonically isomorphic to Lm0 ; where L = L�1:
In particular L as constructed originally is indeed locally trivial, so Claim 1 is
vindicated.

Moreover the same is true of the connections. Namely, for m < �k each of
the determinant line bundles Lm has a connection given as the quotient of the
connection

(24.14) d� 
; 
 = 1

2
Tr
�
g�1dg + (dg)g�1

�
where the regularized trace is de�ned above.

Proposition 26. The 1-form 
 on _G0;�1
qiso;iso(R

k : Rp) de�ned in (24.14) induces a
connection on each Lm; m < �2k: In case k = 1; the curvature is

(24.15) c

Z
R

(tr
�
g�1

dg

dt
(g�1dg)2

�
dt

Proof. Let me concentrate on the case m = �1: The case for �nte m corresponds
to the extension of the determinant to the groups G�miso (Rk+p by continuity { where
it continues to be multiplicative.

So, even though the projection in the delooping sequence may not be a �bration,
the determinant bundle itself is locally trivial. Namely over any small open set in
one of the �nite order quotients there is a section and this lifts to the preimage of
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the open set in G�1sus(2k�1)�;iso(R
p) and hence to a section of the trivial bundle over

the preimage in _G0;�1
qiso;iso(R

k : Rp) with the transformation law

(24.16) f(Ag) = f(A) det(g); 8 g 2 G�1iso (Rk+p):

Conversely, a local section of the trivial bundle on the preimage of a set descends
to be a section of L over that set if and only if (24.16) holds. Now, the connection
on the trivial bundle is

(24.17) r(f)(A) = df � 
(A)f
so

(24.18) r(f)(Gg) = d(f det(g))� 
(Ag)f(Gg) = det(g)(df � 
(A)f)
+ tr(g�1dg)f � 1

2
Tr(g�1A�1d(Ag) + d(Ag)g�1A�1 �A�1dA� (dA)A�1):

The combination of the last terms vanishes, since commutation by g preserves Tr
(since the smoothing term permits approximation by smoothing terms) so

(24.19)
Tr(g�1A�1d(Ag)) = Tr(A�1dA) + Tr(g�1dg);

Tr(d(Ag)g�1A�1) = Tr((dA)A�1) + Tr(g�1dg):

Thus the connection descends to L: The curvature can be compute on the central
group { of course it must also descend to the quotient. It will be exact on the large
group (which is actually weakly contractible as we shall see) but not on the quotient
{ reconcile yourself with this as necessary!

The curvature is �d
; or �d
=2�i according to taste. Anyway, it is enough to
compute:-

(24.20) d
 = �1
2
Tr(A�1(dA)A�1dA� (dA)A�1(dA)A�1)

=
1

2
Tr
�
[(dA)A�1dA;A�1]

= �TrR
�
A�1[A; log �](A�1(dA))2

�
= �c

Z
R

tr(a�1
da

dt
(a�1da)2)dt; a = �0;iso(A);

using the trace defect formula and in the last line the explicit formula in case k = 1:
Here, you may recognize the 2-form part of the Chern character on the suspended
group (of course I have lost track of the constants at the moment, but it is actually
equal to it { at least up to sign). �

It is very unlikely I will get to this until some time later!
There is another property of this construction of the determinant line bundle

which is a consequence of a wider conjugation-invariance property of the determinant.

Proposition 27. The determinant line bundle is primitive in the sense that for
any two elements �; � 2 G�1sus(2k�1)�;iso;ind=0(Rp) there is a natural isomorphism

(24.21) L� 
 L� ' L��
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which makes the complement of the zero section L� � L into a group which is a C�

extension of the base, so

(24.22) C� // L� // _G0;�1
qiso;iso(R

k : Rp)

is a short exact sequence of groups.

Proof. The additional conjugation invariance referred to above, is that

(24.23) det(A�1gA) = det(g) 8 A 2 G0;�1
qiso;iso(R

k : Rp); g 2 G�1iso (Rk+p):

Given this the statement of the Proposition follows readily. Namely if A; B 2
_G0;�1
qiso;iso(R

k : Rp) project to �; � 2 G�1sus(2k�1)�;iso(Rp) then for g 2 G�1iso (Rk+p) the
map

(24.24) (z det(g); Ag)(z0 det(g0); Bg0) 7�! (zz0 det(gg0); AB(B�1gB)g0)

descends to an identi�cation of L� 
L� with L�� : This can clearly be interpreted
as a group product

(24.25) (l; �) � (l0; �) 7�! (l 
 l0; ��)
on L� which reduces to C� on the trivial �bre above Id : This gives the short exact
sequence (24.22).

So, it remains to prove (24.23). There is a smooth curve, g(t); connecting g to
the identity in G�1iso (Rk+p): Certainly

(24.26) A�1gA = A�1(Id+a)A = Id+A�1aA 2 G�1iso (Rk+p)

so consider

(24.27)
d

dt
log
�
det(g(t))�1 det(A�1g(t)A)

�
=

d

dt
log
�
det(g�1(t)A�1g(t)A)

�
= Tr

�
A�1g�1(t)Ag(t)

d

dt
(g�1(t)A�1g(t)A)

�
= Tr

�
A�1g�1(t)g0(t)A�A�1g�1(t)Ag0(t)g�1A�1g(t)A� = 0:

In the last step the commutation of factors of A is justifed by the fact that there
is one factor, g0; which is smoothing so A can be approximated by smoothing
operators, in the topology of symbols-with-bounds, of marginally positive order,
in such a way that the product converges in smoothing operators. Since the
determinants are equal when g = Id they are equal everywhere. �

Exercise 18. Did I explain (24.27) clearly enough? If not, go through the following.

If A 2 	s;�1
1-iso;iso(R

k : Rp) and a 2 	�1iso (Rk+p) then Aa 2 	�1iso (Rk+p) depends

continuously on A; as does aA; in the topology of 	s;�1
1-iso(R

k : Rp) for any s0 � s:

Since 	�1iso (Rk+p) is dense in 	s;�1
1-iso(R

k : Rp) in this weaker topology, for any
s0 > s; and on this dense subspace Tr(Aa) = Tr(aA) it follows in general.

Exercise 19. Write out in some reasonably explicit form the product on the `star-
extended' loop group G�1sus �;iso;ind=0(R

p) and show that it can be extended to the

whole of the group G�1sus �;iso(R
p) { which is de�ned to have the `same' product but

arbitrary invertible leading term (rather than index zero) and arbitrary lower order
terms as before. Show that the determinant line bundle can be transferred from
the component of index zero to the other components by choosing a base point in
each. Is it possible to extend the group property to the whole thing? Assuming
that you agree with me that this does not seem possible, can you explain why?
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25. Lecture 22: Isotropic families index (k = 1)
Friday, 24 October, 2008

Today I am supposed to be proving the weak contractibility of the central group
in the looping sequence. With any luck I will get to that as a by-product of the
families isotropic index, in K-theory for k = 1 (and untwisted). Namely, what I
want to do is to de�ne the istropic index map

(25.1) indiso : [X;G�1sus;iso(R
p)]c �! [X;H�1iso ]c

for any manifold X: Here I have written out the homotopy groups explicitly, since
both represent even K-theory, as we already know. The restriction to k = 1 shows
up in the single suspension on the left (but these arguments do carry over with only
relatively minor changes to 2k � 1 suspension, meaning isotropic operators on Rk

as we will see next week).
For the de�nition I will use same sort of set up as for Bott periodicity and de�ne

some larger spaces. Thus, let

(25.2) _Ell
0;�1

qiso;iso(R
k;Rp)

= fId+A 2 _	0;�1
qiso;iso(R

k;Rp); Id+�iso(A) 2 G�1sus(2k�1);iso(Rp)g:
So, this is just the set of elliptic elements perturbations of the identity, the operators
with invertible symbols. Then consider a similar space of pairs which are parameterices
of each other

(25.3) _P0;�1qiso;iso(R
k;Rp)

= f(Id+A; Id+B) 2 _	0;�1
qiso;iso(R

k;Rp); (Id+A)(Id+B)� Id;

(Id+B)(Id+A)� Id 2 	�1iso (Rk+p):

Proposition 28. In the diagram

(25.4) _P0;�1qiso;iso(R
k;Rp)

p1vvmmm
mmm

mmm
mmm

m
indiso

''OO
OO

OO
OO

OO
OO

_Ell
0;�1

qiso;iso(R
k;Rp) H�1iso (Rk+p)

where

(25.5) indiso(A;B) =

�
1� 2R2

L 2RL(Id+RL)(Id+B)
2RR(Id+A) � Id+2R2

R

�
;

RL = Id�(Id+A)(Id+B); RR = Id�(Id+B)(Id+A);
the left map is surjective with the lifting property for compactly supported maps
and the right map (is well-de�ned and) has the lifting property up to homotopy, so
every compactly supported smooth map into H�1iso is homotopic to the image of a

map into _P0;�1qiso;iso(R
k;Rp):

Proof. Of course the �rst assertion is that the two maps are well-de�ned. Certainly
the left map is, since it is just projection onto the �rst factor and this must be
elliptic, since the existence of a parameterix implies that the symbol is invertible. I
will not dwell on the lifting property for this map, since I discussed the construction
earlier. (Where exactly?) A smooth map with compact support into the elliptics
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can be quantized smoothly, to the identity outside a compact set. Then a smooth
family of parametrices can be constructed, also reducing to the identity outside a
compact set.

So, to the index map. This is in the rather obscure form (25.4) because I have
been remiss about �lling in the details about the relationship between involutions
and vector bundles. It would be more usual (perhaps, it depends a bit on the circles
you move in) to express the index map in terms of null bundle and null bundle of
parametrix, after stabilization. I did do this quickly earlier too. The explicit map
(25.4) has the advantage that it is explicit and de�ned for any parametrix, without
stabilization. Of course, I invite you to do the algebra to show that indiso(A;B) so
de�ned is an involution:

(25.6) indiso(A;B)
2 = Id :

(Which is a strange looking identity.) In doing so it is helpful to note that

(25.7) RLQ = QRR; RRP = PRL; PQ = Id�RR;

QP = Id�RL if Q = (Id+B); P = (Id+A):

At this point it only remains to show the lifting property up to homotopy. Given
the normal form for involutions which can be achieved for families, as discussed in
Proposition 16 it is really enough to show that the involution corresponding to any
pair of families of �nite rank, commuting projections can be recovered under the
index map. So, as in the periodicity construction we need a `Bott element'. In this
case it is easier { and it is certainly possible I should have done this much earlier.
Namely, we know that the annihilation operator, A = @z + z; has one dimensional
null space but is surjective on Schwartz functions. Of course the order is wrong,
but we can just divide by a square root of the harmonic oscillator to make it of
order zero with the same property. Then its symbol is not 
at at N; but it is equal
to 1 at one point. So, deforming it a little more we can �nd Id+A; A 2 _	0

qiso(R)
which is surjective, with one dimensional null space. Now to recover a given pair of
projections P+(x); P�(x) which are smooth families of N �N matrices, consider

(25.8)

�
AP+(x) + Id(Id�P+(x)) 0

0 CP�(x) + Id(Id�P�(x))
�
2 _	0

qiso(R;C
2N ):

Here C is the adjoint of A: It is easy to check (but I have not actually done it
..) that indiso is a family of involutions which `recovers' these two projections. Of
course one should stabilize C2N into smoothing operators �rst. �

So, the existence of index map in K-theory, (25.1), follows from the uniqueness
up to homotopy of the lifting on the left extended to:

(25.9) C1c (X; _P0;�1qiso;iso(R
k;Rp))

p1

��

indiso // C1c (X;H�1iso (Rk+p))

C1c (X; _Ell
0;�1

qiso;iso(R
k;Rp))

�iso

��
C1c (X;G�1sus(2k�1);iso(R

p)):
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Namely the linear homotopies between quantizations and parameterices shows the
uniqueness up to homotopy.

Finally then this isotropic index is rather precise:-

Theorem 7. This isotropic index map (25.1) is an isomorphism with right inverse
the clutching map cleo :

Proof. This requires one to check that the symbols constructed in (25.8) are homotopic
to that given by the map cleo : This implies that indiso cleo = Id : Since we know
that cleo is an isomorphism at the level of homotopy, i.e. as an inverse to (25.1) it
follows that the index is also an isomorphism. �

So, this is the k = 1 case of the isotropic families index. We want to generalize
it in two ways. First to k > 1: In fact the restriction to k = 1 only occurs in the
construction of the annihilation/creation operators and cleo : The more signi�cant
extension (which is slightly di�erent in form) is to twist the spaces on which the
isotropic algebra acts to be a vector bundle over X; instead of just considering
straight families. This leads to the Thom isomorphism. We can think of the group
on the left in several ways because of Bott periodicity. The most obvious is to
identify it as K1

c(X � R) and hence as K0
c(X � R2): This is how the map is usualy

described, as

(25.10) indiso : K
0
c(X � R2) �! K0(X)

implementing Bott periodicity. In fact it is precisely this relationship I want to
exploit in order to de�ne the Thom isomorphism

(25.11) K0
c(W ) �! K0(X)

for any complex, or symplectic, vector bundle over X (so it has even rank as a real
bundle).

Now, what does this tell us about _G0;�1
qiso;iso(R

k;Rp)? Basically half of what we
want, I would say the hard half given where we are. Namely

Corollary 4. If f : X �! G�1sus;iso(R
k) (is compactly supported) then f = �iso(F )

for a compactly supported family F : X �! _G0;�1
qiso;iso(R

k;Rp) implies that f is
homotopic to the identity.

Proof. The index vanishes, so [f ] 2 [X;G�1sus;iso(R
k)]c must vanish. �

In fact the converse is also true but this involves another argument which we can
subsume into what is the last part of the looping sequence.

Proposition 29. The group _G0;�1
qiso;iso(R;R

p) is weakly contractible; any compactly
supported map into it is homotopic to the constant map to the identity.

Proof. Given such a map, F; it follows from the corollary that �iso(f) is homotopic
to the identity. Let ft be such an homotopy, with f0 = Id; f1 = f: Since it is an
elliptic family, and has an invetible quantization at t = 0; this can be lifted to an
homotopy Ft : X � [0; 1] �! _G0;�1

qiso;iso(R;R
p) with symbol family ft and F0 = Id :

This might seem to solve the problem, but not so fast! It follows that F1 is a lift of
f to be a family of invertibles, but it is not clear that it is the one we started with.
Since we can deform lower order terms in the symbol away, we can arrange that

(25.12) F�11 F 2 C1c (X;G�1iso (Rp+k))
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since the two quantizations then di�er by smoothing terms. So the remaining
problem is to show that the image of a family of smoothing perturbations can be
deformed away in the bigger group _G0;�1

qiso;iso(R;R
p): In fact with the use of a bit

more homotopy theory we already have enough to show this. However, I think it is
worth doing directly. So the proof of this Proposition is completed by the next. �

Proposition 30. If g : X �! G�1iso (Rp+k) is a compactly supported smooth map

then there is an homotopy Gt 2 C1c ( _G0;�1
qiso;iso(R;R

p)) with G1 = g and G0 = Id :

Proof. This can be done quite explicitly using the creation and annihilation operators.
Here is the idea but I have not checked the details at all. The crucial point is that
we have found an operator of index 1:

First retract g to be of �nite rank, on some CN : Then take two copies and
consider the creation and annihilation operators acting on S(R) 
 C2 as a 2 � 2
matrix with matrix-operator values

(25.13)

�
�1 C
A 0

�
This is invertible, since the null space ofA and the lack of range of C are compensated
for by the o�-diagonal �1; projecting onto the null space. Now, tensor with matrices
on CN and consider
(25.14)�

cos(�) g(x) sin(�)
�g�1(x) sin(�) cos(�)

��1�
�1 
 g(x) + cos(�)(Id��1) g(x) sin(�)C

�g�1(x) sin(�)A cos(�):

�
These are invertible matrices, the �rst normalizes the symbol to be the identity at
N; the point where A and C are both 
at to 1:

Then, consider the reverse homotopy through invertibles

(25.15)

�
g(x) cos(�) g(x) sin(�)
�g�1(x) sin(�) g�1(x) cos(�)

��1
��

g(x)�1 + g(x) cos(�)(Id��1) g(x) sin(�)C
�g�1(x) sin(�)A g�1(x) cos(�):

�
This starts at the same matrix, at � = �=2 and deforms back to the identity. As I
say, I haven't checked this. �

There is another approach to proving Proposition 30 which is a bit more machine-
heavy but has other advantages, as I hope we will see. To do this we need the
adiabatic limit for operators of order 0:

When talking about the isotropic product, leading to the algebra 	0;�1
qiso;iso(R

k;Rp)
that is underlying the looping sequence, I carried along, at least for a while, the
adiabatic version of it. Namely the product in (20.3) is actually smooth down to
� = 0; just as in the case of smoothing operators discussed earlier. This means we
can set up an algebra of adiabatic operators of order 0 which is just the space of
functions

(25.16) C1([0; 1]� � q
R2k�;S(R2p))

with the product given by (20.3). Without going into details this will have both
an adiabatic symbol, at � = 0; extending the one in the smoothing case, and now
also a `regular' symbol at the boundary in the second variable (or a `full symbol if
we take Taylor series at this boundary). This second symbol depends on � 2 [0; 1];
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but just as a parameter since the leading term is always just the product (including
the operator product in the last variables of course). The lower order terms, the
star product, does depend on �: We also have the restriction to � = 1 and if you
recall this is how I �nally talked about Bott periodicity. I will denote this adiabatic
algebra

(25.17) 	0;�1
ad qiso;iso(R

k;Rp)

Now to this we can add the `dot' conditon of having the functions vanish to
in�niite order at the �xed pointN on the boundary of the quadratic compacti�cation
of R2k: This leads to the subalgebra

(25.18) _	0;�1
ad qiso;iso(R

k;Rp):

Proposition 31. The adiabatic algebras of order 0 in (25.17) and (25.18) (which
are non-unital) are Neumann-Fr�echet algebras.

Proof. This requires a combination of the proofs of the earlier cases. �

So now I have at least described the corresponding group of invertible perturbations
of the identity by elements of (25.18)

(25.19) _G0;�1
ad qiso;iso(R

k;Rp):

What good is it? Well, it has the same symbol maps as the algebra but now
valued in the groups. This gives us a diagram where the bottom line is the looping
sequence, the middle line is the corresponding sequence with this new group in the
middle and the top line is in principle the adiabatic part { what we get by taking
the adiabatic symbol (i.e. restricting to � = 0 to the extent that it makes sense).

(25.20) G�1sus(2);iso(R
p) // ~G�1sus;iso(R;R

p) // G�1sus �;iso;ind=0(R
p)

G�1ad;iso(R : Rp)

R

��

//

�ad

OO

_G0;�1
ad;iso(R;R

p)

R

��

�0;iso //

�ad

OO

C1([0; 1];G�1sus �;iso;ind=0(R
p))

R

��

�=0

OO

G�1iso (R1+p) // _G0;�1
qiso (R;Rp)

�0;iso // G�1sus �;iso;ind=0(R
p)

Now, I need to discuss what is happening here carefully, but the { maybe
somewhat surprising { point to grasp is that the top row is in fact the delooping
sequence for the (terminal) group which is the component of the identity in the
suspended group we are by now getting familiar with. So what this diagram is
supposed to show conceptually is that the delooping sequence is `just' the partly
quantized delooping sequence for the loop group. Now, before I go into a term by
term discussion of (25.20) let me show why it might help us.

Claim 3. All the vertical arrows, up and down, in (25.20) are surjective weak
homotopy equivalences with the lifting property for compact families, all three rows
are exact and the central column consists of weakly contractible groups.

So this is just making the same claim but more so! In fact the very central group
here is easily seen to be contractible by hand. The surjectivity of the middle R
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would imply directly the weak contractibility of the middle group for the looping
sequence, but this is where I have failed to �nd a direct proof.

However, just look at the bottom left rectangle and see that we can use it, if we
know a bit { particularly the commutativity { to give a proof of Proposition 30.
What we are given is a compactly supported map into the bottom left group. By
the lifting property property this comes from a map into the `adiabatic' group on
the left of the middle row. This can then be sent into the really central group. As
I said above, it is easy to see geometrically that this group is weakly contractible.
Thus it can be deformed away here. Mapping the homotopy forward to the central
group on the bottom row gives, by commutativity, an homotopy trivializing the
image of the original map.
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26. Lecture 23: Iterated periodicity maps
Monday, 27 October, 2008

We have earlier shown that there is a semi-classical relation between involutions
on X � R2 and X in the form of surjective maps with the homotopically-unique
lifting property for compactly-supported families

(26.1) H�1ad;iso(Rk : Rp)

Rwwnnn
nn
nn
nn
nn
n

�ad

((QQ
QQ

QQ
QQ

QQ
QQ

H�1iso (Rk+p) H�1sus(2k);iso(Rp)

; k = 1:

This generates the periodicity isomorphism (going from right to left)

(26.2) [X;H�1sus(2);iso(Rp)] �! [X;H�1iso (R1+p]c:

These constructions can be iterated in slightly di�erent sense. We can increase k
in (26.1) and iteratively replace X by X � R2 in (26.2). However we need to be
a little careful to check that these give the same result. In particular we have not
shown the surjectivity or lifting property for the map to the left in (26.1) when
k > 1: Now we will. We have already shown that the adiabatic map, the one to
the right, is surjective and has the homotopically-unique lifting property for every
k: Thus the diagram (26.1) does generate a map

(26.3) [X;H�1sus(2k);iso(Rp)] �! [X;H�1iso (Rk+p]c for each k � 1:

Proposition 32. For any k > 1 the map (26.3) is the isomorphism given by
iteration of (26.2).

Proof. We need to show is that the quantization of involutions (with relatively
compact support) on R2k � X to involutions on X can be carried out in k steps,
quantizing an R2 each time.

The clearest way to really check that this is possible is to think about the doubly-
adiabatic calculus. So, we are interested in operators on Rk1 �Rk2 �Rp which are
separately adiabatic in the two �rst sets of variables. So the kernels in question are
determined by elements

(26.4) F 2 C1([0; 1]�1 � [0; 1]�2 ;S(R2k1+2k2+2p)
through the adiabatic-Weyl quantization where the actually kernels for � < 1 > 0
and �2 > 0 are the

(26.5) f(�1; �2; z1; z
0
1; z2; z

0
2; z; z

0)

= ��k11 ��k22 F (�1; �2;
�1(z1 + z01)

2
;
z1 � z01
�1

;
�1(z2 + z02)

2
;
z2 � z02
�2

; z; z0):

Since the two adiabatic parameters are in di�erent variables the same argument as
before shows that these doubly-adiabatic famililes form an algebra under composition
and that function, as in (26.4), determining the composite can be written down
quite directly { namely taking the Fourier transform in the second of the adiabatic
variables leads to

(26.6) Ĥ(t1; �1; t2; �2; Z; Z
0) =

Z
F̂ (t1; �1; t2; �2; Z; Z

00)Ĝ(t1; �1; t2; �2; Z
00; Z 0):
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So, this is just two adiabatic limits going on independently. There are really
three di�erent symbol maps. One where �1 = 0 but �2 > 0 { but this needs to
be understood as an adiabatic family. Another one the other way round. And
then the doubly-adiabatic symbol at �1 = �2 = 0: Clearly this latter one is the
adiabatic symbol of each of the other ones. Said more formally, there are three
homomorphisms of algebras:

(26.7)

	�1ad;ad;iso(R
k1 : Rk2 : Rp) �! 	�1sus(2k1);ad;iso(R

k2 : Rp);

	�1ad;ad;iso(R
k1 : Rk2 : Rp) �! 	�1ad;sus(2k2);iso(R

k1 : Rp);

	�1ad;ad;iso(R
k1 : Rk2 : Rp) �! 	�1sus(2(k1+k2));iso(R

p):

Here the suspended algebras are just the old algebras depending in a Schwartz
manner on the additional parameters.

All three maps are surjective, but they are not jointly surjective. Rather they
satisfy precisely the relationships given by the commutative diagram

(26.8) 	�1sus(2k1);ad;iso(R
k2 : Rp)

''PP
PP

PP
PP

PP
PP

	�1ad;ad;iso(R
k1 : Rk2 : Rp) //

66mmmmmmmmmmmmm

((QQ
QQQ

QQQ
QQQ

QQ
	�1sus(2(k1+k2));iso(R

p)

	�1ad;ad;iso(R
k1 : Rk2 : Rp)

77nnnnnnnnnnnn

where all the maps are `adiabatic symbols'.
So, here is what we need and a good deal more:

Lemma 27. For (families of) involutions of the form 
1 +A; A 2 	�1ad;ad;iso(Rk1 :
Rk2 : Rp;C2); the four maps corresponding to `restriction' to �1 = 0 = �2 = 0; �1 =
0; �2 = 1; �1 = 1; �2 = 0 and �1 = �2 = 1 are all surjective with the homotopically-
unique lifting property for compactly supported families, and hence induce weak
homotopy equivalences between all �ve spaces of involutions.

Proof. There is actually nothing really new here, we just have to apply the old
procedures thoughtfully. �

In particular of course this completes the proof of Proposition 32. �

Assuming that I have not run out of time, let me now start to discuss the
setting of the Thom isomorphism, and closely related isotropic index theorem. This
concerns the case of a complex or symplectic vector bundle over a manifold

(26.9) W

��
X:

In the symplectic case this is a real vector bundle with a symplectic structure on
each �bre, varying smoothly with the base point. Since a symplectic structure on
a vector space is just a non-degenerate antisymmetric real bilinear form, the �bres
must certainly be even-dimensional.
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The relationship between the symplectic and complex structures can be seen
geometrically by de�ning a metric which is compatible with the symplectic structure.
Take any real �bre metric h and look at the duality map it de�nes relative to !;
the symplectic structure:

(26.10) !x(v; w) = gx(v; J
0
xw); J

0
x :Wx �!Wx:

This uses the non-degeneracy of each of the forms, the one symmetric the other
antisymmetric, from which it follows that J 0x is a smooth isomorphism. In fact it
is necessary skew-adjoint (it is real) with respect to g since

(26.11) gx(v; J
0
xw) = !x(v; w) = �!x(w; v) = �gx(w; J 0xv) = �g(J 0xv; w)

for all v; w: Thus it follows that the eigenvalues of J 0x are pure imaginary and non-
zero, since J 0x is invertible from the non-degeneracy of ! and g: Now, applying the
same procedure as we did earlier in turning near projections to projections, we can
`compress' J 0x to Jx; also a smooth family of isomorphism which have eigenvalues
�i: Now, Jx is a complex structure on Wx and the metric

(26.12) h(v; w) = �!(v; Jxw)
is the real part of an hermitian parametrix with imaginary part !:

Exercise 20. Show conversely that on a complex vector space, a choice of positive-
de�nite hermitian inner product generates a symplecti structure, as the imaginary
part of this inner product, on the underlying real vector space such that the given
complex structure on that even-dimensioanl vector space over the reals is the one
constructed above.

Now, we have constructed a complex structure on the vector space which is
consistent with the symplectic structure we can introduce the higher dimensional
analogue of the annhilation and creation operators and in particular the harmonic
oscillator. We already know these in local coordinates, i.e. on R2n: The annihilation
operators, Aj = @xj + xj = xj + iDxj ; where Dx =

1
i @=@x; can be assembled into

the creation complex:

(26.13)

A : S(R2n; �k;0) �! S(R2n; �k+1;0);
u =

X
�

u�dz
� 7�!

X
�

X
j

Aju�dzj ^ dz�:

Lemma 28. With �k = �kV for an hermitian vector space V; the annihilation
complex (26.13) is well-de�ned, i.e. is independent of the choice of complex orthonormal
basis used to de�ne it.

The adjoint complex is the `creation complex'. Check that AC + CA = � acts
on complex forms in each degree and reduces to the harmonic oscillator on zero
forms.

Corollary 5. The choice of an hermitian structure on a complex vector space, or
of a compatible metric on a symplectic vector space, �xes the associated harmonic
oscillator which reduces to the standard harmonic oscillator in local coordinates in
which the structures are reduced to the standard ones on R2n and Cn:

What we most want from this is uniform �nite-rank approximability of smoothing
operators. Let 	�1iso (W=X) = S(qW ) denote the smooth functions on the quadratic
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compacti�cation of (the �bres of) a symplectic vector space, made into the space
of smooth sections of the bundle of Schwartz-smoothing algebras on the �bres.

Corollary 6. On the �bres of a complex, or a real symplectic, vector bundle W
over a manifold X there is a sequence of Schwartz-smoothing projections, �N 2
	�1iso (W=X); on the �bres, smooth over the base, such that for any A 2 	�1iso (W=X);
��NA; �A�N ! A in 	�1iso (W=X) for any � 2 C1c (X):
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27. Lecture 24: Thom isomorphism
Wednesday, 29 October, 2008

Reminder. Last time I talked a little about symplectic and complex vector bundles
and recalled that on a complex vector bundle with hermitian structure one has a
well-de�ned smooth family of harmonic oscillators on the �bres.

For a symplectic vector bundle over a manifold X we have shown that there is a
well-de�ned non-commuatative product given on C1([0; 1];S(W=X)); the space of
smooth functions on [0; 1]� qW which are Schwartz on the �bres, see (20.4) for the
explicit formula. Thus we have a bundle of algebras where the �bre above x 2 X is
C1([0; 1];S(W )) and we will denote the space of global sections of this algebra by
	�1sl;iso(W ): In fact if we can consider two, or even three, symplectic vector bundles,
W1; W2 and W3 over X and observe that the algebra de�ned last time { separately
adiabatic in each of the �rst two variables and just the product at � = 1 in the
last, is well-de�ned. We can denote the algebra of global sections of this bundle of
algebras as

(27.1) 	�1;�1
ad;ad;iso(W1=X W2=X W3=X;CN )

where I have thrown in matrix values for good measure. The �bre at some point
x 2 W is just 	�1;�1

ad;ad;iso((W1)x (W2)x (W3)x;C
N ) which is essentially the algebra

we were looking at last time.
Now there is one important thing to note. Even though this bundle of algebras

is `twisted', because the bundles Wi need not be trivial, its homotopy properties
haven't changed much. To see let us note that, given two symplectic vector bundles
over X there is a reasonably natural map of algebras:-

(27.2) B : 	�1iso (W1=X) 3 A 7�! A
 �B(x) 2 	�1iso ((W1 �W2)=X):

Here �B is the self-adjoint projection onto the ground state of some chosen smooth
family of harmonic oscillators corresponding to a compatible complex structure
on W2: Di�erent choices of compatible complex structure are homotopic and this
homotopy lifts to �B :

We can modify (27.2) to give us a similar map on involutions and invertibles,
where I will add a c subscript to indicate that things are compactly supported {
appropriately trivial outside a compact set:-

(27.3)

BH : H�1iso;c(W1=X) 3 I(x) = 
1 + a(x) 7�!

1 + a
 �B(x) 2 H�1iso;c((W1 �W2)=X)

BH : G�1iso;c(W1=X) 3 I(x) = Id+a(x) 7�!
Id+a
 �B(x) 2 G�1iso;c((W1 �W2)=X):

Here the `stabilization' if di�erent in each case { remember for H all the objects
are in 2 � 2 matrices over the obvious one. Of course the homotopies implicit in
the de�nition of the components have to have uniformly compact support.

Proposition 33. The stabilization maps in (27.3) induce homotopy equivalences

(27.4)
�0

�H�1iso;c(W1=X)
� ' �0

�H�1iso;c((W1 �W2)=X)
�

�0

�
G�1iso;c(W1=X)

� ' �0

�
G�1iso;c((W1 �W2)=X)

�
:

Note that these objects are the spaces of sections, and we can only map from the
base.
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Proof. For a change look at the odd case. The main point is that we certainly know
how to do this in case the bundles are trivial, using �nite rank approximation,
and we have such �nite rank approximation available in the general case. Thus
the projections, �N to the span of the eigenfunctions for eigenvalues less than
rank(W ) + 2N + 1 are all well-de�ned and smooth. Thus if a 2 	�1iso (W=X) then

(27.5) a�N ; �Na! a 2 	�1iso (W=X):

The range of �N is a vector bundle over X which is readily seen to be isomorphic to
the Nth symmetric power of the W as a complex bundle. We don't really need to
know this, just that it is a vector bundle. It is a standard result that a (compactly
supported) vector bundle can be embedded as a subbundle of any vector bundle
over the same set with su�ciently large rank { this can be proved by the same
sort of crude method as used to embed into a trivial bundle if the rank required is
not needed, as it isn't here. Anyway, this means that we can think of the range of
�N (W1); as a vector bundle over �M (W2) for some M: This allows us to `identify'
the cut-o� operator on W1; gN = �N + �Na�N ; which is invertible if N is large
enough, as an of invertible family of homorphisms g0M of �M on W2; extending as
the identity o� the subbundle. This means we can rotate in the usual way between

(27.6) gN (x)
 �B(W2) and �B(W1)
 g0M (x) extended as the identity.

This is not quite what we want, since we really want to go the other way, but it
is easy to extend it a bit so that it is. Namely any element Id+a(x) 2 G�1iso;c((W1�
W2)=X)) can be deformed by homotopy to a �nite rank perturbation of the identity
which acts on the range of �N (W1) 
 �N (W2) for some N: Then �N (W2) can be
complemented to be trivial, and the complement can be embedded in �M (W1) �
�N (W1) and �M (W2) � �N (W2) respectively, for M large enough. Thus we can
think of the perturbation as acting on the tensor product of the ranges of two
globally trivial families of projections. This actually reduces us to the case right
at the beginning (although I did not write down a very elegant proof then). In
particular it follows by embedding dim�N (W2) copies of the same trivial bundle in
W1 repeatedly in higher `tranches' �Mi

(W1) � �Mi�1
(W1): Then the argument in

the 
at case works just as well here to show that such an element can be rotated
to act on the range of �M (W1) 
 �1(W2) and hence is in the range of the second
map in (27.4).

The part for idempotents can be proved similary. �

Corollary 7. For any symplectic bundle W (of positive �bre rank of course) over
a manifold there are natural ideni�cations

(27.7)
�0

�H�1iso;c(W=X)
� ' K0

c
(X)

�0

�
G�1iso;c(W=X)

� ' K1
c
(X):

Proof. Apply the preceeding proposition twice in each case to the product of W
with a trivial bundle, say with symplectic �bre R2: �

Now, let us proceed to the Thom isomorphism. This concerns a vector bundle
W over a manifold X: As note above, the Thom isomorphism

(27.8) Thom : K0
c(X) �! K0

c(X)
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is �xed by the homotopy class of the smoothly varying symplectic form on the �bres
ofW; so it depends on some orientation information, but otherwise it is well-de�ned.
We will get it, by semiclassical quantization.

I have alread brie
y discussed the space

(27.9) 	�1ad;iso(W � R2p=X;M(N;C)) � C1([0; 1]� S(W � R2p=X;M(N;C))

which consists of all the smooth functions on [0; 1]�W�R2p with values inM(N;C)
and which have entries which are uniformly Schwartz functions on the �bres of
[0; 1]�W � R2p as a bundle over X � [0; 1]: The product is the adiabatic product
with respect to the symplectic structure on each �bre Wx: For N = 2 we consider
the space of adiabatic perturbations of 
1 and which are involutions
(27.10)

H�1ad;iso(W�R2p=X) =
n
I = 
1 + a; a 2 	�1ad;iso(W � R2p=X;M(N;C)); I2 = Id

o
:

The symbolic properties of this space should by now be fairly clear. Namely the
adiabatic sybol map restricts to
(27.11)

�ad : H�1ad;iso;c(W � R2p=X) �! C1c (X;H�1sus(W );iso(R
p)) = Sc(W ;H�1iso (Rp))

which is the involutions of the form 
1+ b; where b :W �! H�1iso (Rp) is uniformly
Schwartz on the �bres of W and has support in the preimage of a compact set in
the base.

Lemma 29. The symbol map (27.11) is surjective and the preimage of each element
is connected.

Since we are now talking about families, necessarily de�ned on X rather than an
arbitrary manifold, this is the analogue of the homotopically-unique lifting property.

Proof. At some point I will write out a general result for these symbolic lifting
constructions. This is no di�erent to most others. Namely we use the adiabatic
symbol map, the properties if which follow from the case we have been discussing
where W is the trivial product X�R2k since locally over X there is a trivialization
in which the symplectic form reduces to the Darboux form on R2k: Thus we have
a short exact and multiplicative symbol sequence

(27.12) �	�1ad;iso;c(W � R2p=X;M(N;C)) �! 	�1ad;iso;c(W � R2p=X;M(N;C))
�ad�! Sc(W ;H�1iso (Rp)):

Thus, we can lift the an element in the targen space in (27.11) to I 00
1 + b0 where
(I 00)

2 = Id+�c: The same iteration argument used earlier for involutions and Borel's
Lemma allows us to improve this to (I 0)2 = Id+c0 where c0 vanishes to in�nite order
with �; so is just smooth (and rapidly vanishing) down to � = 0 in the ordinary
sense. Then the same integral formula as before allows this to be corrected to an
involution in [0; �0] for some �0 > 0 and �nally stretching the parameter space we
�nd a lift of the symbol as desired and (27.11) is therefore surjective.

A modi�cation of this argument shows that any two lifts are homotopic as
families, i.e. the set of lifts is connected. �

Now, the Thom isomorphism comes from looking at the restriction operator R
to � = 1 as before. This gives a diagram (written the other way compared to the
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perioidicity case) where my notation is a bit out of hand

(27.13) H�1ad;iso;c(W=X : R2p)

�ad

uukkkk
kkk

kkk
kkk

k
R

))SSS
SSS

SSS
SSS

SSS

Sc(W ;H�1iso (Rp))

�o

��

H�1iso;c(W � R2p=X)

�o

��
K0
c(W )

Thom // K0
c(X):

Here the vertical `�0' maps are just the passage to components. Thus we know that
both maps on the left side are surjective and that the lift is unique up to homotopy.
So the map along the bottom is well-de�ned

Theorem 8. [Thom isomorphism] For any symplectic vector budle the map on the
bottom in (27.13) is an isomorphism and R on the right is surjective.

So, this is just the same as Bott periodicity in case W = R2k � X which we
�nally discussed properly last time. We already know how to change the dimension
`p' of the isotropic image space, so the Thom map really is well-de�ned. To prove
that it is an isomorphism we will bring out the main tool we have used so far, which
is the ability to do two things at once.

As mentioned above, we can consider adiabatic families, as we did last time,
with respect to two symplectic bundles W1 and W2 over X: The hardes thing here
is really the notation! I will let sus(W ); as a subscript, replace sus(2p) and here
mean that we are considering sections which are Schwartz, in an appropriate sense,
on the �bres of W: I have already used this without discussing it in (27.11). The
doubly adiabatic algebra, which has two parameters, one in the W1 slots and the
other in theW2 slots, is a non-commutative product on the spaces of sections which
have compact support in the base (or arbitrary support, both work but we mostly
want the compact case)

(27.14) fa 2 C1c ([0; 1]� [0; 1]� qW1 �X qW2 � q
R2p); a � 0 at all boundariesg:

Here the quadratic compacti�cations can be replaced by the radial ones, since we
are considering functions 
at at the boundaries anyway. The �X means the �bre
product, so really we are taking the products of the compacti�cations of (W1)x and
(W2)x and making them into a bundle over X:

I leave it to you to carefully de�ne the corresponding space of involutions

(27.15) H�1;�1
ad;ad;iso(W1=X :W2=X : Rp)

which are doubly-adiabatic-smoothing perturbations of 
1; so as usual are 2 � 2
matrices. Now there are a total of seven `restriction maps' we wish to consider.
Six of them correspond to restricting to one of �1 = �2 = 0 (the doubly-adiabatic
symbol), to �i = 0; i = 1; 2; the two single adiabatic symbols, �i = 1; i = 1; 2; the
two restriction maps and �1 = �2 = 1: The seventh map is the restriction to �1 = �2
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(= � if you like). These are of the form
(27.16)

�ad(W1�W2) : H�1;�1
ad;ad;iso(W1=X :W2=X : Rp) �! H�1sus(W1�W2);iso

(Rp)

�ad(W1) : H�1;�1
ad;ad;iso(W1=X :W2=X : Rp) �! H�1sus(W1);ad;iso

(W2=X : R2p)

�ad(W2) : H�1;�1
ad;ad;iso(W1=X :W2=X : Rp) �! H�1ad;sus(W2);iso

(W1=X : R2p)

R�2=1 : H�1;�1
ad;ad;iso(W1=X :W2=X : Rp) �! H�1ad;iso(!)(W1=X : (W2 � R2p)=X)

R�1=1 : H�1;�1
ad;ad;iso(W1=X :W2=X : Rp) �! H�1ad;iso(!)(W2=X : (W1 � R2p)=X)

R�1=�2=1 : H�1;�1
ad;ad;iso(W1=X :W2=X : Rp) �! H�1iso(!)((W1 �X W2 � R2p)=X)

R�1=�2 : H�1;�1
ad;ad;iso(W1=X :W2=X : Rp) �! H�1ad;iso((W1 �X W2)=X : R2p):

Here I just thought of the idea of using iso(!) instead of iso to mean that the space
is a symplectic vector space instead of operators on a vector space. The main thing
to swallow is that all these maps exist. Here is a diagram in �1; �2 space:-

So, there are lots of things we could easily prove about this picture. However,
recall that at the level of functions these maps really are restrictions to the sets in
question. So they have the obvious consistency properties that I will not write out
but will use below.

Now recall what we want to use this set-up for. We want to consider three
bundles, namely

(27.17)

W1 �X W2 �! X bundle over X

W1 �xW2 �!W1 bundle over W1

W1 �! X bundle over X:

although for vector bundles the notationW1�W2 for the �bre productW1�XW2 is
conventional, here I am just trying to emphasize what things really are. In all three
case we have the Thom isomorphism and what we will use the doubly-adiabatic set
up to show:-

Proposition 34. For any pair of symplectic vector bundles over a manifold the
three Thom maps give a commutative diagram

(27.18) K0
c
(W1 �X W2)

Thom

��

Thom

''OO
OO

OO
OO

OO
O

K0
c
(W1)

Thomwwooo
oo
oo
oo
oo

K0(X):

Proof. The main claim, that I am not for the moment going to write down, is that
the third map above is surjective. This is the same sort of argument as in Lemma 29
above, with a few extra twists because of the two parameters { but not essentially
harder. It follows from this that the �rst map is also surjective, because this, by
consistency of the symbols, is the adiabatic symbol map applied to the range of the
third map.
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Thus we can start of with an element of � 2 H�1sus(W2);iso
(W1 � R2p=X) which is

in the image, under restriction to �1 = 1 of an element K 2 H�1ad;sus(W2);iso
(W1=X :

R2p); meaning its class is in the image of the top sloping Thom map. Using the
surjectivity discussed above, this is the image under the third map in (27.17) of an

element ~K in the doubly-adiabatic space. The image of this under the �fth map
in (27.17) is therefore a lift of � which de�nes the lower Thom map on the right,
i.e. restricting this element to �2 = 1 gives the image of � in K0(X): However the

restriction of ~K under the last map gives the image of K in this space, and by the
consistency of these restricition maps these are the same. Thus the Proposition is
proved. �

Proof of Theorem 8 { Thom isomorphism. Consider any symplectic vector bundle
W: We know that this can be given a complex structure compatible with its
symplectic structure (and determined up to homotopy). As a complex vector
bundle,W can be embedded as a subbundle of CN for someN and hence complemented
to this trivial bundle with another complex bundle ~W: Conversely ~W has a symplectic
structure so we can arrange, after a homotopy of the symplectic structure which
does not a�ect the Thom map, that

(27.19) W �X ~W =W � ~W = R
2N �X

with consistent symplectic structures. Now Proposition 34 gives the commutative
diagram

(27.20) K0
c(R

2N �X)

Thom=psl

��

Thom

&&MM
MM

MM
MM

MM
M

K0
c(W )

Thomxxqqq
qq
qq
qq
qq

K0(X):

Thus the vertical map is Bott periodicity, so is an isomorphism. It follows that the
lower map on the right, the Thom map for W as a bundle over X is surjective. It
also follows that the upper map on the right, which is the Thom map forW�X ~W =
R2N �X as a symplectic bundle over W is injective.

We have shown that the Thom map is universally surjective. However the upper
map on the right, which we know to be injective, is an example of such a map. So
it must also be surjective, hence an isomorphism. Hence the general Thom map on
the lower right is also always an isomorphism. �

Here is some material that seems to have been orphaned; I will work out where
to put it some time!

Let me recall, and extend, some of the basic results about the space H�1iso (Rp);
especially since the treatment I gave was rather brief, to say the least.

Proposition 35. Two compactly supported smooth maps Ii : X �! H�1iso (Rp);
i = 0; 1; (through such maps) if and only if they are conjugate under a smooth
compactly supported map g : X �! G�1iso (Rp;C2) which is homotopic through such
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maps to the identity:

(27.21) I1(x) = g�1(x)I0(x)g(x) 8 x 2 X:
Proof. Certainly if g = g1 for a compactly supported homotopy g� : [0; 1]�X �!
G�1iso (Rp;C2) with g0 = Id then It = g�1t I0gt(x) is an homotopy from I0 to I1:

To see the converse, we will solve a di�erential equation. Recall that for an
homotopy of involutions

(27.22) _ItIt + It _It = 0 =) _It = I+t _ItI
�
t + I�t _ItI

+
t ;

meaning that the derivative must be o�-diagonal with respect to the involution.
Now, if we want to solve It = g�1t I0gt; for the moment for �xed x; we can
di�erentiate and try to solve

(27.23) _It = 
(t) = �(g�1t _gt)It + It(g
�1
t _gt):

Now, it follows from (27.22) that this identity is satis�ed if we take arrange that

(27.24) g�1t _gt =
1

2

�� I+t _ItI
�
t + I�t _ItI

+
t

�
:

Thus, we can simply (try to) solve

(27.25)

_gt =
1

2
gt
(t); g0 = Id

() gt = Id+a(t); a(t) =

Z t

0

�

(s) + a(s)
(s))ds:

Now, the integral equation has a unique solution by standard contraction arguments,
and it follows from this uniqueness that the solution is smooth in the parameters.
Moreover it follows that gt(x) = Id+a(t; x) is always invertible, and is equal to
the identity outside a compact set in X: For instance the invertibility follows by
following the determinant since

(27.26)
d

dt
log det(gt(x)) = tr(
(t; x)):

Exercise 21. Do it { check that it works in each seminorm and from uniqueness the
solution to (27.25) is Schwartz.

Now, going backwards it follows that gt implements the conjugation we want. �

Lemma 30. For a symplectic vector bundle W over X; two elements

Ii 2 H�1iso;c(W=X;CN ) i = 0; 1;

are in the same component if and only if there exists g 2 G�1iso (W=X;CN 
C2) in
the component of the identity such that I1 = g�1I0g:

Proof. The uniqueness of the method used in the previous proof means that it
works in the same way for sections of these bundles over X and then this is simply
a restatement of the conclusion. �
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I did show earlier that any smooth map of compact support I : X �! H�1iso (Rp)
are homotopic to simple sections of the form

(27.27) ~I = 
1 � 2E+ 
 P�(x) + 2E+ 
 P+(x); P�(x)2 = P�(x);

�NP+(x) = P+(x)�N = P+(x);

(�M ��N )P�(x) = P+(x)(�M ��N ) = P+(x) 8 x 2 X;
P�(x) = A�P�(x)B� are constant for x 2 X nK; K b X:

Here M and N are integers and A� and B� are matrices acting on the range of
�M :

To extend this to the case of sections of a symplectic bundleW is straightforward
except that we cannot demand the constancy outside a compact set unless we
demand that the bundle W itself is trivial, and has constant symplectic structure
outside such a set { I have been a bit cavalier about this. Fortunatly it is not really
a problem. Instead we just demand the conjugation equivalence in the complement
of a compact set (and I will change things retrospectively at some point).

Proposition 36. Any family of involutions, I 2 H�1iso (W=X); is homotopic over
any open subset 
 � X with compact closure to one of the form

(27.28) ~I = 
1 � 2E+ 
 P�(x) + 2E+ 
 P+(x); P�(x)2 = P�(x);

�N (x)P+(x) = P+(x)�N (x) = P+(x);

(�M (x)��N (x))P�(x) = P+(x)(�M (x)��N (x)) = P+(x) 8 x 2 X;
P�(x) = A�(x)P�(x)B�(x) in 
0 n 
; 
0 open, 
0 b X; 
 � 
0:
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28. Lecture 25: Isotropic families index theorem
Friday, 31 October, 2008

This lecture did not go over so well, there were de�nitely blank stares at what I
thought was the punchline! I think one problem was my insistence on working in
the generality of a symplectic bundle W over X instead of working on operators on
(Schwartz functions on the �bres of) a real vector bundle U over X { which is the
special case where W = U �U 0 with the symplectic form coming from the pairing.
It is a bit late now to undo this. In fact I clearly tried to include too much in this
lecture, as I discovered when I tried to write it up! Sorry about that, but I will
press on to the Atiyah-Singer Theorem. The argument I will use there is essentially
the same as this one, so maybe it will become clearer as we go on. This isotropic
index theorem is not actually needed in the proof.

Here is the outline I had originally for the lecture, which is pretty much what
I did. I will try to write out a di�erent version below in the hopes that it will be
more helpful. Of course, part of the problem was that I did not take the time to
do things in detail.

Outline:-

(1) Index for P 2 	k
iso(R

k); elliptic, is an integer.
(2) Index for an elliptic family P 2 C1(X; 	k

iso(R
k)); X compact, is an element

of K0(X) determined by choosing a parametrix and de�ning

(28.1) indiso(P ) = [I(P;Q)]

I(P;Q)(x) =

�
1� 2R2

L 2RL(Id+RL)Q
2RRP � Id+2R2

R

�
2 C1(X;H�1iso (Rk);

RL = Id�PQ; RR = Id�QP;
from (25.5).

(3) More generally we want to consider a symplectic bundle W �! X (I
will take the base here to be compact to avoid having to qualify various
statements and come back to the non-compact case if necessary { it isn't
seriously harder). Then we could take an elliptic family

(28.2) P 2 	k
iso(W=X;CN )

where this stands for the space of sections { so for each x 2 X we have an
element P (x) 2 	k

iso(Wx;C
N ) which varies smoothly with x 2 X: In fact,

for reasons of generality but also it turns out for topolical reasons that I will
mention somewhere, we will consider a pair of complex (smooth of course)
bundles over X; E = (E+; E�) which I write as a superbundle for fun and
brevity. Then we want an elliptic family

(28.3) P 2 	k
iso(W=X; hom(E)) elliptic,

which means `formally mapping sections of E+ to sections of E�:' Of course
the things we have are not operators so what this means is

(28.4)
P (x) 2 	k

iso(Wx; hom(E+(x); E�(x)) = C1(qWx; hom(E+(x); E�(x));

P 2 	k
iso(W=X; hom(E+; E�) = C1(qW ;�� hom(E+; E�)

where I have written out what these are as spaces of functions (well, sections
of bundles). Thus hom(E) = hom(E+; E�) is the bundle of homomorphisms
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on the �bres. The form algebras when E = (E;E) is a �xed bundle and
more generally form modules and can be composed when the bundles `in
the middle' are the same.

(4) So, what is the index of an elliptic operator (28.3)? It is supposed to
be given by the same formula (28.1). Of course we have to remember
the bundles. Still, the construction of a smooth parametrix goes through
unchanged to give

(28.5) Q 2 	�kiso (W=X; hom(E�)); E� = (E�; E+);

RL = Id�PQ 2 	�1iso (W=X; hom(E�); RR = Id�QP 2 	�1iso (W=X; hom(E+):

So, let us embed E �! (CN ;CN ) which is to say, embed both bundles
in trivial bundles which can be taken to have the same rank. Let ��(x) be
the projections onto the ranges of the embeddings of E� in CN : Now if we
look at (28.1) we get the central block in

(28.6) ~I(P;Q) =

0BB@
Id��+(x) 0 0 0

0 1� 2R2
L 2RL(Id+RL)Q 0

0 2RRP � Id+2R2
R 0

0 0 0 �(Id���(x))

1CCA :

So, this has been stabilized into a C2 
 CN and hence can be mapped
into H�1iso (W � R2=X): This then is our index from the point of view of
involutions. Later I will do the more conventional (but of course very closely
related) stabilization to projections.

(5)

Theorem 9. For an elliptic family (28.4) the class of the involution (28.6)
does not depend on the choices involved and so de�nes an index class which
only depends on the symbol (and of course the bundles):

(28.7) indiso(P ) = indiso(�(P );E) 2 K0(X):

The index map (say from elliptic-parametrix pairs) factors through the
semiclassicl index map giving the Thom isomorphism in terms of a map
[�] to be described giving a commutative diagram

(28.8) f(P;Q)g [�] //

indiso %%JJ
JJ

JJ
JJ

JJ
K0
c
(W )

indsl=Thomzzuuu
uu
uu
uu

K0(X):

Furthermore the vanishing of indiso(P ) is a necessary and su�cient condition
for the existence of a perturbation T 2 	�1iso (W=X;E) such that P + T is

invertible with inverse (P + T )�1 2 	�kiso (W=X;E�):
(6) Let me proceed to the idea of the proof without �rst de�ning the K-class

of the symbol, but that is really what I am working towards. For the
moment I will work with projections, but it might be better to do it with
involutions. So, what we have done above is embedd the two bundles as
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projection-valued sections of CN over X: So that is our data:

(28.9)

�� : X �!M(N ;C); �2� = �� and p; q 2 C1(SW ;M(N ;C));

��(x)p(wx) = p(wx) = p(wx)�+(x); q(wx)��(x) = p(wx) = �+(x)q(wx);

p(wx)q(wx) = ��(x); q(wx)p(wx) = �+(x); wx 2 @qWx:

Here q is just the inverse of p = �(P ) extended as zero outside the bundles.
So we need to understand how this gives an element of K0

c(W ):
(7) To do so, let me generalize the symbolic data in (28.9). Namely we can

take exactly the same thing except that we allow the projections to depend
on the variables on W but require them to be smooth up to the boudary
of the quadratic compacti�cation:-

(28.10)
�� : qW �!M(N ;C); �2� = �� and p; q 2 C1(SW ;M(N ;C));

��p = p = p�+; q�� = p = �+q; pq = ��; qp = �+ on @qW:

(8) Now what we want to do is to quantize this more general data. We can do
this in the following way:-

Proposition 37. For general data as in (28.10) there exist semiclassical
families of projections

(28.11)

�� 2 	0
ad(W=X;CN ) with �ad(��) = ��; �iso(��) = �� on @qW and

P; Q 2 	0(W=X;CN ) s.t. �0(P ) = p; �0(Q) = q;

R(��)P = PR(�+); R(�+)Q = QR(��);

RR = R(��)� PQ; RL = R(�+)�QP 2 	�1iso (W=X;CN ):

Here R is our usual restriction to � = 1 of the adiabatic family.

Proof. We can quantize the �� to semiclassical families, with constant
standard symbol (as a function of �:) Such a family is unique up to homotopy
through such families. Then we can quantize p and q to operators P 0 and
Q0; replace these by R(��)P

0R(�+) and R(�+)Q
0R(��): Then we need

to correct a little to get the remainder terms to be smoothing. �

Really this is just a variant of the elliptic construction.
(9) So, we can write down the `same' involution still de�ning a K-class:-

(28.12)

~I(P;Q;��) =

0BB@
Id��+(x) 0 0 0

0 1� 2R2
L 2RL(Id+RL)Q 0

0 2RRP � Id+2R2
R 0

0 0 0 �(Id���(x))

1CCA :

The uniqueness of the construction up to homotopy shows that this de�nes
an index from the `general data' in (28.10).

(10) I now need to de�ne the map for the `generalized data' into K0
c(W ):

(11) So, how does it improve things to make the problem harder? Well, there is
one thing to notice here.

Proposition 38. The data where �� are equal to the same constant projection
outside a compact subset ofW and p = q = Id on the range of this projection
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`generates' all generalized data up to operations, stability and homotopy,
under which the index is constant.

So, the proof is really this observation plus the fact that the index in
this case is given by semiclassical quantization.

So that was my original outline. Let me approach things from the other end
writing out the maps that do exist more carefully. Thank you Paul for pointing
out that I had lost a lot qiso's { I was using iso instead. This really does not make
any signi�cant di�erence; it just makes a di�erence. Note that X is taken compact
below.

First of all, what exactly is the families isotropic index? Consider the subspace
of elliptic operators

(28.13) Ell0qiso(W=X;E) � 	0
qiso(W=X;E) = C1(qW ;�� hom(E)):

As a space of `functions' the space on the right consists of the smooth sections over
qW; the quadratic compacti�cation of W; of the pull-back of the homomorphism
bundle from E� to E+ over X: Thus at each point of w 2 qW one has a linear
map from E+(x) to E�(x) where �(w) = x and this depends smoothly on w: The
elliptic elements are those for which the symbol, p; just the restriction to the sphere
at in�nity, is invertible. In particular the ranks of E� must be equal for there to
be any elliptic elements.

Lemma 31. Any elliptic family P 2 Ell0qiso(W=X;E) has a parametrix

Q 2 Ell0qiso(W=X;E�; ) E� = (E�; E+);

meaning that

(28.14) RL = Id�QP 2 	�1iso (W=X;E+); RR = Id�PQ 2 	�1iso (W=X;E�)

and any two parametrices are smoothly homotopic within parametrices.

Proof. Pretty much the same old constructions using the symbol map, iteration
and asymptotic summation. �

So we will consider the big set of pairs, of elliptic elements and parametrices as
in (28.14), together with smooth embeddings �� of the bundles E� as subbundles
of CN over X and denote this P0qiso(W=X;E) = fP;Q; ��g:
De�nition 7. Let D(W ) be the collection of elliptic data for W with elements
(p0; ��) where �� 2 C1(X;M(N;C) are projection-valued and p 2 Iso(SW ;�) is a
smooth isomorphism between the pull-back of the range of �+ and the pull-back of
the range of �� over SW:

Each element of P0qiso(W=X;E) de�nes an involution through

(28.15) I(P;Q; ��) =0BB@
Id��+(x) 0 0 0

0 1� 2R2
L 2RL(Id+RL)Q 0

0 2RRP � Id+2R2
R 0

0 0 0 �(Id���(x))

1CCA
2 H�1(W=X;CN )



126 RICHARD MELROSE

where, since we have chosen an embedding of E+ and E� into the trivial bundle CN ;
so all terms can be regared as `operators on' CN : Thus, the 4-fold decomposition
of C2 
CN = CN �CN in (28.15) is in terms of the ranges of (Id���(x)); ��(x);
�+(x) and Id��+(x)): In particular the operators in the central 2� 2 block are of
the form

(28.16)

�
	�1(W=X;E�) 	�1(W=X;E)
	�1(W=X;E�) 	�1(W=X;E+)

�
:

Exercise 22. Make sure that (28.15) is an involution.

Proposition 39. Corollary 7 shows that the involution (28.15) de�nes an element
of K0(X) and this induces a commutative diagram

(28.17) P0qiso(W=X;E)

[I(P;Q;��)]

&&NN
NN

NN
NN

NN
N

�

xxqqq
qq
qq
qq
qq

D(W )
indiso

// K0(X):

Proof. We have to check that the class [I(P;Q; ��)] de�ned by applying Corollary 7
to (28.15) is independent of the choices of parametrix, Q; of quantization P and of
embedding of E� in CN ; including the indepence of N: In fact the last of these is the
simplest since increasing N just corresponds to stabilization which is already part of
the de�nition of the map in K0(X): By de�nition the class [I(P;Q; ��)] is homotopy
invariant { notice that the notation really is inadequate since it depends on the
identi�cation of E� with the ranges of ��: Fixing everything else, independence of
the choice of P and Q follows from the fact that the linear family (1 � t)P0 + tP1
between any two quantization (operators with symbol p) consists of quantizations
and the construction of parametrices can be carried out uniformly in an additional
parameter (which can be hidden in X): Thus, it su�ces to suppose that P is �xed.
Then the linear homotopy (1� t)Q0+ tQ1 consists of parametrices. Thus it su�ces
to consider P and Q �xed and change the embeddings. Changing the embedding of
E� with �� �xed means conjugating by isomorphisms on the ranges of �+ and ��
in the middle block (but not the outer block) in (28.5). These can be rotated away
after stabilising a bit. On the other hand, if �0� is another family of projections with
range bundle isomorphic to E�; for the same N then there are necessarily elements
F� 2 C1(X; GL(N;C)) conjugating ��(x) to �

0
�(x) for each x and homotopic to

the identity, see Proposition 40 { these can be deformed away. �

Proposition 40. If Fi : E �! CN are two embeddings of a complex vector bundle
into a trivial bundle then, after stabilizing by further embedding as ~Fi = Fi � 0 :
E �! CN�CN there is an element A 2 C1(X; GL(N+M;C)) which is homotopic
to the identity and conjugates the range of F1 to the range of F2:

Proof. Let �i 2 C1(X;M(N;C) be the orthogonal projections onto the ranges of
the Fi: We can consider the joint embedding F1 � F2 : E � E �! C2N which has
range �1(x) � �2(x) at each point. Consider the `rotation' on C2N obtained by
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decompositing into the four pieces

(28.18) Gt : (v; w) 7�! �(x)v + (Id��1(x))w + �2(x)w + (Id��2(x))w
7�! (cos t)�(x)v + (sin t)F1(F2)

�1(�2(x)v) + (Id��1(x))w
� (sin t)F2(x)F

�1
1 �(x)v + (cos t)�2(x)w + (Id��2(x))w:

Clearly, G0 = Id and G�=2 conjugates the range of �1 � 0 to the rang of 0 � �2:
Following this by a 1-parameter family of rotations between the two factors, starting
at the identity and �nishing at a map which exchanges the factors (and reverses
one sign) �nally gives a bundle isomorphism of C2N which intertwines the two
projections and is connected to the identity { where it is easy to make the family
smooth:

(28.19) g0 = Id; g�11 (�1 � 0)g1 = �2 � 0:

�

Theorem 10. (Essentially Theorem 9 above). The relation � on D(W ) generated
by stability, bundle isomorphisms and homotopy on p; gives a natural isomorphism
D(W )= �= K0

c
(W ) which leads to a commutative diagram

(28.20) P0qiso(W=X; �)
[I(P;Q;��)]

&&MM
MM

MM
MM

MM
�

xxqqq
qq
qq
qq
qq

D(W )
indiso

//

�
&&MM

MM
MM

MM
MM

M
K0(X)

K0
c
(W )

Thom=psl

88qqqqqqqqqqq

under which the isotropic index map factors through the semiclassical realization
of the Thom isomorphism. The vanishing of ind(�(P ) in K0(X) is a necessary
and su�cient condition for the existence of a perturbation T 2 	�1iso (W=X;E) such
that P +T is invertible with inverse in 	0

iso(W=X;E�) and is also equivalent to the
exists of an homotopy, through elliptic elements starting from a stabilization of P;
to the identity.

So this is the families isotropic index theorem.
Now the main aim is to prove (28.20) identifying the isotropic index map with

the Thom isomorphism. It would be logical to discuss the relation � on the
symbol data, however as in the outline above, I prefer to launch into a discussion of
`generalized symbol data'. The key ingredient in the proof of (28.20) is then that
the index map can be extended to this more general data.

De�nition 8. The space eD0(W ) of generalized elliptic data for W consists of the
elements (p; ��) where �� 2 C1(qW ;M(N;C) are projection-valued and p 2
Iso(SW ;�) is a smooth isomorphism between the range of �+ and the range of
�� over SW:

So the only sense in which this is generalized compared to De�nition 7 is that
the projections are smooth on the whole of the quadratic compacti�cation of W {
rather than being pulled-back from X and so constant on the �bres. Of course

(28.21) D(W ) � eD0(W ):
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The main thing we need, and at this stage it may seem just like a strange
generalization, is to de�ne the index map on the whole of this generalized data. So
let me consider a big version of P0qiso(W=X; �) discussed above.

De�nition 9. Let eP0(W=X) consist of all elements (P;Q;��) where for some N;

(28.22)

�� 2 	0
ad;qiso(W=X;CN ); �2

� = ��;

�iso(��) is independent of �;

P; Q 2 	0
qiso(W=X;CN ) satisfy

P = R(��)P = PR(�+); Q = R(�+)Q = QR(��);

RL = R(�+)�QP; RR = R(��)� PQ 2 	�1iso (M=X;CN )

where R is the restriction of the adiabatic family to � = 1:

Again we certainly have

(28.23) P0(W ) � eP0(W=X)

where an element (P;Q; ��) can be regarded as an element of eP0(W=X) since ��
are just smooth matrices over X so can be thought of as adiabatic families, just
constant matrices on each �bre, which are then completely independent of �: In
particular in this case �� = �� with the isotropic symbol reducing to �� again
and this is constant in �:

Lemma 32. The adiabatic and istropic symbol maps induce a surjective map

(28.24) eP0(W=X) 3 (P;Q;��) 7�! (p; �� = �sl(��)) 2 eD0(W ):

Proof. The existence of the map (28.24) is just a matter of checking the consistency
conditions. Namely, the adiabatic symbols of �� are projections �� 2 C1(qW ;M(N;C):
The compatibility between adiabatic and istropic symbols means that the istropic
symbol restricted to � = 0 is �� restricted to the boundary, SW: Then the insistence
in (28.22) that the isotropic symbol be constant in � means this holds everywhere.
Then it follows from the other conditions in (28.22) that p = �iso(P ) satis�es

(28.25) ��p = p�+ = p

and the existence and properties of Q then it means it is an isomorphism from the
range of �+ to the range of �� at each point of SW:

So, the surjectivity is just the converse, that every such triple in eD0(W ) arises
this way. This is our usual constructive task { to �nd �� and P; Q as in (28.24)
given p and ��: First think about the ��: The joint surjectivity of semiclassical
and isotropic symbols means that we can choose �0� 2 	0

ad;iso(W=X;CN ) with

the symbolic conditions in (28.24) { since the compatibility condition is evidently
satis�ed. Now, I leave it to you to go back and see that �0�; which are necessary
projections up to leading order, in both the semiclassical and the isotropic sense,
can be deformed to be actual projections with the same symbols, i.e. by adding
terms which are lower order in both senses. In brief this comes from the same
iterative arguments with the symbols as before. Do it �rst at the semiclassical face,
checking that the resulting correction (after summing the Taylor series) is of order
at most �1 in the isotropic sense. Then do the same iterative correction using the
isotropic symbol and note that all terms, and hence the asymptotic sum, can be
chosen to vanish to in�nite order at � = 0 (so they aren't really semiclassical, just
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smooth in �): This corrects �0� to be projections modulo and error (�0�)
2 � �0�

which is of order �1 and vanishes to in�nite order at � = 0: Now, the integral
argument allows this to be corrected to a family of projections in � < �0 for some
�0 > 0: Since the isotropic symbol is constant anyway, reparameterizing allows the
family to be `extended' all the way to � = 1:

Now, having constructed �� we need to construct P and Q to satisfy the
remaining conditions. We can certainly choose P 0 2 	0

qiso(W=X;CN ) with �iso(P
0) =

p: Replacing it by P = R(��)P
0R(�+) does not change the symbol, given the

properties of p and the �� and of course implies that P = R(��)P = PR(�+): So,
it remains to construct Q satisfying the remaining properties. By assumption p has
a generalized inverse q 2 C1(SW ;M(N;C)) such that pq = ��; qp = �+ on SW:
First take Q0 2 	0

qiso(W=X;CN ) with �iso(Q
0) = q and set Q0 = R(�+)Q

0��: We

have everything but the last line in (28.22) and we have this to �rst order, because
of the properties of p and q { namley

(28.26) R0L = R(�+)�Q0P 2 	0
qiso(W=X;CN ) has

�iso(R
0
L) = �+ � qp = 0 =) R0L 2 	�1qiso(W=X;CN ):

Thus we wish to successively add lower order terms to make successive symbols
vanish. We can in fact add any term of order �1 or the form R(�+)Q1R(��)
to Q0 and this has arbitrary symbol of order �1 of the form �+q1��: Moreover
it follows by composing the identity in (28.26) on the right with �� and the left
with �+ that the symbol of R0L of order �1 is of this form. So, iterating this
argument and asymptotically summing we can arrange that Q satis�es the �rst
identity on the last line in (28.22) with everything else still holding. So, it remains
to ensure the last condition { which can certainly be done by the obvious variant
of the preceeding argument, but we need both to hold at once! So, go back to the
previous construction and proceed by induction. The extra step is that at stage p
we have arranged that R0L is of order �k�1 and R0R is of order �k and we want to
correct the second without destroying the �rst. The term we add to Q0 is �+Q

0
k��

where ��k(Q
0
k) = qk = ���kR0R: However, from the de�nition of R0R = �+�PQ0;

R0RP = PR0L has vanishing symbol of order �k; so q0kp = 0 from which it follows
that both conditions then hold at order �k and the induction can continue.

Thus indeed the operators in (28.22) can be constructed and surjectivity follows,
proving the Lemma. �

Proposition 41. The analogue of Proposition 39 holds for the `generalized' para-
metrix sets and elliptic data, so inducing a commutative diagram which restricts to
(28.17):-

(28.27) fP0qiso(W=X;E)

[I(P;Q;��)]

&&NN
NN

NN
NN

NN
N

�

xxqqq
qq
qq
qq
qq

eD(W )
indiso

// K0(X):
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Proof. The main thing to notice is that modifying (28.15) to

(28.28) I(P;Q;��) =0BB@
Id��+(x) 0 0 0

0 1� 2R2
L 2RL(Id+RL)Q 0

0 2RRP � Id+2R2
R 0

0 0 0 �(Id���(x))

1CCA
2 H�1(W=X;CN )

gives a family of involutions with essentially the same homotopy properties as in the
proof of Proposition 39. I will write a little more, especially about the conjugation
which shows up when we change things { here it is a bit more general but the same
arguments work. �

So, if you believe all that, observe that something rather pleasant happens in that

we have another `extreme' subset of eD0(W ) (the other one being D0(W ): Namely
consider

(28.29) D�1(W ) = f(�1; ��);
�+ = �1 + a+; a+ 2 S(W=X;M(N;C); �� = �1 2M(N;C)g:

Thus in this subset, �� is constant, �+ is a Schwartz perturbation of �� = �1
and p is the identity map on the range of �1: Thus the �1 is denotes, that the
elements are smoothing perturbations of constant objects (we could allow �� to
have a Schwartz term too).

Lemma 33. The equivalence relation ��1 on D�1(W ) in which elements can be
stabilized, by the addition of the identity or of zero on a complementary subspace
(so increasing N); or subject to homotopies within D�1(W ); so preserving the
constancy of �� on qW etc, but allowing �1 to vary inM(N;C) with the parameter,
gives a natural isomorphism

(28.30) D�1= ��1 =�! K0
c
(W ):

Proof. We de�ne the map (28.30) directly. For an element (�+; �1) in D�1(W )
(so �� = �1 is a projection in M(N;C) and �+ is a family of projections on W
which is a Schwartz perturbation of �1) let M = rank(�1: The cases M = N
and M = 0 are trivially globally constant. So, we can add either an identity
block of size N � 2M if this is positive or a zero block of size 2M � N in the
opposite case, to arrange that N = 2N keeping equivalence under ��1 : Now, all
projections inM(N;C) of given rank are are homotopy where the curve is obtained
by conjugation with a curve in GL(N;C): So after an admissible homotopy under
��1 we can arrange that N = 2p is even and under a decomposition C2p = C2
Cp
(28.31) �1 = E+ 
 Idp�p =) I(w) = �+(w)� (Id��+(w)) �! S(W ;H�1iso (R))

where as usual we are further stabilizing by using the harmonic oscillator basis of
S(R) to map into H�1iso (R):

It remains to check that passing to homotopy classes in (28.31) projects to a
map (28.30) into K0

c(W ) and that this map is an isomorphism. I omit the details
but surjectivity is clear enough by �nite rank approximation and after stabilization
homotopy on the left in (28.31) exhausts the freedom on the right. �
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Proof of Theorem 10. The crucial observation is that we know already how to
quantize the data in D�1(W ) in (28.29). So we prove the main result by looking
at the expanded and rearranged version of (28.17):-
(28.32)

P0qiso(W=X; �)
�

��

� � // eP0qiso(W=X; �)
�

��

P�1iso (W=X; �)
�

��

? _oo

D(W )

[�]

��

� � // eD(W )

[�]

��

D�1(W )

[�]

��

? _oo

D(W )= �

indiso ((PP
PPP

PPP
PPP

PP
eD(W )= �
indiso

��

D�1(W )= ��1
indiso

vvmmm
mmm

mmm
mmm

m
K0
c(W )

Thom
ssggggg

gggg
gggg

gggg
gggg

gggg
gggg

g

K0(X):

So, we proceed to check that this diagram commutes.
Going down the left side is repeating the discussion above, that we know how to

de�ne the isotropic families index by looking at the family of involutions I(P;Q; ��):
The image, in K0(X) of this isotropic index map factors through the symbol data,
into D0(W ) and further under the equivalence relation � to the quotient. So the
map from top left down the left side and to K0(X) is the isotropic index in the
sense of [I(P;Q; ��)]: The same is true down the middle column, except that the
problem has been `aggrandized' by includion of semiclassical Toeplitz objects { the
��: We also know the top two maps from the left column, given by inclusion,
give commutative squares. Similarly for the next map down we know there is an
inclusion-induced map from left to right where I have equality, and this gives a
commutative left side. Everything is the same on the right side, again with a map
now from right to left third down; the equality to K0

c(W ) is Lemma 33.
So the only things left to show are that the maps in the third row are isomorphism,

and given their naturality as inclusion maps can then be regarded as equalities plus
the proof of the commutativity of the lower right triangle.

Let's do the last part �rst. Going way back to the discussion of the Bott element.
Modulo checking the details it is clear enough. The `isotropic index' in this case is
obtained by semiclassical quantization of the one projection �+ { the isotropic part
of the quantization is trivial since there we just have �1 itself. So, this map and the
Thom isomorphism are given by semiclassical quantization. Unfortunately on one
side it is given by quantization of a projection and the other side by an involution.
Of course the projection is supposed to be the positive part of the involution, so
the exact correspondence needs to be checked.

By Lemma 33 it is enough to consider the case where �1 = E+ on C2 
 CN
where E+ is the projection onto the �rst element of C2; tensored with the identity
of course. The semiclassical quantization of �+ 2 C1(qW ;M(N;C)) to a family
of projections �+ also gives a semiclassical quantization of the involution �+ �
(Id��+) = 
1 + a with a Schwartz. So, it is only necessary to check that the
isotropic index, which is [I(P;Q;��)] for this very special data, is the same as the
class of semiclassical quantization of the involution at � = 1 which de�nes the Thom
isomorphism.
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A bit more detail needed here.
Proving the horizontal maps are equalities is showing that every class in eP= �

can be represented uniquely by an element either in P= � or P�1= ��1 : It is
straightforward.

There is still more to Theorem 10 apart from (28.20) { which certainly follows
from (28.32). Namely, what happens if the index vanishes. Going through the
proof of the equalities of the quotients in (28.32) and of course using the fact
that the Thom map is an isomorphism, one concludes that the vanishing of the
isotropic index implies that (P;Q; ��) � 0: Looking at the equivalence relation, the
implication is that the symbol p; between the original bundles, is, after stabilization
by the identity on some additional bundle, homotopic to a bundle isomorphism {
can be deformed to be constant on the �bres of SW over X: This is one of the two
claims.

The other one is more interesting analytically so I will extract it for later
reference. �

Proposition 42. If P 2 	0
qiso(W=X;E) is elliptic then there is a perturbation

T 2 	�1qiso(W=X;E) such that P +T has a generalized inverse Q 2 	�1qiso(W=X;E�)
meaning

(28.33)

(
$L = Id+�Q(P + T ) 2 	�1iso (W=X;E+)

$R = Id��(P + T )Q 2 	�1iso (W=X;E�)
are projections

and the index is represented by the K-class indiso(P ) = Ran($L) 	 Ran($R): If
this K-class vanishes then T can be chosen so that P + T is invertible.

So the isotropic index is the precise obstruction to perturbative invetibility without
any need to stabilize. This is basically because there is `enough room' in the
smoothing terms.

Proof. Replace P by P (Id��N ) = P + T where �N is the sequence of harmonic
oscillator projections and check that for large N this has `null space the range of
�N ' (these aren't actual operators) and (28.33) can be arranged. If the index K-
class vanishes this means that after increasing N enough (e�ectively stabilizing)
the bundles de�ned by �N = �L and �R are isomorphic. This there is a further
perturbation T which maps precisely from the `null space' of P (Id��N ) to the
range of �R and hence P (Id��N )+T is invertible with the invserse as claimed. �
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29. Lecture 26: Semiclassical push-forward for fibrations
Monday, 3 November, 2008

At this point I want to start the transition to geometric settings and in particular
the Atiyah-Singer index theorem. This can be paraphrased in the form: `The push-
forward in K-theory for �brations is realized by the index of pseudodi�erential
operators' { although this is slightly misleading since the push-forward is from the
�bre-cotangent bundle of the �bration. That is what I want to examine today.

So, let me start with a single compact manifold Z: In fact I will allow it to be
a manifold with corners later, but for the moment let us require that it not have a
boundary. The basic commutative object is C1(Z); the space of smooth functions
on Z: I will also assume that you know about �kZ; the bundle of k-forms on Z:

One thing we need to be able to do is to integrate, invariantly. Given the
transformation law for integrals under coordinate changes we can only integrate, at
least in the usual sense, objects which transform with a factor of the absolute value
of the Jacobian unless we assume that the manifold is oriented. The latter works
because we then only make coordinate changes with positive Jacobian matrices
anyway and volume forms v 2 C1(Z; �nZ); n = dimZ; transform with a factor of
the Jacobian:-

(29.1) F �(dz1 ^ � � � ^ dzn) = det

 
@Fi(z)

@z0j

!
dz01 ^ � � � ^ dz0n; zj = Fj(z

0):

Here the �bre at a given point �nzZ can be viewed as the space of totally antisymmetic
multilinear forms

(29.2) TzZ � TzZ � � � � TzZ �! C or R:

In general �kzZ is a contraction for �k(T �z Z) and alternatively on can identify �nzZ
as the space of linear functions on, i.e. the dual of, �n(TzZ): The latter is a one-
dimensional vector space so we can apply the self-proving

Lemma 34. For any one dimensional real vector space L the space of absolutely
homogoneous functions of degree �

(29.3) f : L n f0g �! R; f(tv) = jtjf(v) 8 t;2 R n f0g; v 2 V n f0g
is a well-de�ned one-dimensional vectors space, denoted 
�V �; or 
V � when � = 1:

It follows easily enough that the �bres 
(�nzZ) form a smooth one-dimensional
vector bundle 
Z over Z: This is the space of densities.

Exercise 23. If you have not done this before, check that the integral is well-de�ned
by reference to local coordinates and a partition of unity:

(29.4)

Z
Z

: C1(Z; 
Z) �! R or C:

Note that if v 2 C1(Z; �nZ) then jvj 2 C0(Z; 
Z) can be integrated and if Z
is oriented and v > 0 this gives the integral back again (and in that case jvj 2
C1(Z; 
Z)):

Now consider the product, Z1 � Z2; of two compact manifolds. The density
bundle on Z2 can be pulled back to the product, where we can again denote it

Z2 or �

�
R
 where �R : Z1 � Z2 �! Z2 is the projection and we drop, as obvious,
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the reminder that the bundle comes from the second factor. Fubini's theorem then
shows that

(29.5)

Z
Z2

: C1(Z1 � Z2;�R
) �! C1(Z1):

Exercise 24. Try to write down a clean proof of the existence, and natural properties,
of the integration map

(29.6)

Z
Z2

: C1(Z1 � Z2;��LE 
 �R
) �! C1(Z1;E); �L : Z1 � Z2 �! Z1

being the projection onto the �rst factor and E being any vector bundle over Z1:

We will make extensive use of smoothing operators. Let me set these up �rst
for any pair of compact manifolds Zi; i = 1; 2 with complex vector bundles Ei over
them. Namely a smoothing operator is a continuous linear map

(29.7) A : C1(Z2;E2) �! C1(Z1;E1)

which is given by the generalization of (29.6). Namely there must exist a Schwartz
kernel A 2 C1(Z1 � Z2; Hom(E2; E1)
 ��R
) such that

(29.8) Au(z1) =

Z
Z2

A(z1; z2)u(z1)

Here Hom(E2; E1) is a bundle over Z1 � Z2 which has �bre at a point (z1; z2) the
linear space of linear maps T : (E2)z2 �! (E1)z1 { it is unfortunate about the
reversals here. Standard linear algebra gives a natural isomorphism

(29.9) Hom(E2; E1) = E1 � (E2)
�:

Then (29.8) reduces to (29.6) since it means we `contract' in E2 { or apply the
homomorphism { to get

(29.10) A(z1; z2)u(z2) 2 (E1)z1 
 
(Z2)z2

and then we can integrate.

Exercise 25. I have not discussed the Fr�echet topology on C1(Z;E) for a vector
bundle over Z { it is basically the same as the earlier spaces such as S(Rn): In fact
it is isomorphic to this space! You might wish to go through the topology carefully
(and think about the isomorphism which will appear a little later).

For the moment we are most interested in the case Z1 = Z2 = Z and E1 = E2 =
E; then Hom(E) = Hom(E;E) is a bundle over Z2: The `usual' homomorphism
bundle, hom(E) = hom(E;E) is a bundle over Z which is the restriction of Hom(E)
to the diagonal.

Lemma 35. The space C1(Z2; Hom(E)
��R
) is an associative, non-commutative,
Neumann-Fr�echet algebra, denoted 	�1(Z;E) under the operator product

(29.11) AB(z; z0) =

Z
Z

A(z; z00)B(z00; z0):

Proof. I leave it to you to check that similar arguments as in the isotropic case
show that the product is continuous and that it has the corner property. For the
moment this means that with seminorms (based on continuous derivatives in local
coordinates and trivializations)

(29.12) kA1A2A3kk � CkA1kkkA2k0kA3kk:
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This again is Fubini's theorem. It follows that for A in a neighbourhood of the zero
in 	�1(Z;E) the operator Id+A is invertible with inverse Id+B; B 2 	�1(Z;E):

�

Exercise 26. Let G�1(Z;E) be the corresponding Fr�echet group { it is in fact an
open dense subset of 	�1(Z;E) with the `drop the Id' identi�cation. I invite you
to check that many things we have done previously hold for this group. It has a
determinant function, admits �nite rank approximation and it is a classifying space
for K1 : I will write down the Chern forms and so on later.

This is our replacement in the geometric setting for 	�1(Rk;CN ): Moreover
we can generalize at least some of the things we have done before. First we can
introduce the corresponding semiclassical algebra. The scaling here is slightly
di�erent to the isotropic case, but this does not in the end make very much
di�erence. Of course we immediately know what smooth dependence on a parameter,
even one in a manifold, means.

For the semiclassical calculus we want to consider the appropriate subspace of
kernels

A� 2 C1((0; 1]; 	�1(Z;E) = C1((0; 1]� Z2; Hom(E)
 ��R
)
where I am even too lazy to write the extra pull-backs from Z2 to (0; 1]� Z2: So,
of course the crucial thing is to specify exactly what happens as � # 0: We demand
two things of the kernels A�: First assume E = C :

If K � Z2 is closed and K \Diag = ; then
A� ! 0 rapidly with all derivatives as � # 0 on K:(29.13)

If U � Z is a coordinate chart then 9 FU 2 C1([0; 1]� U � Rn) s.t.

A�(z; z
0) = ��nFU (�; z;

z � z0
�

)jdz0j on (0; �0(K))�K �K; �0(K) > 0 8 K b U:

(29.14)

So, there are two main changes compared to the Euclidean case. First we need to
specify the rapid vanishing away from the diagonal { this is true in the Euclidean
case anyway { since we do not have global coordinates. Secondly, the scaling is
di�erent in (29.14) { it simply does not make sense to scale the base variable since
they lie in U: I have also not made the `Weyl' change from z to (z + z0)=2 but this
is only because I would have to put a double covering { since (z+ z0)=2 is not in U
in general.

Exercise 27. Work out the wording for (29.14) in terms of Weyl coordinates.

This is a seriously overspeci�ed de�nition. Even so, this would not make much
sense if it wasn't really local:-

Exercise 28. Check that (29.14) for all coordinate charts is equivalent to the same
de�nition for a covering by coordinate charts, given (29.13). Check at the same
time that the bundle E can be put back in where in (29.14) U should be such that
E is trivial over it and then f should take values in M(N;C) where N is the rank
of E:

Proposition 43. The semiclassical families form an algebra under operator composition,
denoted 	�1sl (Z;E) with a well-de�ned symbol map giving a multiplicative short
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exact sequence

(29.15) �	�1sl (Z;E) �! 	�1sl (Z;E)
�sl�! S(T �Z; hom(E));

where in any local coordinate system

(29.16) �sl(z; �) =

Z
Rn

e�iZ��FU (0; z; Z):

Proof. Use the preceeding exercise to reduce the problem to local coordinates and
then check directly by changing variable as we did before. Most importantly, check
that the leading part of FU ; FU (0; z; Z)jdZj is actually a well-de�ned density on
TzZ for each z 2 Z; so (29.16) makes sense and gives a well-de�ned function on the
cotangent bundle { the density is absorbed by the Fourier transform. �

Digression 1. I am pretty unhappy having to do local coordinate proofs like the
one above { that I have not done. So, I now resort to global de�nititons of things
like the semiclassical calculus described above, where the composition and symbolic
properties become geoemtrically complelling. In this case it is convenient to use the
notion of real blow up. Since I do not have the time to discuss this in the course I
have not used it, although I have come close. You could look at the notes from my
introductory lectures at MSRI this year but it can also be found in lots of other
places. So, let me just assume you know what blow up is. The manifold we want
to consider, a manifold with corners, is by de�nition

(29.17) Z2
sl = [[0; 1]� Z2; f0g �Diag]; �sl : Z

2
sl �! [0; 1]� Z2:

That is, it is the kernel and parameter space, blown up at the diagonal at � = 0:
This is a manifold with corners with a `front face' corresponding to the blow
up { it is a bundle over f0g � Diag which is naturally isomorphic to TZ; the
radial compacti�cation of the tangent bundle of Z: The other, or `old', boundary
hypersurface is the closure of the preimage of f0g � (Z2 n Diag): It is naturally
di�eomorphic to [Z2; Diag]; the product with the diagonal blown up. The intersection
of these two faces, the corner, is naturally the sphere bundle, the boundary of the
radial compacti�cation of the tangent bundle of Z:

The blow-down map can be composed with the projections to get, for instance

(29.18) ~�R = �R � � : Z2
sl �! Z and ~� = �Z2 � � : Z2

sl �! Z2

which are also smooth.

Proposition 44. The kernels of semiclassical operators, forming 	�1sl (Z;E) can
be identi�ed naturally (by continuity from � > 0) with

(29.19)
�
A 2 (��(�))�nC1(Z2

sl;
~��Hom(E)
 ~��R
);

( ~���)nA � 0 at ��1(f0g � (Z2 nDiag)	:
Thus, except for the power of � (which can be hidden in the density if one

prefers) the kernels are smooth on Z2
sl. The semiclassical symbol then comers from

the restriction of the kernel to the front face. If the � factor is absorbed into the
density, this is naturally a Schwartz function on TZ with values in the �bre density.
The Fourier transform along the �bres then gives the function �sl(A): The exactness
of (29.15) is then just the fact that vanishing at the front face produces a similar
kernel with an extra factor of � { since the kernel vanishes rapidly at the `old' face
by assumption.
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The product itself can be usefully viewed in this picture too. I may put in a
description here if I have an idle moment!

So, all this is setting up the semiclassical calculus of smoothing operators on
a compact manifold. Naturally we want to go further and the main immediate
extension is to operators on the �bres of a �bration. This is the setting of the
Atiyah-Singer theorem.

Recall that a smooth map � : M �! Y between manifolds (compact or not) is
a �bration if there exists another manifold Z such that each point �y 2 Y has an
open neighbourhood U � Y corresponding to which there is a di�eomorphism FU
giving a commutative diagram

(29.20) ��1(U)
FU //

�

##G
GG

GG
GG

GG
U � Z

�L

||yy
yy
yy
yy
y

U:

Exercise 29. Recall that the implicit function theorem shows that if M and Y
are compact and connected then the condition that � be a submersion, that its
di�erential be surjective at each point of M; implies that it is a �bration. The
connectedness conditon can be dropped with minor consequences. Dropping compactness
is more serious.

If Y is connected, or by �at in the de�nition above, the manifold Z is �xed, up
to di�eomorphism. I will use the notation

(29.21) Z M

�

��
Y

for a �bration and denote the �bre above y 2 Z by Zy = ��1(y): There is no speci�c
map from Z to a given �bre, but such a di�eomorphism does exist by hypothesis
from (29.20).

Now, if I am to get this far I will have to be quick. Let me just say, the
coordinate invariance of the smoothing algebra and the semiclassical algebra on a
�xed manifold, Z; means that it can be transferred to the �bres of � in such a way
that we know what

(29.22) 	�1(M=Y ;E) and 	�1sl (M=Y ;E)

are, where E is a bundle over M (not necessarily coming from a bundle over Y ):
They are the spaces of smooth sections of bundles of (families of) operators. In the
�rst case we get for each y 2 Y an element of 	�1(Zy;Ey) where Zy = ��1(y) and
Ey is the restriction of E to this submanifold (which of course is di�eomoprhic to
Z): In the second case we get a semiclassical family, an element of 	�1sl (Zy;Ey):
Enough said, well not quite. We need a little of the geometry of �brations.

The pull-back of the cotangent bundle of the base ��T �Y �! T �M is a subbundle
and the quotient is denoted

(29.23) T �(M=Y ) = T �M=��T �Y; � : T �(M=Y ) �!M:

Its �bre can be thought of as the space of �bre-di�erentials at that point of M:
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We will let G�1(M=Y ;E) be the group of invertibles in Id+	�1(M=Y ;E) and
H�1(M=Y ;E) the space of involutions of the form 
1+a; a 2 	�1(M=Y ;C2
E)
where 
1 is the usual 2� 2 matrix.

One of the more serious generalization of the isotropic picture that we need is

Proposition 45. If Y is compact and (29.21) is a �bration with compact �bres (of
positive dimension) then for any bundle E over M there are natural identi�cations

(29.24)
�0(G

�1(M=Y ;E)) = K1(Y );

�0(H�1(M=Y ;E)) = K0(Y ):

To prove this I will rely on a construction that I will not give in the lectures.
Not that it is hard, just that it is not so amusing.

Proposition 46. For any �bration, (29.21), with compact total space and any
complex vector bundle E there is a sequence of elements �j 2 	�1(M=Y ;E) which
are projections, �2

j = �j and are such that A�j ! A and �jA ! A; as j ! 1;
for each A 2 	�1(M=Y ;E):

Proof of Proposition 45. We can retract onto operators acting on sections of the
range of the bundle �j ; for j large enough, and then stabilize to get elements of

K1(Y ) or K0(Y ) and conversely. I should do this properly, but it is similar to the
corresponding proof for a symplectic bundle, once we have the �j 's. �

This again means that the twisting by the �bration does not matter and extends
the claims made above that G�1(Z;E) is classifying for odd K-theory.

Finally then after wading through all this stu�, we get a theorem which should
be almost self-proving at this stage. Let GL(E) be the bundle of invertible linear
maps on the �bres of E and H(E) be the bundle with �bre the involutions on the
�bres of C2 
 E:
Theorem 11. In case the base and �bre of the �bration (29.21) is compact, the
semiclassical symbol restricts to give surjective maps with connected �bres

(29.25)
G�1sl (M=Y ;E) �! S(T �(M=Y );��GL(E))

H�1sl (M=Y ;E) �! S(T �(M=Y );��H(E)):
Complementing E to a trivial bundle and using the standard stabilizations maps
gives

(29.26)
�0(S(T �(M=Y );��GL(E))) �! K1

c
(T �(M=Y )) and

�0(S(T �(M=Y );��H(E))) �! K0
c
(T �(M=Y ))

which cover the images as E varies and then, using (29.24), de�ne push-forward
maps

(29.27)
psl : K

1
c
(T �(M=Y )) 3 [�sl(A)] 7�! [R�=1(A)] 2 K1(Y );

psl : K
0
c
(T �(M=Y )) 3 [�sl(A)] 7�! [R�=1(A)] 2 K0(Y ):
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30. Lecture 27: Analytic index of Atiyah and Singer
Wednesday, 5 November, 2008

Reminder. (And partly correction and revision) Last time, despite getting myself
pretty seriously in knots on the board { and even in the notes to some extent, I more
or less succeeded in de�ning the semiclassical push-forward maps in K-theory. Let
me recall how this goes { see Theorem 11 { or at least should have gone. In fact
I will add a little bit of stabilization. For a �bration with compact �bres, (29.21),
(the compactness of the base is not needed at all here) we can de�ne the stabilized
semiclassical algebra on the �bres. As a space of `functions' this is, as de�ned in
Digression 1,

(30.1)
�
F 2 C1([[0; 1]�M2

�; f0g �Diag];S(R2)
 ��R
);
F � 0 at the old boundary.

	
where I am using illegal blow-up notation and M2

� is the �bre diagonal { the

submanifold of M2 consisting of the pairs of points in the same �bre. I have also
dispensed with the vector bundle E over M; because it is supposed to be embedded
in S(R) by a projection-valued map �E :M �! 	�1iso (R): This globalized de�nition
means that the kernel of A 2 C1((0; 1]; 	�1iso (M=Y � R) is following form in local
coordinates in a patch U in the base and V � ��1(U) in the �bre

(30.2) A(�; y; z; z0; y; y0) =

��dF 0(�; y; z;
z � z0
�

; y; y0)jdy0j; F 2 C1([0; 1]� U � V ;S(RdZ � R2))

Here d is the dimension of the �bre, Z; and 
 has been trivialized over the coordinate
patch, which is the jdy0j and F 0 is the local representative of the function in (30.1).
Under composition these form an algebra of operators

(30.3) 	�1ad(�);iso(M=Y �R) 3 A : C1([0; 1]�M ;S(R)) �! C1([0; 1]�M ;S(R)):

Moreover they have a symbol map which captures the behaviour at � = 0 obtained by
restricting F to � = 0 and taking the Fourier transform in the `adiabatic variable'
Z which pieces together globally:

(30.4) �	�1ad(�);iso(M=Y � R) �! 	�1sl();iso(M=Y � R) �sl�! 	�1sus(T�(M=Y );iso(R):

The image of the symbol map is just a family of isotropic smoothing operators
on R; i.e. elements of S(R2) depending smoothly, and in a Schwartz manner, on
parameters in T �(M=Y ) = T �M=��(T �Y ) the bundle of `�bre di�erentials'.

As usual 	�1ad(�);iso(M=Y � R) is a Neumann-Fr�echet algebra and we can de�ne

our usual group and space of involutives:-
(30.5)
G�1ad(�);iso(M=Y � R) = �A 2 	�1ad(�);iso(M=Y � R);

9 B 2 	�1ad(�);iso(M=Y � R); (Id+B) = (Id+A)�1
	

H�1ad(�);iso(M=Y � R) = �A 2 	�1ad(�);iso(M=Y � R)
M(2;C); (
1 +A)2 = Id
	
:
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Now, the `usual symbolic construction and correction' shows that the adiabatic
symbol maps

(30.6)
G�1ad(�);iso(M=Y � R) �ad�! G�1sus(T�(M=Y );iso(R)

H�1ad(�);iso(M=Y � R) �ad�! H�1sus(T�(M=Y );iso(R)

are `homotopy equivalences' in the sense that they induce isomorphisms
(30.7)

�0

�
G�1ad(�);iso(M=Y � R)

�
�ad�! �0

�
G�1sus(T�(M=Y );iso(R)

�
= K1

c
(T �(M=Y ))

�0

�
H�1ad(�);iso(M=Y � R)

�
�ad�! �0

�
H�1sus(T�(M=Y );iso(R)

�
= K0

c
(T �(M=Y )):

Finally, I `explained' but did not prove that the corresponding restriction to � = 1

(30.8)
G�1ad(�);iso(M=Y � R) R�=1�! G�1iso (M=Y � R)
H�1ad(�);iso(M=Y � R) R�=1�! H�1iso (M=Y � R)

lead to

(30.9)
�0

�
G�1ad(�);iso(M=Y � R)

�
R�=1�! �0

�G�1iso (M=Y � R)� = K1
c
(Y )

�0

�
H�1ad(�);iso(M=Y � R)

�
R�=1�! �0

�H�1iso (M=Y � R)� = K0
c
(Y )

where it is these last identi�cations which are not obvious, because of the twisting
in the bundles.

Combining these two maps, the `invertible' one for the symbol and the second
one for the restriction to � = 1 gives the (semiclassical) push-forward, or index,
maps

(30.10)
(��)! : K

1
c
(T �(M=Y )) �! K1

c
(Y )

(��)! : K
1
c
(T �(M=Y )) �! K1

c
(Y )

where � : T �(M=Y ) is the projection onto M and � :M 7�! Y so the composite is
�� : T �(M=Y ):

This is a `generalization' (it isn't really nbecause of the non-compactness of the
�bres) of the Thom isomorphism(s) { where for a real vector bundle, V �! Y;
T �(V=Y ) � V �Y V � = V � V � = W is naturally symplectic, and ultimately the
Bott periodicity maps, where \M = Y � Rk" and \T �(M=Y ) = Y � R2k". In
contrast to these cases the maps (30.10) need not be isomorphisms.

So, either I will go throught that or I will explain the content of the Atiyah-Singer
index theorem in K-theory.

In the same setting of the �bration (29.21) we can consider di�erential operators
or pseudodi�erential operators on the �bres ofM: These are just operators `between
sections of bundles on Z' but twisted by the di�eomorphisms involved in the
transition maps for �: In fact they can be de�ned perfectly directly. I will not
go through the de�nition here, unless there is a desire for me to do so. Let me just
`remind you' further.

Pseudodi�erential operators of order K on a �xed compact manifold Z can be
de�ned either globally through their kernels or locally through coordinate patches {
naturally I prefer the �rst de�nition but I will brie
y describe the second one. First
on Rn we de�ne operators which are not the isotropic pseudodi�erential operators
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discussed above. They are very closely related but they are not the same. To see
the di�erence in terms of kernels, recall that the kernel of an isotropic pseudodif-
ferential operator of order k (recall that there is an issue of a 1

2 with the orders) is

a distribution on R2n which can be written in Weyl form as

(30.11) A(
z + z

2
; z � z0) =

(2�)�n
Z
Rn

a(
z + z

2
; �)ei(z�z

0)��d�; a 2 ��k=2q C1(qR2n)

() A 2 	k
qiso(R

n):

The integral here is not convergent if k � �2n but is then to be interpreted as the
inverse Fourier transform on tempered distibutions. The `ordinary' as opposed to
`isotropic' pseudodi�erential operators are given by the same formula but with a
di�erent class of amplitudes:-

(30.12) A(
z + z

2
; z � z0) =

(2�)�n
Z
Rn

a(
z + z

2
; �)ei(z�z

0)��d�; a 2 S(Rn; C1(R2)() A 2 	k
S(R

n):

This is not quite standard notation, but the S denotes the rapid vanishing of the
coe�cients. This is again an algebra of operators on S(Rn); but neither of these
algebras is contained in the other,

(30.13)
	k
S(R

n) �	l
S(R

n) � 	k+l
S (Rn);

	k�1
S (Rn) �! 	k

S(R
n)

�k�! S(Rn; C1(Rn�1;Nk)):

Here Nk is the line bundle over the sphere at in�nity generated by the �kth power
of the de�ning function { it just hides homogeneity. The symbol sequence here is
exact and multiplicative.

If the `full symbol' a in (30.12) is supported in a set of the form K � Rn

where K is compact (this is essentially impossible for isotropic operators) then
the kernel A(z; z0) is smooth in 
 � 
 for any open set 
 � Rn with 
 \K = ;:
In particular there are plenty of pseudodi�erential operators with kernels having
compact support in sets of the form U � U where U � Rn is open. Furthermore,
taking such an operator and `changing coordinates' by making a di�eomorphism to
U 0 again gives a kernel of the same form, with a di�erent amplitude. This coordinate
invariance allows pseuodi�erential operators to be de�ned by coordinate covering
on any compact manifold Z and acting between sections of any two vector bundles
E+ and E� over Z: Thus

(30.14) 	k(Z;E) 3 A : C1(Z;E+) �! C1(Z;E�)

can now be taken to be well-de�ned. There is a multiplicative symbol map which
is invariantly de�ned and gives

(30.15) 	k�1(Z;E) �! 	k(Z;E)
�k�! C1(S�Z;�� hom(E)
Nk):

Here S�Z = @T �Z is the boundary of the radial compacti�cation of the cotangent
bundle, � : S�Z �! Z (and I usuall drop the �� from the notation) and Nk is the
same bundle as before. Multiplicativity means
(30.16)
	k(Z;F;E�) �	l(Z;E+; F ) � (=)	k+l(Z;E+; E�); �k+l(AB) = �k(A)�l(B):
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Of course there is a lot more to be said, but I am assuming this is all `well-
known'. Now for the �bration (29.21) we can de�ne the `pseudodi�erential operators
acting on the �bres' because of coordinate invariance and we get a similar space of
operators `depending on Y as parameters':
(30.17)

	k(M=Y ;E) 3 A : C1(M ;E+) �! C1(M ;E�);  
�1 =

\
k

	k(M=Y ;E):

Finally then we arrive at the Atiyah-Singer setting where we have elliptic operators,
meaning the symbol has an inverse.

(30.18) Ellk(M=Y ;E) =

fA 2 	k(M=Y ;E); 9 b 2 C1(S�(M=Y );E� 
N�k; �k(A)b = b�k(A) = Idg:
Then we can construct parametrices and set

(30.19) Pk(M=Y ;E) = f(A;B) 2 	k(M=Y ;E)�	�k(M=Y ;E);

RR = Id�A �B 2 	�1(M=Y ;E�); RL = Id�BA 2 	�1(M=Y ;E+)g:
Theorem 12. For any �bration (29.21) with compact total space there are natural
maps inducing the analytic index map
(30.20)

Pk(M=Y ;E) //

��

Ellk(M=Y ;E)

��
fa 2 C1(S�(M=Y ); hom(E)
Nk) invertibleg // K0

c
(T �(M=Y ))

inda

��
H�1(M=Y ;E) // H�1iso (M=Y � R) // K0(Y )

which is equal to the semiclassical push-forward map.
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31. Lecture 28: Relative and compactly-supported K-theory
Friday, 7 November, 2008

Reminder. There are still some gaps in the de�nition of the analytic index of
Atiyah and Singer which I wish to �ll today { and try to give a little more background
as well.

Let me start by considering a compact manifold with boundary, X: In the main
case of initial interest here it is the radially �bre compacti�ed cotangent bundle
of a �bration, X = T �(M=Y ): Given our basic odd and even classifying spaces
G�1 and H�1 there are six `obvious' K-groups although with several possible,
but equivalent de�nitions:

K0
c(X n @X) =[X n @X;H�1]c

=�!
�0

�ff : X �! H�1; f
��
@X

= 
1g
�
= K0

c(X; @X)
(31.1)

K0(X) = [X;H�1](31.2)

K0(@X) = [@X;H�1](31.3)

K1
c(X n @X) =[X n @X;G�1]c

=�!
�0

�ff : X �! G�1; f
��
@X

= Idg� = K1
c(X; @X)

(31.4)

K1(X) = [X;G�1](31.5)

K1(@X) = [@X;G�1]:(31.6)

Note the natural equality between the K-spaces `with compact supports in the
interior' and the K-spaces `relative to the boundary'. The maps are induced by
inclusions and are isomorphism because we can make small perturbations.

Proposition 47. For any compact manifold with boundary there is a 6-term exact
sequence involving the K-spaces above:

(31.7) K0
c
(X; @X) // K0(X) // K0(@X)

cleo

��
K1(@X)

cloe

OO

K1(X)oo K1
c
(X; @X)oo

in which the horizontal arrows are induced by inclusions or pull-backs and the
vertical, connecting, maps involve identi�cation of a collar neighbourhood of the
boundary with R� @X:
Exercise 30. I will probably not have time to go through the proof in class {
of course this is a standard topolical argument, it is just the details that require
checking! The spaces have been de�ned, so the de�nitions of the six maps need to
be checked, and then the 12 statements corresponding to exactness at each space
need to be checked. The horizontal maps are clear enough { inclusion of maps
which are trivial near the boundary and restriction to the boundary respectively
and these project to the homotopy classes. Make sure to check that the vertical
maps are well-de�ned { really they involve retraction to �nite rank, followed by
`suspension' from odd to even or even to odd by adding a real parameter and then
this `suspended' object can be converted into a compactly-supported map which is
trivial outside a little collar neighbourhood (0; 1)� @X of the boundary.
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Then to exactness. In the middle this is clear enough { a map trivial on the
boundary comes from one which is compactly supported in the interior. Exactness
at the relative spaces can be seen by observing that a class that is mapped to zero
in the absolute, central, spaces generates a homotopy on the boundary from which
it comes by the map from the boundary space. The exactness at the boundary
spaces is really Bott periodicity, at least in the sense that it corresponds to the
fact that cleo and cloe induce isomorphism { it is therefore perhaps the trickiest.
Roughly said, a class on the boundary, say in K1(@X); is represented by a map
into g 2 C1(@X;G�1): This is mapped into cloe(g) which is a family of projections
with an additional parameter, interpreted as the normal variable near the boundary
(sse the sketch). If this is mapped to zero in the interior then this generates an
homotopy. Twisting the neck of the boundary around { again see sketch { and
using the essential surjectivity of cloe this can be used to construct an absolute
class on the manifold which restricts to the original class on the boundary.

Exercise 31. Since we do have Bott periodicity at our disposal there is a rather
clearer way to look at the maps in (31.7). Namely we can work with the suspended
classifying spaces G�1sus(p) and consider the spiral of groups

(31.8)

[(X; @X); (G�1sus(p); fIdg)] // [X;G�1sus(p)] // [@X;G�1sus(p)]

��
[@X;G�1sus(p�1)]

to level p�2

OO

[X;G�1sus(p�1)]
oo [(X; @X); (G�1sus(p�1); fIdg)]oo

In the top left and bottom right the maps and homotopies are required to preserve
the pairs, i.. the boundary is mapped to the identity. The horizontal maps are
the same as before but the vertical maps involve `using up' one of the suspension
variables and turning it into the normal variable in the collar. See what it takes
to show that (31.8) is a long exact sequence as a semi-in�nite spiral { starting at
p =1: Show that the maps commute with Bott periodicity and hence it collapses
to a 6-term sequence and this is the same as in (31.7).

I have included this boundary sequence, both because it is important (and I
plan/planned to include some discussion of analysis for operators on manifolds
with boundary) and because it motivates the `mixed' characterization of the K-
theory with compact supports in the interior { however the discussion above is not
actually needed for this.

Lemma 36. For a compact manifold with boundary there is a natural identi�cation

(31.9) K0(X; @X) = �0

�R�1(X; @X)
�

R�1(X; @X) =

f(
; g) 2 C1(X;H�1iso (R))� C1(@X; ~G�1iso (R;C2); (Rg)�1

��
@X

(Rg) = 
1g:
Recall that ~G is the `half-open loop group'. Meaning that the elements are smooth
maps G : R �! G�1 which approach the identity rapidly at �1 and approach
some element Rg rapidly at +1:
Proof. To get the map from the space on the right into K0(X; @X) �rst observe
that there is alway a di�eomorphism from X onto X with an extra boundary strip
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[�1; 1]�@X glued on and this di�eomorphism well de�ned up to homotopy through
such. Then just `glue' the curve g(t)�1


��
@X
g(t) onto the end of 
 { which can be

assumed to be 
at to its limit at the boundary, by identifying R with [�1; 1]:
The map the other way can be taken to be inclusion where 
 is 
at to 
1 at the
boundary and so can be mapped to (
; Id): Of course we need to check that these
maps induce isomorphism at the level of homotopy but that is clear enough if one
recalls Lemma 30 to use in a strip near the boundary. �

In this is the way we can see not only that the symbol data (a;E) of an elliptic
operator generates a class in K0

c(T
�(M=Y )) but also where the identi�cation of the

Atiyah-Singer index and the semiclassical push-forward map comes from.
First the K-class of the symbol. Here we use a function � : R �! R which is


at to 0 at �1 and to �=2 at +1:
Lemma 37. The symbol data a 2 C1(S�(M=Y );�� hom(E)) of an elliptic family
A 2 Ell0(M=Y ;E) (so a is invertible) generates a K-class through (31.9), namely
if E+ and E= are identi�ed with the ranges of projections �� 2 C1(M ;CN ) for
some N then

(31.10)

Ell0(M=Y ;E) 7�! [(
E ; g)] 2 Kc(T �(M=Y ); S�(M=Y )) = K0
c
(T �(M=Y );


E =

0BB@
IdN ��� 0 0 0

0 ��� 0 0
0 0 �+ 0
0 0 0 �(IdN ��+)

1CCA ;

g(t) =

0BB@
IdN ��� 0 0 0

0 cos(�(t))�� sin(�(t))a 0
0 sin(�(t))a�1 cos(�(t))�+ 0
0 0 0 IdN ��+

1CCA :

Here both 
E and g should be stabilized; 
E is de�ned on the whole ofM but should
be lifted to T �(M=Y ) by the projection but g is only de�ned over the boundary
S�(M=Y ); but depends on a parameter and has the property that the value at +1

(31.11) Rg =

0BB@
IdN ��� 0 0 0

0 0 a 0
0 a�1 0 0
0 0 0 IdN ��+

1CCA
conjugates 
E on the boundary to 
1: There is an issue of orientations here which,
as usual, I have not checked.

Proof. It is only necessary to show that this does what it is supposed to in the
sense that it de�nes an element of the space in (31.9). �

So, the point here is that the symbol of the elliptic operator allows us to identify
the two bundles E+ and E� over the boundary of T �(M=Y ) and hence to deform
them back into a family of involutions which has compact support in the interior.

Easy part of Theorem 12. The step I have not discussed in the diagram (30.20) is
the surjectivity of the map on the right in the middle row, onto K0

c(T
�(M=Y )) {

which is what we have just been discussing. In fact we know from the discussion
above that every compactly supported class on T �(M=Y ) can be represented by
a pair (
; g) in the space on the right in (31.9) and that the class is invariant
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under homotopies in this space. Now, T �(M=Y ) is a real vector bundle and hence

T �(M=Y ) is a bundle of balls. If 
 is restricted to the zero section of T �(M=Y )
it de�nes a family ~
 2 C1(M ;H�1): Moreover the ball bundle can be `retracted'

onto the zero section. This means that 
 is homotopic in C1(T �(M=Y );H�1)
to the pull-back of ~
: One the other hand we know that ~
 is homotopic to a
family of the form 
E in (31.9) (in principle the ranks might be di�erent but
we already know that they are equal since the projection is homotopic to 
1 at
the boudnary. Thus 
 is homotopic to a 
E in C1(T �(M=Y );H�1): Under this
homotopy, `information' is streaming out across the boundary, in particular there
is an homotpy 
0 2 C1([0; 1]� S�(M=Y );H�1) starting at 
1 and �nishing at 
E
lifted under �: In fact we know from Proposition ? that such an homotopy can be
realized as a curve under cojugation, that is there exists

(31.12) ~g 2 C1(S�(M=Y ); ~G�1iso (R;C2)) s.t. 
0(s(t)) = ~g�1(t)
1~g(t);

s : [0; 1] �! R; s(0) =1; s(1) = �1:
It follows from this that the map R(g) conjugates 
E to 
1 and I claim that it is,
after stabilization, homotopic to the image of an elliptic symbol.

***
Hence the map to K0

c(T
�(M=Y )) is surjective. �
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32. Lecture 29: Toeplitz operators and the semiclassical limit
Monday, 10 November, 2008
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33. Lecture 30: Topological index
Wednesday, 12 November, 2008

Today I want to go through the de�nition of the topolical index map, indt; for
a �bration and then start the proof of the equality

(33.1) indt = (��)
(sl)
!

where the notation on the right indicates that this is the (direct) push-forward map
in K-theory produced by semiclassical quantization.

The topological index is de�ned following a construction of Gysin. The basic
idea here is to `trivialize' the topology of a given �bration of compact manifolds

(33.2) Z M

�

��
Y

by embedding into a trivial �bration.

Proposition 48. For any �bration of compact manifolds, (33.2), there is an embedding

as a sub�bration of a product i :M �!M 0 = RN �Y �R�! Y giving a commutative
diagram

(33.3) Z M
�

  A
AA

AA
AA

A
� � i // M 0

�L //

�R

~~||
||
||
||

RN

Y:

After stabilization, taking the product with some RM ; any two such embeddings are
homotopic.

Proof. Any compact manifold, such as M; can be embedded in a Euclidean space
of su�ciently high dimension { indeed the dimension can be estimated quite well.
Here we do not care about the codimension of the embedding. To do this, take
a �nite covering of M by coordinate neighbourhoods Ui; i = 1; : : : ; k; on each of
which the coordinate map is Fi : Ui �! Rn; n = dimM: Then take a partition of
unity, �i; subordinate to the cover and consider the smooth map
(33.4)

i0 :M �! R
nk; i(p) =

X
i

ei�iFi(p); ei : R
n �! R

nk being the ith embedding.

This is a globally smooth map which is injective and has everywhere injective
di�erential. It is therefore a global embedding. To get the embedding i giving
(33.3) take i = i0 � � :M �! RN � Y where N = nk:

The stable homotopy equivalence we really do not need, but let me indicate
how to do it anyway. First, we can always increase the dimension N by adding
an extra factor of Rp to M 0 and extending the map i by mapping M to 0 in this
factor. Given two embeddings, stabilize them to have image spaces of the same
dimension, and then stabilize further by adding an extra factor of the stabilized
�bre dimension, RN ; to each map, interpreting the �rst as mapping into the �rst
factor and the second into the second factor. Now simply use the standard rotation
between the factors of RN to deform one map into the other { checking of course
that the conditions persist. �
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Having embedded � as a sub�bration of a trivial �bration we now use the collar
neighbourhood theorem.

Proposition 49. The image i(M) � RN � Y of an embedding (33.3) has an open
neighbourhood 
 with closure 
 � RN � Y a compact manifold with boundary
which �bres over i(M) as a radially compacti�ed (real) vector bundle and gives a
commutative diagram

(33.5) Rq 


�

��

� � //
RN � Y

�R

����
��
��
��
��
��
��
��
�

i(M)

0�

UU

�

��
Y:

Proof. This really is just the collar neighbourhood theorem, perhaps with a little
smoothness in parameters. Namely, an embedded submanifold, such as i(M) �
RN � Y has an open neighbourhood which �bres over the manifold and in such a
way that the resulting bundle is di�eomorphic to an open neighbourhood of the zero
section of a vector bundle over i(M) with the �bration being the bundle projection.
Given this we can easily shrink the neighbourhood a little so that it is the image of
a closed ball bundle, and call this 
 and the projection �: The only thing to check
is that we can make this bundle structure over i(M) compatible with �R; meaning
that �R factors through it. This is just the requirement that the vector bundle
structure � projects the intersection of ! with RN �fyg to the �bre Zy above y: To
ensure that each of the �bres of 
 over i(M) is contained in one of the �bres RN

it is enough to recall that one proof of the collar neighbourhood theorem proceeds
through the exponential maps of any Riemannian metric, in the normal directions
to the embedded submanifold. In fact it is enough to use a bundle of directions
complementary to the tangent bundle. If the metric is taken to be the product
metric on RN � Y and the bundle of initial points for the exponential map to be
the normals to Zy within the �bre then the resulting map � respects the �bres. �

Note that the vector bundle structure de�ned by � on a neighbourhood is
necessarily isomorphic to the normal bundle to i(M) in RN � Y and hence to
the bundle of normals to the �bres Zy in R

N : This is later important when we look
at the Chern character of the index, i.e. the Atiyah-Singer index formula.

Consider what (33.5) shows for the �bre cotangent bundle T �(M=Y ) for the
original �bration �: In the construction above, 
 has been identi�ed smoothly with
the total space of a radially compacti�ed vector bundle U �! M; if we use i
to identify M with i(M): This means that the �bre cotangent bundle of 
; as a
�bration over i(M) is identi�ed with

(33.6) T �(
=Y ) ' T �(M=Y )� (U � U�) = T �(M=Y )�W
as vector bundles over M: Here W = U � U� has a natural symplectic structure
given in terms of the pairing of U and its dual U�: Thus, by the Thom isomorphism

(33.7) K0
c(T

�(M=Y )) ' K0
c(T

�(
=Y ))

where we regard W as a symplectic vector bundle over T �(M=Y ):
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Now, 
 ,! RN � Y is an open subset, with consistent �bration. Thus the �bre
cotangent bundle also embeds as an open subset

(33.8) T �(
=Y ) ,! T �((RN � Y )=Y ) = T �(RN )� Y = R
2N � Y:

Thus compactly supported K-theory on the open subset is mapped into compactly
supported K-theory of the larger open set

(33.9) � : K0
c(T

�(
=Y )) �! K0
c(R

2N � Y ):
Finally we can apply Bott periodicity to get a composite map which can be written
out in steps:

(33.10) K0
c(T

�(M=Y ))
Thom //

indt

��

K0
c(T

�(
=Y ))

�

��
K0(Y ) K0

c(R
2N � Y )

Bott
oo

but in principle might depend on the embedding.

Exercise 32. Show that this topological index map does not change under stabilization
by additional Euclidean factors in the embedding and also under homotopies of the
embedding. Hence conclude that it is in fact well-de�ned.

I do not feel the need to show the independence of the choice of embedding in
the de�nition of indt because we can show (33.1) without using this. Since the map
on the right, given by semiclassical quantization, knows nothing of the embedding
this will show the naturality of the topological index as well.

Theorem 13. The identity (33.1) between semiclassical push-forward and topological
index maps holds for any embedding of M as a sub�bration of a trivial �bration as
in (33.3).

Proof. The strategy is to follow semiclassical quantization around the diagram
(33.10) where we have to be a bit careful of some of the identi�cations that have
been made. So we need to check that all the maps in the following diagram are
well-de�ned and all the triangles commute:

(33.11) K0
c(T

�(M=Y ))

qsl

��

K0
c(

~W=T �(M=Y ))

i

��
qsl

||yy
yy
yy
yy
yy
yy
yy
yy
yy
yy
y

qsloo

K0
c(T

�(
=Y )

�

��

qsl

vvlll
lll

lll
lll

ll

K0(Y ) K0
c(R

2N � Y )qsloo

Perhaps unhelpfully there are �ve maps labelled qsl and I have added an extra
step compared to (33.10) corresponding to the identi�cation of the normal neighbourhood
of i(M) with the normal bundle. Thus the map on the left is semiclassical quantization
(of involutions) on the �bres of a �bration. The top map is isotropic quantization
(in the same general sense) for a symplectic vector bundle over a base { in this case
the base is T �(M=Y ): This we know gives the Thom isomorphism so gives the top
arrow in (33.10) after reversal. The top sloping map is the combination of these {
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isotropic on the �bres of a �bration over a �bre-bundle of manifolds. We need to
check that this is well-de�ned and gives a commutative �rst triangle. As you can
imagine at this point, the commutativity is some double-adiabatic argument but
slightly di�erent to what we did before since one part is a compact manifold and
the other is a symplectic vector bundle { before they were both bundles. There is
a more signi�cant di�erence in that this is not the �bre product of two �brations
but a double �bration, one is above the other. This means the double-adiabatic
algebra needs to be a little di�erent. The second sloping arrow is somewhat new. I
mentioned this at some point, but this is the `same' as the left arrow except that now
we have a �bration where the �bres are compact manifolds with boundary. Once
this quantization map is de�ned we need to show commutativity of the triangle
above it, meaning that the `isotropic' quantization can be replaced by the `manifold'
quantization (hence coordinate invariant) in this case. Again I mentioned earlier
that this was pretty obvious, but it does need to be done. Finally the bottom qsl
is again adiabatic quantization. So once again the commutativity here is the key
with the Bott periodicity map isotropic but the one above it not de�ned precisely
this way. �
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34. Lecture 31: Iterated fibrations and Multiplicativity
Friday, 14 November, 2008

Reminder. We need to complete the proof of the equality of the topological index,
introduced last time, and the semiclassical push-forward map in K-theory.

First for the new construction for today, although it is not really so new. Namely
extending the smoothing algebra and semiclassical and adiabatic constructions to
a compact manifold with boundary. A C1 manifold with boundary is a Hausdor�
topological space with a covering by open sets on each of which is homeomorphism
is given to a (relatively) open subset of [0;1)�Rn�1 such that the transition maps,
on intersections, are smooth. Note smoothness for a map on U � [0;1) � Rn�1
means boundedness of all derivatives including up to the boundary.

Given such a manifold Z there are two competing candidates for smooth functions.
Namely the `obvious' C1(Z) which consists of the functions smooth in local coordinates

and _C1(Z) � C1(Z) consisting of the smooth functions which also vanish to in�nite
order at the boundary. The same sorts of de�nitions make sense on a manifold with
corners, but for the moment we only need the case of the product Z2: Just as in
the case of a manifold without boundary, the density bundle 
 is well de�ned and
its sections can be invariantly integrated over compact sets. This means that there
are two clases of smoothing operators on Z; those with kernels in C1(Z2;��R
) and

the smaller class with kernels in _C1(Z2;��R
): These spaces can be conveniently

interpreted as C1(Z; C1(Z; 
)) and _C1(Z; _C1(Z; 
)) respectively.
Both spaces are closed under operator composition, essentially by Fubini's theorem

with the composition looking the same as in the boundaryless case

(34.1) A �B(z; z0) =
Z
Z

A(z; z00)B(z00; z0):

The two algebras of smoothing operators will be denoted 	�1(Z) and _	�1(Z);
with the `dot' denoting the in�nite vanishing at the boundary.

Similarly there is no di�culty in extending the construction of the semiclassical
algebra to this setting, I leave the details to you. However there is one useful thing
to note about a compact manifold with boundary. Namely it is always possible
to `double' a compact manifold with boundary Z to a compact manifold without
boundary, 2Z which as a set is two copies of Z with boundaries identi�ed. In fact
2Z is not really well-de�ned in the sense that there is no natural C1 structure on
this double, by there is a choice so that Z �! 2Z is a di�eomorphism onto its
range, which is one of the copies of Z:

Lemma 38. Suppose Z �! X is an embedding of a compact manifold with
boundary (or corners for that matter) as the closure of an open subset of a compact

manifold without boundary (which is always possible) then the algebra _	�1(Z) is
naturally identi�ed with the subalgebra of 	�1(Z) corresponding to the kernels with
support in Z � Z � X �X:
Proof. The basic observation is that _C1(Z) is identi�ed with

(34.2) fu 2 C1(X); supp(u) � Zg:
Applying this in both factors gives the result, provided densities are taken care
of. �
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In particular, irrespective of the choice of C1 structure on 2Z; _	�1(Z) is the
subalgebra of 	�1(2Z) with kernels supported in Z � Z:

This is important for our proof and also allows us to de�ne the adiabatic algebra
for Z � Rn for instance as the subalgebra

(34.3) _	�1ad;iso(Z;R
n) =

�
A 2 	�1ad;iso(2Z;Rn);
the kernel has supp(A) � (0; 1)� Z � Z � Rn � Rn	:

This saves quite a bit of work and allows everything to be extended to �brations etc
although there are still some things to check. Let me just restate the basic result
we have used in the compact boundaryless case in this context.

Proposition 50. For a �bration of compact manifolds where the total space M has
boundary, but the base Y does not,
(34.4)

_H�1ad;iso(M=Y ;Rn) = fI = 
1 + a; a 2 _	�1ad;iso(M=Y ;Rn)
M(2;C); I2 = Idg
has a semiclassical symbol map which induces an `homotopy equivalence' (identity
on components)

(34.5) _H�1ad;iso(M=Y ;Rn)
�ad�! S(T �(M=Y );H�1iso (Rn)

which via restriciton to � = 1 induces the push-forward map

(34.6) K0
c
(T �((M n @M)=Y )) ' �0(S(T �(M=Y );H�1iso (Rn))

R�=1�!
_H�1iso (M=Y ;Rn) ' K0(Y ):

Proof. Everything here is pretty much as before but I should really go through
it step by step. In particular the last part, which is the fact that the homotopy
classes of sections of the bundle over Y of involutions which are �bre-smoothing
perturbations of 
1 reduces to the K-theory of Y { again this uses the existence of
�nite-rank exhausting families of projections. �

Now, having extended the semiclassical quantization, or push-forward, map to
�brations where the �bres are compact manifolds with boundary it is important to
note that this is related to the isotropic case.

Proposition 51. Under the compacti�cation map Rn ,! Rn the algebras _	�1(Rn)
and 	�1iso (Rn) are identi�ed.

Proof. This is basically the identi�cation of S(Rn) with _C1(Rn): �

Now the same thing is almost true of the adiabatic versions of these algebras.
The only di�erence is the (by some accounts weird) scaling in the isotropic case.
Indeed the kernel in the isotropic case can be written

(34.7) ��nF (�;
�(z + z0)

2
;
z � z0
�

; Z; Z 0) = T��
�2nF (�;

z + z0

2
;
z � z0
�2

; Z; Z 0)T�1�

where T� is the coordinate change z 7�! z=�:

Proposition 52. The parameter-dependent coordinate transformation, T�; reduces
an isotropic-adiabatic family of operators on Rn to an adiabatic family on the
manifold with boundary Rn with parameter �2:



154 RICHARD MELROSE

This is enough to take care of almost all of the commutativity results we need,
except for the most important one. Namely we need to show the commutativity of
the top triangle in (33.11).

Proposition 53. Let �U : U �! M be a real vector bundle over the total space
of a �bration (33.2) then the semiclassical push-forward maps give a commutative
diagram

(34.8) K0
c
(T �(M=Y )� (U � U 0))

qsl

((RR
RRR

RRR
RRR

RRR

qsl

��
K0
c
(T �(M=Y ))

(��)!

// K0(Y )

where the sloping map is given by semiclassical quantization on the �bres, which
compact are manifolds with boundary, of ��U : U �! Y; the vertical map is given
by isotropic quantization on the �bres of U and the horizontal map is given by
semiclassical quantization on the �bres of �:

Proof. The proof is very close to the similar commutation result for the direct sum
of two symplectic bundles. There are two di�erences, �rst of course one of the
�brations has �bres which are compact manifolds and the second di�erence is that
U is a bundle over M; not over Y; so this is not a �bre product of bundles over Y:
In particular there is only one form of (34.8) { it does not make sense to try to
quantize the � �bration before the quantization on the �bres of U since the �bres
vary along the �bres of M: Still, pretty much the approach works.

Thus, we wish to construct and use a double-adiabatic algebra of smoothing
operators. Consider what the kernels should be. There are two parameters, � and
� and in terms of local coordinates y in the base, z on the �bres of � and u linear
coordinates on Um; locally trivialized, the kernels should be of the form

(34.9) ��n��pF (�; �; y; z;
z � z0
�

;
�
1
2 �(u+ u0)

2
;
u� u0
�
1
2 �

)

where F is smooth in all variables and Schwartz in the last three collections of
variables. Note the di�erence with the double isotropic case, the � semiclassical
parameter (de-) quantizes in both variables, whereas the � parameter does so only
in the �bre variables.

So the kernels are speci�ed locally near the �bre diagonal which is z = z0 by
(34.9) and away from z = z0 the kernels are supposed to be smooth in the z
and z0 variables (the di�erence does not make sense since they are generally in
di�erent coordinate patches) and rapidly vanishing with all derivatives as � # 0:
The behaviour in u and u0 is already speci�ed globally on the �bres of U since they
are linear.

Of course the main thing to show is that these operators form an algebra.
However this is not signi�cantly di�erent from the earlier discussions. Certainly
for � > this is just an adiabatic family in the isotropic smoothing operators on
the �bres of U so it is only necessary to check what happesn as � # 0: The rapid
vanishing in the o�-diagonal part in the z; z0 variables quelches all other behaviour
as is easily seen. Thus it su�ces to look at the composition of two kernels of the
form (34.9) with compact support in the one coordinate patch 
 in the local �bres
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Z and with U = Rp locally. The composite is then

(34.10) ��2n��2p
Z



Z
Rp

F (�; �; y; z;
z � z00
�

;
�
1
2 �(u+ u00)

2
;
u� u00
�
1
2 �

)

G(�; �; y; z00;
z00 � z0

�
;
�
1
2 �(u00 + u0)

2
;
u00 � u0
�
1
2 �

)

= ��n��pH(�; �; y; z;
z � z0
�

;
�
1
2 �(u+ u0)

2
;
u� u0
�
1
2 �

)

where

(34.11) H(�; �; y; z; Z; t; s); =

Z



Z
Rp

F (�; �; y; z; Z 0; t+
��2(r + s)

4
;
s� r
2

)

G(�; �; y; z � �Z 0; Z � Z 0; t+ ��2(r � s)
4

;
s+ r

2
):

Secondly we need to understand the symbolic properties in the two, or in some
sense three, adiabatic limits. These follow directly from (34.11). �
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35. Topic 4: Thom isomorphism and the Todd class
In place of lecture for Monday, 18 November, 2008

For any complex/symplectic vector bundle, W �! Y; the diagram

(35.1) K0
c(W )

Thom

��

Ch^Td(W ) // Heven
c (W )

Thom

��
K0(Y )

Ch
// Heven(Y )

commutes.
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36. Topic 5: Atiyah-Hirzebruch theorem
In place of lecture for Wednesay, 20 November, 2008

Theorem 14. For any smooth manifold, X; the total Chern character gives an
isomorphsim

(36.1) Ch� : K�
c
(X)
 C '�! H�

c
(X;C):

This was originally proved by Atiyah and Hirzebruch using a spectral sequence
argument coming from a �ltration of K-theory and cohomology (which indeed works
for any generalized cohomology theory) based on the `skeleton' of the manifold as a
CW complex. I will outline here a more pedestrian argument, which is essentially
sheaf theory, corresponding to the Mayer-Vietoris complex. In fact it is really a
�Cech-theoretic version of the argument of Atiyah and Hirzebruch.
First recall the long exact sequence for K-theory for a manifold relative to its

boundary { Proposition 47. Although I did not go through the proof in detail, any
reasonable proof extends to the non-compact case to give the analogous sequence
with compact supports:-

(36.2) K0
c(X; @X) // K0

c(X) // K0
c(@X)

cleo

��
K1
c(@X)

cloe

OO

K1
c(X)oo K1

c(X; @X)oo

From this we can pass to the Mayer-Vietoris sequence for a decomposition into
manifolds with boundary in the following sense. LetX be a (generally non-compact)
manifold. Let �i 2 C1(X) be two real functions such that Hi = f�ig are smooth
disjoint hypersurfaces on which d�i 6= 0 and in addition

(36.3) H1 � X2 = f�2 � 0g; H2 � X1 = f�1 � 0g; X = X1 [X2:

Since they do not intersect, these hypersurfaces lie in the interior of the `other'
manifold with boundary. Thus Y = X1 \X2 is also a manifold with boundary.

Picture.

Proposition 54. There is a long exact (Mayer-Vietoris) complex in K-theory

(36.4) K0
c
(Y n @Y ) // K0

c
(X1 nH1)�K0

c
(X2 nH2) // K0

c
(X)

��
K1
c
(X)

OO

K1
c
(X1 n @X1)�K1

c
(X2 n @X2)oo K1

c
(Y n @Y ):oo

Here the top right and bottom left horizontal maps are the sums of `inclusions' given
by extending maps trivial to the boundary to be trivial across it. The other two
horizontal maps are also given by the two inclusion maps, with appropriately chosen
signs. The vertical, connecting, homomorphisms are the sums, with orientations,
of the restrictions to two Hi composed with cloe or cleo and then embedded in the
interior of Y:

Proof. I leave the proof that this is a complex and exactness { which is clear except
on the sides { as an extended exercise, at least for the moment. �
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Proposition 55. If the sequence (36.4), and the corresponding sequence for cohomology
with compact supports, are wrapped up then the combined Chern characters give a
commutative diagram (i.e a natural transformation)

(36.5) H�
c
(X)

{{

K�
c
(X)

��

Ch�

OO

H�
c
(
�
X1)�H�

c
(
�
X2)

66lllllllllllllllllllllllllllllllllll

K�
c
(
�
X1)�K�

c
(
�
X2)

66mmmmmmmmmmmm
Ch�oo

K�
c
(Y n @Y )

hhQQQQQQQQQQQQ

Ch�

��
H�
c
(Y n @Y )

hhRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

Proof. This mainly involves the earlier discussion of the behaviour of the Chern
character under cloe and cleo : �

Any compact manifold can be reconstructed from combinations of this type:-

Proposition 56. For any compact manifold X there are two sequences of open
submanifolds X 0

j � X; with X 0
0 = ; and X 0

N = X; and B0j � X such that X 0
j =

X 0
j�1 [ Bj ; the closures Xj�1X 0

j�1 and Bj = B0j in X 0
j are smooth manifolds with

boundary with X 0
j decomposed in terms of them as in (36.3) for each j and such

that the intersection B0j \X 0
j�1 is a �nite union of disjoint balls.

Proof. This can be accomplished by covering X with �nitely many su�ciently small
balls with respect to some Riemann metric and then slightly adjusting the radii to
avoid unpleasant intersections. In particular this gives a good open cover. �

Discuss tensor products of abelian groups brie
y and that

(36.6) Ch� : K�c(X)
 C �! H�c(X):

Proof of Theorem 14. First check that for an open ball the combined Chern character
does indeed give an isomorphism

(36.7) Ch� : K�c(B)
 C �! H�c(B;C):

It follows that this is equally true for a �nite union of disjoint open balls.
Now, proceeding inductively we may assume that the same is true for X 0

j for
j < k: Then in the (36.5), after tensoring with C; for X 0

j relative to Xj�1 and

Bj ; two if the Ch
� arrows are known to be isomorphisms. It follows, from diagram

chasing often called the `Five Lemma' that the third is also an isomorphism, proving
the desired result. �
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37. Topic 6: The Atiyah-Singer index formula
In place of lecture for Friday, 22 November, 2008

(37.1) Ch(ind(P )) =

Z
T �(M=B) Ch�(P )) ^ Td(�) in Heven(B):
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38. Topic 7: Product-type pseudodifferential operators
In place of lecture for Monday, 25 November, 2008

Algebras of psuedodi�erential operators associated to products of manifolds and
�brations and why they can be useful. The will be used in the next `Exercise', can
be used to give a smoothed-out version of the original embedding proof of the index
theorem by Atiyah and Singer and will be used below in the disussion of smooth
K-homology.
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39. Topic 8: More on the determinant bundle
In place of lecture for Wednesday, 27 November, 2008

These are as yet very crude notes.
Consider the 3 � 3 commutative block in which the groups are only roughly

identi�ed:-

(39.1)

G11 G12 G13 G�1sus
//

��

_G0
sus

� //

��

G�1sus(2)

��
G21 G22 G23 = ~G�1sus

//

R

��

_G0
sus pt1

� //

R

��

~Gsus(2)

R

��
G31 G32 G33 G�1 // _G0

� // G�1sus;ind=0

In more detail:-

G11 : This is the classifying group for even K-theory G
�1
sus;iso(R

2) consisting of the

elements a 2 S(R5) where the �rst variable is a parameter, so the product
is pointwise in this variable and in the last four variables is as smoothing
operators on S(R2) and Id+a(t) is required to be invertible for all t:

G21 : This is the contractible, half-free version of the preceeding group - it consists
of smooth loops in G�1(R2) which have Schwartz derivative and tend to
Id as t! �1:

G31 : This is the classifying group for odd K-theory G�1iso (R2):
G�1 : Is therefore the (
at) delooping sequence for G

�1
iso (R2):

G12 : This is the symbolically suspended group of invertible isotropic pseudodif-
ferential operators on R with values in 	�1iso (R) and normalization condition.

As functions the kernels can be identi�ed with functions on R3 �R2 which
are C1 and Schwartz in the last two variables. The �rst variable, t; is
a parameter and the functions are required to vanish to in�nite order at
C which is a great half circle in the t direction. The are quantized to
operators by Weyl quantization in the second two variables and then we
require Id+a(t) to be invertible for all t: This group is contractible.

G22 : This group is supposed to be similar to the previous one except it is now of
product type. As functions the elements are smooth on [R3; ft =1g]�R2
and vanish to in�nite order at the lift of C to the blow up { which means
the closure of the complement of t =1: The product extends to these more
general functions and we look at the group of invertible perturbations as
before. This is also a contractible group.

G32 : This is really a �-extended version of the usual group _G0
iso(R;R): The latter

consists of the smooth functions on R2 � R2 which are Scwartz in the last
two variables, 
at at a point C 0 at the on the bounding sphere and such
that Id+a is invertible. The �-extension adds arbitrary lower order terms
in _	0

iso(R;R) which do not a�ect invertibility.
G�2 : This is an exact sequence of contractible groups!
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G13 : This is the image of the full symbol map from G12: It consists of a �-algebra
where, after some reorganization, all terms are Schwartz maps from R2

into Schwartz operators on R and the leading term is such that Id+b is
invertible. This is a classifying space for odd K-theory.

G23 : This is a half-open version of the preceeding group. That is the individual
terms are not Schwartz but are (I think after rearrangement) Schwartz in
one variable with values in the half-open 
at loops in the other; it has a
�-product. It is again a contractible group.

G33 : This is a �-extension of G�1sus;ind=0(R):
Gi� : For each i this is quantization sequence.

Thus the operators in the top left block of four groups all correspond to certain
functions on R5: The top two of the right column and the left two on the bottom
row correspond to functions on R4 and the bottom right group to functions on
R3: In all cases the last two variables are Schwartz. So we can really imagine the
functions as being on R3; R2 and R respectively.

Log-multiplicative functionals:

(1) ind : G11 �! Z; ind(g) = 1
2�i

R
R
tr(g�1 _g(t))dt:

(2) � : G12 �! C; �(g) = Tr(g�1 _g) where Tr is the regularized trace-integral
which is a trace on the algebra.

(3) ~� : G21 �! C; ~�(g) = 1
2�i

R
R
tr(g�1 _g(t))dt which makes sense because of

the 
atness of the loops.
(4) ~� : G22 �! C; ~�(g) = Tr(g�1 _g) where Tr is the regularized trace-integral

which is a trace on the algebra, since the parameter is the `good' variable
in product suspension.

These four maps are consistent under inclusion { i.e. they are all restrictions
of the last map. Thus, restricting to the null spaces of these maps we get a
commutative square in the top left corner. The exponential, exp(2�i~�) on G21

descends toG31 where it is the multiplicative Fredholm determinant. The exponential
exp(2�i�) on G12 again descends to `our' multiplicative determinant on the doubly
suspended group. Again we can restrict to the subgroup where det = 1 in these
two cases and get short exact sequences on the top row and left column.

Exercise 33. Extend this commutative diagram to the whole 3 � 3 square. In
particular show (I believe Fr�ed�eric Rochon has already done this) that the image
groups under R and � respectively in G32 and G23 are the full groups as before { the
same as without the ~� = 0 restriction. This shows how we can kill the determinant
line bundle since the resulting group in the 33 slot is the central extension of
G�1sus;ind=0 by the determinant bundle.

Proposition 57. The fact that the determinant bundle is `primitive' as in (24.21)
is equivalent to the fact that the non-zero elements give a C� central extension:

(39.2) C� // L� // G�1sus;ind=0:

Exercise 34. Check it. Also, while you are at it, de�ne an Hermitian inner product
on the determinant line bundle which reduces this to a U(1) extension. In the
geometric case this was done by Bismut and Freed.

I will use this central extension to de�ne and discuss the (reduced) K-theory
2-gerbe later.
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Remark 2. The right hand column, in the unreduced picture, constructs the determinant
bundle via the �-extended, suspended delooping sequence.
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40. Topic 9: K-homology
In place of lecture for Friday, 29 November, 2008

I believe this was a holiday even in Berkeley! In any case I was recovering from
a surfeit of Heritage turkey. Still, let me pretend that I was diligently working { I
have been meaning to write an account of `smooth' K-homology for some time.
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41. Lecture 32: The K-theory gerbe
Monday, 1 December, 2008

First let me apologize for not having been able to keep up with the notes while
I was away. With any luck I will catch up a bit with what I had meant to put in
about the Chern character etc.

Today I want to describe the K-theory gerbe in one of its forms. Rather than
de�ne what a gerbe is { in the widest sense the term is used for any geometrical
object which is classi�ed by, or at least realizes all, integral 3-cohomology { I will
describe it and then try to explain the salient features. In brief the universal
K-theory gerbe is a `geometric invariant' associated with, in the �rst instance a
bundle with some structure over, a (reduced) classifying space for odd K-theory
which `captures' the primitive three-dimensional cohomology class.

However, �rst let me recall the `geometric invariants' { in degrees 0; 1 and 2;
that we have already introduced, since the gerbe is analogous to these:-

(1) The index.
(2) The determinant.
(3) The determinant line bundle.

Of course the �rst two of these don't look very geometric but that is what happens
in low degree.
The index. We have two basic `series' of classifying spaces the loop groups of (a)
G�1 and the loop spaces of the space of involutions H�1: The index is most easily
seen as the map

(41.1) H�1 3 fI = 
1 + 
; 
 2 	�1 
M(2;C); I2 = Idg 3 I 7�! 1

2
tr(
) 2 Z:

We have usually taken 
1 =

�
1 0
0 �1

�
: The index labels the components, i.e. induces

an isomorphism

(41.2) ind : �0(H�1) �! Z

which is additive (under compression to �nite rank and direct sum) and as such is
unique up to sign (which needs to be worried about).

The (
at-pointed) loop group on G�1; G�1sus is also a classifying space for even
K-theory and we showed that the index can be transferred to it. Namely the map

(41.3) cleo : H�1 �! G�1sus (�;C2)
is an homotopy equivalence and under it

(41.4) ind =
1

2
tr = cleo

� indsus; indsus(g) =
1

2�1

Z
R

tr

�
g�1(t)

dg(t)

dt

�
dt:

So, it is reasonable just to write indsus : G
�1
sus 7�! Z as `ind' and take (41.4) as a

natural identi�cation; however I will still use the notation indsus where this seems
helpful.6

Now, the index on G�1sus can be recognized as the functional induced by the
1-form

(41.5) Chodd1 =
1

2�i
tr
�
g�1dg

�
on G�1:

6The index functional on the higher loop groups G�1
sus(2k+1)

was supposed to have been

discussed in the write-ups while I was away { this may still appear.
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Namely, under the evaluation map and projection

(41.6) R�G1sus ev //

�2

��

G�1

G�1sus

; indsus = (�2)�(ev
�Chodd1 ):

The determinant. This, meand indsus; was the basis of the (second) construction
of the Fredholm determinant. Recall the delooping sequence:-

(41.7) G�1sus
// ~G�1sus

R // G�1:

Here, the middle group is the half-open 
at loops,
(41.8)

g : R �! 	�1 s.t.
dg

dt
2 S(R; 	�1); g(t) 2 G�1 8 t 2 R and lim

t!�1
g(t) = 0:

This central group is contractible and the construction (41.6) extends to it to de�ne

(41.9) R� ~G1sus
ev //

�2

��

G�1

~G�1sus

; ~� = (�2)�(ev
� Chodd1 ) : ~G�1sus �! C:

This `eta function' has the properties that it restricts to indsus on the subgroup
G�1sus and is log-additive, so the exponentiated function

(41.10) det = exp(2�i~�) : G�1 �! C
�

is well-de�ned, multiplicative and restricts to the usual determinant on GL(N;C)
included into G�1 by stabilization. Moreover, we know that

(41.11) d~� = R�Chodd1 :

It follows that as a map (41.10), det represents a generating class for H1(G�1;Z):

Exercise 35. If this is not `geometric' enough for you, the picture can be expanded
a little. Namely consider the possible values of `log det' at a point of G�1 {
there should be a Z of them at each point. To do this explicitly, take ~G�1 � C
and then identify all pairs (~g1; z1) and (~g2; z2) if R(~g1) = R(~g2) and z1 � z2 =
2�i ind(~g2 � (~g1)�1): Show that this results in a principal bundle

(41.12) Z Z

��

~� // C

G�1:

over G�1 with structure group Z on which ~� is a `connection' in the sense that it
is a well-de�ned function on the total space of the bundle which shifts by n under
the action of n 2 Z:
Determinant line bundle. The determinant bundle was constructed over the
groupG�1sus;ind=0[[�]]; the component of the identity inG

�1
sus [[�]] using the quantization

sequence. Here G�1sus [[�]] is a � extension of the group G�1sus : Namely as a space it is
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consists of formal power series in � { which is just another way of saying sequences
{

(41.13) h =

1X
j=0

hj�
j ; h0 2 G�1sus ; hj 2 	�1sus ; p = h � k =

1X
j

Bj(h; k)�
j

where the product is associative and the Bj are di�erential operators (acting only
in the suspension variable):

(41.14) B0(h; k) = hk; Bj(h; k) =
X

l+l0+p+p0=j

cl;l0;p;p0
dphl
dtp

dp
0

kl0

dtp0

where the product on the right is in 	�1:
For the quantization sequence, the product just comes from the formula for the

composition of isotropic pseudodi�erential operators on R { sometimes called the
Moyal product.

Now, the subject of today's lecture is the next step, the K-theory gerbe. To
construct this again consider the delooping sequence, but now it nees to be both
restricted and expanded. The basic delooping sequence is (41.7) above. The
restriction is to kill o� the determinant { so consider the subgroups

(41.15) G�1sus;ind=0
//

� _

��

~G�1sus;~�=0
R //

� _

��

G�1det=1� _

��
G�1sus

// ~G�1sus
R // G�1:

From the earlier discussion, the top row is exact.
The expansion is to consider the � product. Thus, consider just the case �2 = 0;

meaing pairs

(41.16) h = h0 + �h1; h0 2 G�1det=1; h1 2 	�1

with the projected � product
(41.17)

h � k = (h0k0) + �
�
h0k1 + h1k0 +B(h0; k0)

�
; B(h0; k0) =

1

2i

�
dh0
dt

k0 � h0 dk0
dt

�
:

Then if we take the restricted groups

(41.18)
G�1sus;ind=0[�=�

2] = G�1sus;ind=0 + �	�1sus ;

~G�1sus;~�=0[�=�
2] = ~G�1sus;~�=0 + �	�1sus

where there are no restrictions on the lower order terms, we get a new short exact
sequence in place of (41.7):

(41.19) L

��
G�1sus;ind=0[�=�

2] // ~G�1sus;~�=0[�=�
2]

R // G�1det=1:

Here I have included the fact that deterimant bundle is well-de�ned over the
`dressed' group [�=�2] { it also comes equipped with a connection.
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The basic `bundle gerbe' construction (the idea is due to Michael Murray) is to
take the �bre product of this thought of as a �bration. That is, consider

(41.20) G =
n
(g; g0) 2 ~G�1sus;~�=0[�=�

2];R(g) = R(g0)
o
=
�
~G�1sus;~�=0[�=�

2]
�[2]

which is the `�bre diagonal' in the full product of the central (contractible) group
with itself. This is, by construction, a bundle over G�1det=1: Moreover, there is a
map back to the (dressed) 
at-pointed loop group:

(41.21) G

��

S // G�1sus;ind=0[�=�
2]

G�1det=1

Here S(g; g0) = h if and only if g0 = hg { since R(g0) = R(g) the composite g�1g0 =
h is 
at to the identity at both ends, and hence is an element of G�1sus;ind=0[�=�

2]:
We can use S to pull back the determinant line bundle and so get a tower

(41.22) ~L = S�L

��

L

��
G

��

S // G�1sus;ind=0[�=�
2]

G�1det=1

In fact, as recalled above, we constructed a connection on L which therefore pulls
back to a connection on ~L:
So what is a gerbe? Well, as I said above, there are di�erent points of view on
this. In all cases one is supposed to be able to extract a class in H3(X;Z); where
X is the base, from the gerbe. I would distinguish between several di�erent, but
closely related objects.



BKLY08 169

42. Lecture 33: The B-field
Wednesday, 3 December, 2008

Reminder. Last time I described the K-theory gerbe, without de�ning the class of
objects of which this is an example, namely the notion of a bundle gerbe. Today I
will �nish the discussion of the B-�eld on the K-gerbe, then quickly show how the
K-theory gerbe de�nes gerbe data { which I wrote down in the notes for yesterday
but did not discuss { and use this to motivate the, or at least a, general bundle
gerbe.

The determinant bundle in (41.19) has connection given by (21.15). The curvature
of this connection was computed in (24.20):-

(42.1) ! = �c
Z
R

tr(a�1
da

dt
(a�1da)2)dt at a 2 G�1sus;ind=0[�=�2]:

In the discussion of the transgression of the Chern forms for the delooping sequence
this form was `lifted' to ~G�1sus simply by observing that the integral is still convergent
{ because one term has been di�erentiated with respect to t: This leads to

(42.2) ~�2 =

Z
R

tr(a�1
da

dt
(a�1da)2)dt at a 2 ~G�1sus

which therefore de�nes a form on the top part of the �-extended group and restricts
to the subgroup de�ned by ~� = ~�0 = 0:

The curvature of the pull-back of the determinant line bundle from G�1sus;ind=0 to

G in (41.22) is the pull-back of the curvature, so it is { up to a constant which I
have lost but which is important { equal to

(42.3) S�! =

Z
R

tr(a�1
da

dt
(a�1da)2)dt; a = h�1g; (h; g) 2 G:

To compute this we need to expand out the di�erential, d(h�1g) = �h�1dhh�1g+
h�1dg and similarly for the derivative with respect to t: This gives a total of eight
terms.

Lemma 39. The pull-back of the curvature of the determinant line bundle is

(42.4)

S�! = ��R~�2 � ��L~�2 + d�; where

� =

Z
R

tr

�
dg

dt
g�1(dh)h�1 � dh

dt
h�1(dg)g�1

�
dt and

�L; �R : G �! ~G�1sus;~�=0

are the two projections.

Proof. After expanding out (42.3) as indicated above, the two `pure' terms in which
only one of h or g is di�erentiated are the two terms obtained by pull-back of ~�2:
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The other six can be combined to give

(42.5)

Z
R

tr((h�1g)�1
d(h�1g)

dt
((h�1g)�1d(h�1g))2)dt

=

Z
R

tr(g�1
dg

dt
((g�1dg)2)dt�

Z
R

tr(
dh

dt
h�1((dh)h�1))2)dt

+

Z
R

tr(g�1
dg

dt
((h�1g)�1d(h�1g))2)dt�

Z
R

tr(g�1
dh

dt
h�1gd(h�1g))2)dt

= ��R~�2 � ��L~�2 + d

�Z
R

tr

�
dg

dt
g�1(dh)h�1 � dh

dt
h�1(dg)g�1

�
dt

�
+

Z
R

d

dt
tr((dh)h�1(dg)g�1):

The last term evaluates to tr((da)a�1(da)a�1) = 0 by symmetry, where a =
R1(g) = R1(h) is the common base-, or end-, point. Thus we arrive at (42.4). �

Theorem 15. For the K-theory (principal) bundle gerbe

(42.6) ~L = S�L

��

L

��
~G�1sus;~�=0

R1 %%KK
KK

KK
KK

K
G

�R
oo

�Loo

��

S // G�1sus;ind=0[�=�
2]

G�1det=1

the pulled-back determinant line bundle has a connection rG over G with curvature

(42.7) !G = ��R~�2 � ��L~�2
where the `B-�eld' ~�2 is a 2-form on ~G�1sus;~�=0 with basic di�erential

(42.8) d~�2 = R�1c tr((a
�1da)3):

It is important to track the constant, which I have not (yet) done.

Proof. This has all been done! The connection is obtained by adding � to the
pulled-back connection and the formula for the di�erential of ~�2 was worked out
earlier. �

What does all this buy us? Or asked another way, are there any interesting
examples? In fact there are plenty of examples!

One such is to consider the group SU(N) of unitaryN�N matrices of determinant
one. This Lie group is connected and simply connected { this we have really already
used. Now, we can certainly embed it into the stabilized group

(42.9) iN : SU(N) �! G�1det=1;

say in the isotropic model by making it act on the �rst N eigenfunctions of the
harmonic oscillator (and stabilizing by the identity of course). Here we use the
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consistency of the usual and the Fredholm determinant. Thus, we can pull the
K-theory gerbe back to SU(N) and we have an induced `gerbe'

(42.10) ~L

��
i�N

~G�1sus;~�=0 E

""D
DD

DD
DD

DD E [2]

��

�R
oo

�Loo

SU(N):

Here E [2] is the �bre-product of E with itself { which is to say it is the pull-back of
G which is just the �bre-product of ~G�1sus;~�=0 with itself over G�1det=1: Moreover, the

set up (42.10), with L the pulled-back line bundle over E [2]; comes equipped with
a connection on L and a B-�eld on the total space of the bundle with `curvature' a
multiple of the 3-form tr((g�1dg)3) on SU(N): How cool is that? Is this the gerbe
of Meinrenken { [6] or is the `curvature' a multiple of the minimal integral form
1
24 tr((g

�1dg)3): This needs to be checked!
Other `obvious' examples come more directly from index theory and I will describe

these below. First let me try to abstract from the K-theory gerbe to get the notion
of a `bundle gerbe' which is due to Michael Murray [8].

So, abstractly, consider a setup as in (42.10)

(42.11) L
p

��
E

�
  A

AA
AA

AA
A E [2]

�[2]

�� ��

�R
oo
�Loo

X

where X can be a �nite dimensional (say compact) smooth manifold and we are
no longer assuming that E is pulled back from somewhere else. We will need to
specify what sort of bundle E is over X: Since we can expect, in general, that E
will be in�nite dimensional we will need to specify the structure group. Let me
just gloss over this for the moment to get the formal set up clear �rst. So, just
pretend everything is �nite-dimensional (which it could be) and then what makes
the discussion above, relating the K-theory gerbe to �Cech gerbe data, work? What
we have used is:-

(1) E is a �bre bundle over X:
(2) E [2] is the �bre product of E with itself { meaning it is the �bre diagonal

in E � E :
(3) L is a line bundle over E [2]:
(4) L has a primitivity property { if we consider E [3]; the triple �bre product

and the three projections

(42.12) �O : E [3] �! E [2]; O = F; S;C
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where �F is projection onto the rightmost two factors, �S onto the left-
most two factors and �C onto the outer two factors7 then there is a given
trivialization

(42.13)
T : ��SL 
 ��FL '�! ��CL over E [3] or

~T : ��SL 
 ��FL 
 ��CL0 '�! C:

(5) Finally we need this trivialization to be natural, in an appropriate sense.
Namely if we go up to E [4] then there are four versions of T from the four
ways of mapping from E [4] back to E [3] by dropping one of the factors. Then
the tensor product of the four pulled-back line bundles as in the second
version of (42.13) is canonically trivial and we require that the product of

the four ~T 's should reduce to the identity.

What is triviality for such a bundle gerbe? It is the condition that there is a line
bundle K over E such that there is an isomorphism of line bundles

(42.14) L '�! ��RK 
 ��LK 0:

De�nition 10. A bundle gerbe with connection is a bundle as in (42.11) satisfying
1{5 where E �! X is a smooth Fr�echet �bre bunle, L is a smooth line bundle over
E [2] with smooth connection r; the di�eomorphism T is smooth and under (42.13)
the connection pulls back to the product connection.

Exercise 36. Show, if only formally, that under the triviality condition the B-
�eld can be taken to be the curvature of K and hence the 3-form which is its
derivative vanishes. Going a little further, show that the Dixmier-Douady invariant,
in H3(X;Z) vanishes in this case.

There are �nite dimensional examples. Recall that in SU(N) there are still non-
trivial multiples of the identity, at least if N > 1: Namely � Id 2 SU(N) if �N = 1:
These Nth roots of unity form a normal subgroup and the quotient is the smaller
group PU(N) :

(42.15) f� 2 C; �N = 1g �! SU(N) �! PU(N):

Proposition 58 (At least mainly due to Serre.). Let E be a principal PU(N)
bundle over a compact manifold X then the central extension (42.15) induces a
primitive, 
at, line bundle, LN ; over PU(N) which de�nes a bundle gerbe

(42.16) LN
p

��

LN

��
E

�
!!B

BB
BB

BB
B E[2]

�[2]

�� ��

�R
oo
�Loo S // PU(N)

X

the Dixmier-Douady invariant for which is a torsion element of H3(X;Z) and all
such elements arise this way.

7These letter stand for First, Second andComposte, coming from the composition of operators.
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Exercise 37. Suppose E �! X is a principal bundle for a group G where G has a
central extension by the circle (or C�) { meaning there is a short exact sequence of
groups

(42.17) U(1) �! Ĝ �! G:

Show that E �xes a bundle gerbe overX (assuming appropriate regularity especially
if the setup is in�nite dimensional).

Here is another example taken from the recent preprint [5]. Let X be a compact
manifold and suppose that L is a complex line bundle over X and f : X �! C� is
a smooth function. The former de�nes an element of H2(X;Z) and the latter an
element of H1(X;Z): Together this gives an integral 3-class, how can we construct
a bundle gerbe out of this data? Choose an Hermitian inner product on the �bres
of L; so that the circle bundle

(42.18) L̂ = fp 2 L; kpk = 1g p�! X

is well-de�ned. It is indeed a principal U(1) bundle over X: Thus if we take the

�bre product L̂[2] over X then we have the usual S map

(42.19) L̂[2]
s�! U(1):

This map is itself `primitive' (sometimes called a groupoid character), meaning that

the three versions of it over L̂[3] satisfy

(42.20) ��Ss � ��F s = ��Cs:

Next think about the map f : X �! U(1): Together with (42.19) this leads to a
map to the 2-torus:

(42.21) s� �[2] � f : L̂[2] �! T
2:

Over the torus there is a line bundle, corresponding to the fundamental, volume,
class in H2(T2;Z): This line bundle can be pulled back to L̂[2] giving at least the
basic setup of a bundle gerbe.

Exercise 38 (Maybe for me). Check that if L is equipped with an Hermitian

connection then this de�nes a connection d+ 
 on the (trivial) pull-back of L to L̂:
Then show that the structure above is a bundle gerbe in the sense of De�nition 10
and with B-�eld on L̂ cd log f ^ 
 (including working out the constant) and with
curvature 3-form

(42.22)
c0

2�i
! ^ d log f on X:

Addenda to Lecture 33 The notion of equivalence of a bundle gerbes needs to
be addressed, corresponding to a weakening of the notion of triviality.

First we can say that two gerbes over the same base, are isomorphic if there
is a �bre-preserving Fr�ech�et isomorphism between the corresponding bundles Ei;
i = 1; 2 such that under the induced isomorphisms of the E [2]i the bundles Li become
isomorphic and that under the induced isomorphism of the E [3]i the primitivity
isomorphism Ti are intertwined.

This corresponds to the ability to pull back gerbes. Thus suppose � is a gerbe
as in (42.11) and � : E1 �! E is a smooth bundle-preserving map, where E1 �! X
is a locally trivial Fr�ech�et �bre bundle. Then ��� is the gerbe with line bundle
(�[2])�L over E1:
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Exercise 39. You should check that all the conditions hold for the pull-back and
that if r is a primitive connection on L then the pull-back is a primitive connection
on ��L: Check that � and ��� have the same Dixmier-Douady invariant.

Now we can say that one gerbe �i extends another, �2; if there is a �bre smooth
map � : E1 �! E2 such that �1 � ���1: Two gerbes are equivalent if each extends
the other.

Next we can consider the `tensor product' of two bundle gerbes �i with Fr�ech�et
�brations Ei and primitive line bundles with connection Li; over the same base X:
The tensor product �1 
 �2 (maybe it should be written as an exterior tensor
product, �1 � �2) is just obtained by taking the �bre product of the bundles
E = (E1) �X (E2) and the exterior tensor product of the primitive line bundles.
Alternatively one can think of this in two steps. First de�ne the tensor product
when the �brations are the same { just as the tensor product of the two line bundles
and connections. Then de�ne the general case as the tensor product in this sense
of the two pull-backs { of �i to E under the two projections pi : E �! Ei:
Exercise 40. Check it all { that the required conditions hold for these operations
to be well-de�ned and most importantly that the Dixmier-Douady invariant of the
tensor product is the sum of the Dixmier-Douady invariants.

Exercise 41. Make sure that you can see that duality also works { the dual of
a gerbe is just the gerbe with the dual bundle and dual connection and that this
process reverses the sign of the Dixmier-Douady invariant. Observer that the tensor
product of a gerbe and its dual is isomorphic to a trivial gerbe.

De�nition 11. Let F �! X be a Fr�ech�et bundle over a manifold X; then a bundle
gerbe � over F [2] (with Fr�ech�et bundle E and primitive line bundle L) is primitive
if there is a smooth Fr�ech�et bundle map (as bundles over F [3])

(42.23) ��SE �F [3] ��FE 7�! ��CE
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43. Lecture 34: Dixmier-Douady invariant
Friday, 5 December, 2008

Even though it is wandering further into �Cech theory than I really wanted to go,
I will discuss the Brylinzki-Hitchin de�nition of a gerbe (calling it `gerbe data'),
the derivation of the Dixmier-Douady class and show how the K-theory gerbe (and
more generally any bundle gerbe) de�nes such gerbe data. If there is a little more
time I will go through, at least in outline, the construction of a principal PU-bundle
from gerbe data.

Let me start with the notion of a �Cech type gerbe of Brylinski and later modi�ed
by Hitchin. For orientation, start with the 0-gerbe, the line bundle.

De�nition 12. Line bundle data (to be considered as one word) on a manifold X {
for convenience taken to be compact here { consists of the following:-

(1) A (�nite) covering of X by open sets, Ui; i 2 N:
(2) A C1 complex line bundle Li �! Ui over each Ui:
(3) An isomorphism of complex line bundles for each i; j such that Uij = Ui \

Uj 6= ;;
Tij : Li

��
Uij
�! Lj

��
Uij

with Tji = T�1ij :

(4) The compatibility (cocylce) condition for each i; j; k such that Uijk = Ui \
Uj \ Uk 6= ;;

(43.1) TkiTjkTij = Id on Li
��
Uijk

:

There are extreme cases of such vector bundle data. One possibility is that there
is only one element in the open cover, U1 = Z; and then L �! Z is simply a complex
line bundle. Alternatively, all the line bundles could be trivial, Li = Ui � C and
then we get what is the usual notion of a trivialization of a line bundle. Namely,
the Tij become maps tij : Uij �! C� and the cocycle condition becomes

(43.2) tkitjktij = 1:

In fact such line bundle data always de�nes a complex line bundle. Simply de�ne
the 1-dimensional complex vector space at each point by

(43.3) Lp = f(zi) 2
M
p2Ui

(Li)p;Tijzi = zj 8 i; j s.t. p 2 Uijg:

Then L = [pLp is a complex line bundle and moreover there exist bundle isomorphisms
(43.4) Ti : L

��
Ui
�! Li s.t. TijTi = Tj on Uij :

I do not want to follow all this �Cech stu� to its logical conclusion, but observe
that the converse of (43.4) is also true. If ~L is a line bundle over X and there

are bundle isomorphisms ~Ti : L
��
Ui
�! Li for each i such that Tij ~Ti = ~Tj on Uij

then L and ~L are globally isomorphic as vector bundles. Moreover, one can re�ne
line bundle data given a re�nement of the cover. That is, if U 0l ; l 2 N 0; is another
open cover with a map I : N 0 �! N such that U 0l � UI(l) for all l 2 N 0; then the

L0l = LI(l)
��
U 0
l

carry `obvious' induced line bundle data and the line bundle generated

by this data is globally isomorphic to that generated by the original data.
Now, one can always �nd a good open cover which re�nes a given cover; it su�ces

to take a covering by su�ciently small balls with respect to some Riemannian
structure on the manifold. The condition that an open cover be good is that all
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the non-trivial intersections of its elements be contractible. So, one can �nd a
re�nement to a good open cover still denoted Ui: In that case there is a trivialization
of each Ti : Li �! ~Li = C�Ui over Ui: Then ~Li with tij = ~TjTij ~T

�1
i 2 C1(Ui;C

�)
gives new line bundle data which also generates an isomorphic line bundle. Since
Uij is also contractible, one can choose logarithms

(43.5) 
ij 2 C1(Ui;C) s.t. tij = exp(2�i
ij); 
ji = �
ij :
Now, on the triple overlaps

(43.6) nijk = 
ij + 
jk + 
ki 2 Z on Uijk

is constant and integral, since by the cocycle condition (43.2) exp(2�inijk) = 1

(and Uijk is contractible). Moreover this satis�es the closure condition for �Cech
cocycles, that

(43.7) nijk + njkl + nkli + nlij = 0 if Uijkl 6= ;:
Thus the nijk �x a �Cech 2-cocycle and hence a �Cech cohomology class

(43.8) !(L) 2 �H2(X;Z):

Of course, there is some work here to show that the �Cech cohomology class is
independent of the choice of good cover, etc.

Then one arrives at the well-known result:-

Theorem 16. Two complex line bundles over a compact manifold are globally
isomorphic if and only if they de�ne the same class in �H2(Z;Z) and every such
class corresponds to an isomorphism class of line bundles.

Proof. The main thing to see is the independence of the class !(L) of the choice of
good open cover { this really amounts to showing that the same class arises under
re�nement to another good open cover, since any two open covers have a common,
good, re�nement. The converse, that each class arises this way, follows by the
fact that any �Cech cocycle nijk with respect to some open cover, arises from 
ij 's
through (43.6). Namely one can just choose a partition of unity �i subordinate to
the open cover and set

(43.9) 
ij =
X
k

�knijk on Uij :

Exponentiating the 
ij 's gives line bundle data which in turn generates the original
class nijk: �

So, why have I gone through all this standard �Cechy stu�? Basically, I just
wanted to prepare for the �Cech version of a gerbe.

De�nition 13. Gerbe data on a compact manifold X consists of

(1) A (�nite) open cover Ui of Z:
(2) A C1 line bundle Lij �! Uij over each non-trivial Uij = Ui \ Uj with

Lji = L0ij (the dual).
(3) For each non-trivial Uijk a trivialization

(43.10) Tijk : Lij 
 Ljk 
 Lki �! C on Uijk:
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(4) The cocycle condition that over each non-trivial Uijkl

(43.11) TijkT
�1
jklTkliT

�1
lij = 1

where this makes sense because the tensor product of the four 3-fold tensor
products, as in (43.10), is canonically trivial:

(43.12) Lij 
Ljk 
Lki 
L0jk 
L0kl 
L0lj 
Lkl 
Lli 
Lik 
L0li 
L0ij 
L0jl = C:

Proposition 59. Any gerbe data de�nes a class (the Dixmier-Douady class) DD 2
H3(X;Z) which is constant under re�nement and any two collections of gerbe data
with the same Dixmier-Douady class are isomorphic after re�ment (to a common
good open cover).

Proof. The de�nition of the Dixmier-Douady class follows the same idea as for line
bundle data above. Namely, �rst re�ne to a good open cover (of course one has to
de�ne this process and check that it does indeed give new gerbe data). Then all the

Lij are trivial, with trivializations ~Tij : The Tijk now become maps tijk : Uijk �! C�

and so have logarithms, 
ijk: These generate integers

(43.13) nijkl = 
ijk � 
jkl + 
kli � 
lij on Uijkl
and these form a �Cech 3-cocycle and hence class [n] 2 �H3(X;Z):

So, now the checking begins! I leave it to you (after consulting Brylinski's book,
[2], if you prefer) to show that this class is well-de�ned, i.e. does not change under
re�nement and determines the gerbe data up to the natural notion of isomorphism
after su�cient re�nement. Moreover, every integral �Cech 3-class arises this way. �

Theorem 17. �Cech gerbe data in the sense of De�nition 13 de�nes a principal
PU bundle over X; where PU = U =U(1) is the quotient of the group of unitary
operators on a separable, in�nite-dimensional, Hilbert space by the multiples of the
identity, all PU bundles (up to isomorphism) arise this way and two principal PU
bundles are isomorphic if and only if the Dixmier-Douady invariants of their gerbe
data are equal.

Proof. Not very likely. �

Now, let me check that we can extract `gerbe data' from the K-theory gerbe as
just described. To do this, consider the pull-back of the gerbe under some map from
a �nite dimensional manifold X �! G�1det=1 �! G�1 which therefore represents

an odd K-class on X: Let E be the pull-back of the bundle ~G�1sus;~�=0: The �rst thing
to note is that we can �nd local sections of E ; meaning it is locally trivial. Indeed,
without the restriction to ~� = 0 this was discussed earlier. Since ~� exponentiates
to det �R1; it is enough to recall that R1 is surjective, since on a local section of
~G�1sus on which det �R1 = 0 the funtion ~� is necessarily constant. Thus, there is
an open cover Ui of X on the elements of which E has a section (and as a principal
bundle is then trivial). On the overlaps Uij there are two sections, and hence a

section of E [2]: Using this the determinant line bundle may be pulled back to de�ne
a line bundle Lij over Uij : It only remains to check the properties required of gerbe
data in De�nition 13. That Lji is the dual of Lij follows from the primitivity of the
determinant line bundle and the fact that it is canonically trivial over the diagonal.
Similarly the existence of a trivialization of the triple tensor product in (43.10) over
any Uijk follows from the primitivity of L; as does the naturality (43.11).

Thus the K-theory gerbe does de�ne �Cech gerbe data.
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Exercise 42 (I will do this eventually). Show that the Dixmier Douady invariant of
the pull-back of the K-theory gerbe to X is (a multiple of) the second odd Chern
class of the element K1(X) which the map de�nes.
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44. Lecture 35: The K-theory 2-gerbe
Monday, 8 December, 2008

Fr�ed�eric Rochon and I were talking about this, so I thought I would put in what I
know here. I am not at all sure that this is the right way to go { the usual theory of
2-gerbes is categorical. This is for good reasons to do with the non-commutativity
of the groups. However, in this case it seems we can construct genuine bundles
which reproduce, as a kind of curvature, the 4-class which is the second Chern class
for reduced K-theory { after we have killed o� the index and the determinant line
bundle. The following gerbal discussion is still quite preliminary.

So, start with the bottom row of (39.1). We do not need the rest of the diagram
(although it might be better to start with the right column instead). So this is just
the quantization sequence with the initial group shrunk, by killing the determinant
and as a result the image group is larger:

(44.1) G�1det=1(R;R)
// _G0(R;R) = F

��
G�1sus;ind=0;L(R):

Now, take the self-�bre product of this �bration to get the same picture as in the
construction of the gerbe

(44.2) S�L

��

L

��
S�E

pS�E

&&MM
MM

MM
MM

MM
MM

S�E [2]
�
[2]

S�E

��

�R
oo

�Loo E [2]

�
[2]
E

��

�R //
�L

// E

pEzztt
tt
tt
tt
tt

F

pF &&LL
LL

LL
LL

LL
LL F [2]

S //

�
[2]
F

����

�R
oo

�Loo G�1det=1(R;R)

G�1sus;ind=0;L(R)

except that now we have the K-theory gerbe over the structure group. The diagram
in (44.2) is completed by pulling this back.

So, the sense in which this is supposed to be a 2-gerbe is:

Proposition 60. There is a connection on S�L such that its curvature, a two-form
on S�E [2]; splits as the di�erence of the two pull-backs of a 2-form on S�E under
the maps �L and �R: The di�erential of this 2-form is basic, i.e. is a 3-form on
F [2]; which in turn splits as a di�erence of the two pull-backs of a 3-form on F :
The di�erential of this is basic and is the desired 4-form `curvature' on the base
G�1sus;ind=0;L(R):

Okay, so let's see if this really works! According to my computation the same
miraculous cancellation does indeed occur. In brief, we take the previously described
connection on L over E [2]: We already know that the curvature of this connection
splits, as the di�erence of the pull-back from the two factors of E of a two form the
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di�erential of which is basic and is a multiple of the three form

(44.3) Tr((a�1da)3) on G�1:

Thus, pulled back to a bundle gerbe over F [2] this all proceeds the same for the
pulled-back connection and pulled-back forms. It follows that what we get on F [2]

is the pull-back of (44.3) to F [2]: Writing out the pull-back map, S; as a = h�1g
the pulled-back 3-form is

(44.4) Tr
�
g�1h � d(h�1g) � g�1h � d(h�1g) � g�1h � d(h�1g)� :

Here I have written the extended trace functional on _G0 even though all the
composed factors are in G�1 since that is what we need to work it out { of course
it reduces to the trace in this case. As a �rst step, commute the g�1 to the right
to make it more `symmetric'. This in principle produces a trace-defect term. In
fact it does not, since any one of the middle d(g�1h) terms is smoothing so the
commutation is justi�ed so (44.4) is equal to

(44.5) Chodd3 = Tr
�
(h � d(h�1g) � g�1)3� = Tr

�
((dg)g�1 � (dh)h�1)3

�
:

Expanding this out into eight terms gives

(44.6)

Chodd3 =

Tr
�
((dg)g�1)3

�� Tr
�
((dg)g�1)2(dh)h�1

�
�Tr �(dg)g�1(dh)h�1(dg)g�1�+Tr

�
(dg)g�1((dh)h�1)2

�
�Tr �(dh)h�1((dg)g�1)2�+Tr

�
(dh)h�1(dg)g�1(dh)h�1

�
+Tr

�
((dh)h�1)2(dg)g�1

�� Tr
�
((dh)h�1)3

�
:

The �rst and last terms here are the `pure' terms pulled back from the factors.
Now, consider the third and sixth terms on the right. By commutation, using the
trace-defect formula these can be written

(44.7)

�Tr �(dg)g�1(dh)h�1(dg)g�1� = �Tr �(dh)h�1((dg)g�1)2�� �
Tr
�
(dh)h�1(dg)g�1(dh)h�1

�
= Tr

�
(dg)g�1((dh)h�1)2

�
+ �

� = c

Z
R

Tr

�
((dm)m�1)2

d

dt

�
(dm)m�1

��
:

Here m is the common `full symbol' of h and g (which lie in the same �bre) over
the symbol group. Thus these defect terms cancel and (44.6) can be rewritten as

(44.8)

Chodd3 = Tr
�
((dg)g�1)3

�� Tr
�
((dh)h�1)3

�
�Tr �((dg)g�1)2(dh)h�1�+ 2Tr

�
(dg)g�1((dh)h�1)2

�
�2Tr �(dh)h�1((dg)g�1)2�+Tr

�
((dh)h�1)2(dg)g�1

�
:

That is,

(44.9)
S�Chodd3 = �3(g)� �3(h) + d�(g; h);

�3(g) = Tr
�
(dgg�1)3

�
; �(g; h) = Tr

�
(dg)g�1(dh)h�1

�
:

So, in terms of the diagram (44.2), �3 is a form on the total space of F whereas

� is a form on the total space of F [2]: Recall that Chodd3 was obtained as the
di�erential of the form �2 on E so

(44.10) ~�2 = S��2 � p�E� on E
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is a (di�erent) B-�eld for the pulled-back gerbe over F [2] (because the extra term
comes from F [2] so cancels out) so

(44.11) ��L~�2 � ��R~�2 = ��LS
��2 � ��RS��2 = !(S�L)

gives the curvature of the pulled-back connection on S�L: On the other hand

(44.12)

d�3 = �dTr(dg ^ d(g�1) ^ dg � g�1)
= Tr(dg ^ d(g�1) ^ dg � d(g�1))
=

1

2
Tr([(dg�1g ; (d(g)g�1)3]+)

=
1

2
c0
Z
R

Tr

�
dg

dt
g�1(d(g)g�1)4

�
+

1

2
c0d

Z
R

Tr

�
dg

dt
g�1(d(g)g�1)3

�
� c00Cheven4 on G�1sus;ind=0;L:

Question 4. What is the structure of this `2-gerbe' which makes the forms descend
in this way. In particular can it be abstracted to produce a general class of objects
which, collectively, produce all integral 4-forms on the base?

In answer to a question from Fr�ed�eric Rochon: Yes it is possible to construct
a 2-gerbe in the sense of a diagram like the left part of (6.14) which reproduces
the decomposed 4-form !1 ^!2 where the !i are the curvatures of line bundles, Li;
over a compact manifoldX: Not surprisingly this follows rathe closely the discussion
from [] which is sketched above at the end of Lecture 34.

In particular we may start as in (42.18). Suppose Li; i = 1; 2 are Hermitian
line bundles with connections r(i) over X and consider the �bre self-product of the
corresponding circle bundles L̂i: Each of these generates a character

(44.13) �i : L̂
[2]
i �! U(1); �i(u; v)v = u:

We can combine these two constructions. Set p : F = L̂2 �! X and let p[2] :
F [2] �! X be the double projection. Then denote the pull L̂2 back to the total
space of this bundle as

(44.14) q : E = (p[2])�L̂1 = L̂1 �X L̂
[2]
2 �! F = L̂

[2]
2 :

It follows that

(44.15) q[2] : E [2] = L̂
[2]
1 �X L̂

[2]
2 �! F [2]

can be identi�ed as the �bre product over X of the two �bre self-products. This
constructs the desired little 2-gerbe:-

(44.16) L = S�T

��

T

��
E

q

##H
HH

HH
HH

HH
H E [2]

�R
oo

�Loo

q[2]

��

S // T U(1)�U(1)

F
p

$$I
II

II
II

II
I F [2]

�R
oo

�Loo

p[2]

��
X:
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Here T is the 2-torus with line bundle T over it, constructed to have curvature
�d log�1 ^ d log�2=4�2: Namely, identify the 2-torus as

(44.17) T = R
2=Z2

with the additive action of Z2 on R2 and then identify
(44.18)
T = R

2 � C= �; (t1 + n1; t2 + n2; z) � (t1; t2; z
0); z0 = exp(�i(n2t1 � n1t2))z:

Note that the torus is recovered as the quotient of the square [0; 1]� [0; 1] in which
opposite sides are identi�ed. Thus any point in the interior of a side is identi�ed
with one other point and (44.18) gives an identi�cation of the �bres above these
two points { where either n1 = 1 or n2 = 1 { by multiplication by exp(�t1)
or exp(��it2): You might think there should be a 2� here instead of a � but
notice that all four corner points are identi�ed. The four lines are identi�ed by
multiplication by �1 { �1 if they are both on a side or 1 if the are opposite. This
is consistent. Thus the �bres are well-de�ned and clearly there are consistent local
smooth trivializations.

An invariant connection on the trivial bundle for this action is

(44.19) d� �; �(t1; t2) = �i(t2dt1 � t1dt2):
This descends to a connection on T which has curvature dt1 ^ dt2:

So this gives the line bundle over E [2] = L̂
[2]
1 �X L̂[2]2 ; it is just the pull-back of the

primitive line bundle on the 2-torus by the product of the two characters of the line

bundles over L̂
[2]
i : The curvature of this line bundle with pulled-back connection is

of course the pull-back of the curvature, meaning it is

(44.20) ! = d log�1 ^ d log�2=4�2
where I have not been keeping track of possible �1's.

Now, recall what happens when a line bundle with Hermitian connection is pulled
back to its circle bundle. As already noted, it becomes trivial and its connection
therefore takes the form d + 
 where 
 is a (pure imaginary) 1-form on the total
space of the circle bundle { it is indeed a connection form in the sense of principal
bundles. Now, pulling back under the two maps from L̂[2] to L̂; the connection
form satis�es the `gerbe' condition

(44.21) ��L
 � ��R
 = d log�; � : L̂[2] �! U(1)

being the groupoid character of the line bundle.

So, applying this discussion �rst to E �! L̂
[2]
1 ; being the pull-back of L̂1 to F [2]

we �nd the desired decomposition of the curvature of the line bundle L over E [2] in
terms of a B-�eld on E :
(44.22) ! = d log�1 ^ d log�2=4�2 = ��L� � ��R�; � = 
1 ^ d log�2:
The exterior di�erential of the B-�eld, which is to say the curvature of the bundle
gerbe, is

(44.23) d� = q��; � = !1 ^ d log�2 on F [2]:

Now we can proceed to the next step since again there is a decomposition in terms
of the connection form for L̂2 :

(44.24) � = ��L�� ��R�; � = !1 ^ 
2 on F :
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Finally we recover the `curvature' four form as

(44.25) d� = p��; � = !1 ^ !2 on X:

So indeed, this is a second example of a bundle 2-gerbe.
For bonus grade on the course, �x a condition on a tower as in

(44.26) L

��
E

q

  B
BB

BB
BB

B E [2]
�R
oo
�Loo

q[2]

��
F

p
!!C

CC
CC

CC
C F [2]
�R
oo
�Loo

p[2]

��
X

so that the curvature descends in this way. If you really want to think about this,
and someone should, it might be wise to make one further `step back'. Let D denote
the circle bundle of the line bundle and � the groupoid character as discussed above.
Then the tower becomes

(44.27) D
l

  A
AA

AA
AA

A D[2]
�R
oo
�Loo

l[2]

��

� // U(1)

E
q

  B
BB

BB
BB

B E [2]
�R
oo
�Loo

q[2]

��
F

p
!!C

CC
CC

CC
C F [2]
�R
oo
�Loo

p[2]

��
X:

So you can even imagine what a general bundle k-gerbe is in this sense! Think of
this as a Rube Goldberg marchine with a ball rolling down and a bell at each level.

So, let me review where we are with the succession of gerbes (which sounds like
Kings and Queens of England). Note that the numbering convention is not mine.
We can think of X as a compact manifold although as we have already seen the
non-compact and in�nite dimensional cases may be particularly interesting.

(1) A (�2)-gerbe is a map X �! Z which is continuous or smooth. This
generates the 0-cohomology over Z; zut, it is the integral cohomology.

(2) A (�1)-gerbe is a smooth (for me, you might take continuous) map f :
X �! U(1) (or C� would work as well). This generates a covering space
Xf for X { namely above each point x 2 X take all the possible values of
log f=2�i: Thus pf : Xf �! X is a principal Z bundle. We can take the



184 RICHARD MELROSE

�bre product of Xf with itself to get the diagram

(44.28) Xf

pf
!!B

BB
BB

BB
BB

X
[2]
f�R

oo
�Loo

p
[2]
f

��

�f // Z

X:

In fact there is no particular reason to insist here that Xf be a principal
Z bundle. Rather we can just take any smooth �bre bundle (even in�nite

dimensional if you want) E�1 over X with a map � : E [2]�1 �! Z which is
additive-multiplicative in the sense that �(z1; z3) = �(z1; z2) + �(z2; z3) for
any three points in the same �bre. Of course, this is not an enourmous
generalization since the function has to be locally constant anyway.

(3) Now, a 0-gerbe is a(n Hermitian) line bundle, p : L �! X: We take either

L�; the complement of the zero section, of L̂; the circle bundle and proceed
as above, giving:-

(44.29) L̂

p
  A

AA
AA

AA
A L̂[2]�R
oo
�Loo

p[2]

��

S // U(1)

X:

Here we use the fact that the pull-back of L to L̂ is canonically trivial and
S is the composite of the inverse of this trivialization on the right with the
trivialization on the left. It is a `groupoid character'

(44.30) S(z1; z3) = S(z1; z2)S(z2; z3) 8 z1; z2; z3 2 L̂p:
Now, if we want we can interpret this character as a (�1) gerbe and build
the tower already here:-

(44.31) XS

pS
!!B

BB
BB

BB
B X

[2]
S�R

oo
�Loo

p
[2]
S

��

�S // Z

L̂

p
""D

DD
DD

DD
DD L̂[2]�R
oo

�Loo

p[2]

��

S // U(1)

X:

(4) 1-gerbe as above
(5) 2-gerbe as above, but better written out a little more fully!

So, having seen that these cases are really uniform, we are just getting higher
towers with more complicated `primitivity conditions' as we go along. One lesson
we can easily draw from this is that the construction above of the decomposed cases
{ the cup product of a 1- and a 2-class and the cup product of two 2-classes coming
from line bundles { can be generalized.

Exercise 43. Work out the `tensor product' of a 1-gerbe and a (�1)-gerbe. If the
gerbe is as in (42.11) and the (�1)-gerbe is a smooth map f : X �! U(1) �rst
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push the gerbe the extra step to get a bigger tower:-

(44.32) bL
p

  A
AA

AA
AA

A bL[2]
p[2]

��

�R
oo
�Loo S // U(1)

E
�

  B
BB

BB
BB

B E [2]
�[2]

�� ��

�R
oo
�Loo

X:

Now just take the product with the map f to get a map to the torus and proceed
to check (I mean that you should do so . . . ) that the pull-back does indeed give a
2-gerbe by adding an extra tower at the top:

(44.33) (S � f)�T

��

T

��bL
p

$$I
II

II
II

II
I bL[2]

p[2]

��

�R
oo

�Loo S�f // U(1)�U(1)

E
�

$$II
II

II
II

II
I E [2]

�[2]

�� ��

�R
oo

�Loo

X:

Show that the 4-form curvature of this bundle 2-gerbe is 
 ^ d log f=2�i; where 

is the 3-form curvature of the gerbe.

Exercise 44. See if you can see exactly what happens when one takes the tensor
product in this sense of a 2-gerbe and a (�1)-gerbe, to produce a 3-gerbe. My my,
this numerology is dumb.

Exercise 45. Develop the same construction for the `tensor product' of a gerbe and
a line bundle, masquerading as a 0-gerbe; if you are brave enough even the product
of a 2-gerbe and a 0-gerbe.
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