
CHAPTER 7

Scattering calculus

7.1. Scattering pseudodifferential operators

There is another calculus of pseudodifferential operators which is ‘smaller’ than
the traditional calculus. It arises by taking amplitudes in (2.2) which treat the
base and fibre variables symmetrically, but not ‘simultaneously.’ Thus consider the
spaces

(7.1) Sl,m∞ (Rpz,Rnξ ) =
{
a ∈ C∞(Rp+n);

sup
Rp+n

(1 + |z|)−l+|α|(1 + |ξ|)−m+|β||Dα
zD

β
ξ a(z, ξ)| <∞, ∀ α, β

}
.

Observe that

(7.2) Sl,m∞ (Rpz;Rnξ ) ⊂ (1 + |z|2)l/2Sm∞(Rpz;Rnξ ).

We can then define

(7.3) A ∈ Ψl,m
∞−sc(Rn)⇐⇒ A = (1 + |x|2)l/2B,

B ∈ Ψm
∞(Rn) and σL(B) ∈ S0,m

∞ (Rnx ,Rnξ ).

It follows directly from this definition and the properties of the ‘traditional’ oper-
ators that the left symbol map is an isomorphism

(7.4) σL : Ψl,m
∞−sc(Rn) −→ Sl,m∞ (Rnx ,Rnξ ).

To prove that this is an algebra, we need first the analogue of the asymptotic
completeness, Proposition 2.3, for symbols in S∗,∗∞ (Rp;Rn).

Lemma 7.1. If aj ∈ Sl−j,m−j∞ (Rp,Rn) for j ∈ N0 then there exists

(7.5) a ∈ Sl,m(Rp,Rn) s.t. a−
N∑
j=0

aj ∈ Sl−N,m−N∞ (Rp,Rn) ∀ N ∈ N0.

Even though there is some potential for confusion we write a ∼
∑
j

aj for a symbol

a satisfying (7.5).

Proof. We use the same strategy as in the proof of Proposition 2.3 with the
major difference that there are essentially two different symbolic variables. Thus
with the same notation as in (2.54) we set

(7.6) a =
∑
j

φ(εjz)φ(εjξ)aj(z, ξ)

and we proceed to check that if the εj ↓ 0 fast enough as j → ∞ then the series
converges in Sl,m∞ (Rp,Rn) and the limit satisfies (7.5).
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The first of the seminorms, for convergence, is

Aj = sup
z

sup
ξ

(1 + |z|)−l(1 + |ξ|)−mφ(εjz)φ(εjξ)|aj(z, ξ)|.

On the support of this function either |z| ≥ 1/εj or |ξ| ≥ 1/ε. Thus

Aj ≤ sup
z

sup
ξ

(1 + |z|)−l+j(1 + |ξ|)−m+j |aj(z, ξ)|

× sup
z

sup
ξ

(1 + |z|)−j(1 + |ξ|)−jφ(εjz)φ(εjξ)

≤ εjj sup
z

sup
ξ

(1 + |z|)−l+j(1 + |ξ|)−m+j |aj(z, ξ)|

The last term on the right is a seminorm on Sl−j,m−j∞ (Rp,Rn) so convergence follows
by choosing the εj eventually smaller than a certain sequence of positive numbers.
The same argument follows, as in the discussion leading to (2.56), for convergence
of the series for the derivatives and also for the stronger convergence leading to
(7.5). Since overall this is a countable collection of conditions, all can be arranged
by diagonalization and the result follows. �

With this result on asymptotic completeness the proof of Theorem 4.1 can be
followed closely to yield the analogous result on products. In fact we can also define
polyhomogeneous operators. This requires a little work if we try to do it directly.
However see (1.99) and Problem 1.17 which encourages us to identify

(7.7)
RC∗p×RC∗n : S0,0

ph (Rp,Rn)←→ C∞(Sp,1 × Sn,1),

Sl,mph (Rp,Rn) = (1 + |z|2)l/2(1 + |ξ|2)m/2S0,0
ph (Rp,Rn), l,m ∈ R.

These definitions are discussed as problems starting at Problem 1.18. Thus we
simply define

(7.8) Ψl,m
sc (Rn) =

{
A ∈ Ψl,m

∞−sc;σL(A) ∈ Sl,mph (Rn,Rn)
}
.

Theorem 7.1. The spaces Ψl,m
∞−sc(Rn) (resp. Ψl,m

sc (Rn)) of scattering (resp.
polyhomogeneous scattering) pseudodifferential operators on Rn, form an order-
bifiltered ∗-algebra

(7.9) Ψl,m
∞−sc(Rn) ◦Ψl′,m′

∞−sc(Rn) ⊂ Ψl+l′,m+m′

∞−sc (Rn)

with residual spaces

(7.10)
⋂
l,m

Ψl,m
∞−sc(Rn) =

⋂
l,m

Ψl,m
sc (Rn)Ψ−∞iso (Rn) = S(R2n).


