
CHAPTER 6

Pseudodifferential operators on manifolds

In this chapter the notion of a pseudodifferential on a manifold is discussed.
Some preliminary material on manifolds is therefore necessary. However the discus-
sion of the basic properties of differentiable manifolds is kept to a bare minimum.
For a more leisurely treatement the reader might well consult XX or YY. Our main
aims here are first, to be able to prove the Hodge theorem (given the deRham the-
orem). Then we describe some global object which are very useful in applications,
namely a global quantization map, the structure of complex powers and the zeta
function.

6.1. C∞ structures

Let X be a paracompact Hausdorff topological space. A C∞ structure on X is
a subspace

(6.1) F ⊂ C0(X) = {u : X −→ R continuous }

with the following property:
For each x ∈ X there exists elements f1, . . . , fn ∈ F such that for some open

neighbourhood Ω 3 x

(6.2) F : Ω 3 x 7−→ (f1(x), . . . , fn(x)) ∈ Rn

is a homeomorphism onto an open subset of Rn and every f ∈ F satisfies

(6.3) f � Ω = g ◦ F for some g ∈ C∞(Rn).

The map (6.2) is a coordinate system near x. Two C∞ structures F1 and F2

are ‘compatible’ if F1 ∪F2 is also a C∞ structure. Compatibility in this sense is an
equivalence relation on C∞ structures. It therefore makes sense to say that:

Definition 6.1. A C∞ manifold is a (connected) paracompact Hausdorff topo-
logical space with a maximal C∞ structure.

The maximal C∞ structure is conventionally denoted

(6.4) C∞(X) ⊂ C0(X).

It is necessarily an algebra. If we let C∞c (W ) ⊂ C∞(X) denote the subspace of
functions which vanish outside a compact subset of W then any local coordinates
(6.2) have the property

(6.5) F ∗ : C∞c (F (Ω))←→
{
u ∈ C∞(X); u = 0 on X\K,K ⊂⊂ Ω

}
.

Futhermore C∞(X) is local:

(6.6)
u : X −→ R and ∀ x ∈ X ∃ Ωx open, Ωx 3 x,

s.t. u− fx = 0 on Ωx for some fx ∈ C∞(X) =⇒ u ∈ C∞(X).
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168 6. PSEUDODIFFERENTIAL OPERATORS ON MANIFOLDS

A map G : X −→ Y between C∞ manifolds X and Y is C∞ if

(6.7) G∗ : C∞(Y ) −→ C∞(X)

i.e. G ◦ u ∈ C∞(X) for all u ∈ C∞(Y ).

6.2. Form bundles

A vector bundle is a triple π : V −→ X consisting of two manifolds, X and V,
and a surjective C∞ map π with each

(6.8) Vx = π−1(x)

having a linear structure such that

(6.9) F =
{
u : V −→ R, u is linear on each Vx

}
is a C∞ structure on V compatible with C∞(V ) (i.e. contained in it, since it is
maximal).

The basic example is the cotangent bundle which we defined before for open
sets in Rn. The same definition works here. Namely for each x ∈ X set

(6.10)

Ix =
{
u ∈ C∞(X);u(x) = 0

}
I2
x =

{
u =

∑
finite

uiu
′
i; ui, u

′
i ∈ Ix

}
T ∗xX = Ix

/
I2
x, T

∗X =
⋃
x∈X

T ∗xX.

So π : T ∗X −→ X just maps each T ∗xX to x. We need to give T ∗X a C∞ structure
so that “it” (meaning π : T ∗X −→ X) becomes a vector bundle. To do so note
that the differential of any f ∈ C∞(X)

(6.11) df : X −→ T ∗X df(x) = [f − f(x)] ∈ T ∗xX
is a section (π ◦ df = Id). Put

(6.12) F =
{
u : T ∗X −→ R;u ◦ df : X −→ R is C∞ ∀ f ∈ C∞(X)

}
.

Then F = C∞(T ∗X) is a maximal C∞ structure on T ∗X and

Flin =
{
u : T ∗X −→ R, linear on each T ∗xX;u ∈ F

}
is therefore compatible with it. Clearly df is C∞.

Any (functorial) operation on finite dimensional vector spaces can be easily seen
to generate new vectors bundles from old. Thus duality, tensor product, exterior
powers all lead to new vector bundles:

(6.13) TxX = (T ∗xX)∗ , TX =
⋃
x∈X

TxX

is the tangent bundle

ΛkxX =
{
u :

k factors

TxX × · · · × TxX −→ R;u is multilinear and antisymmetric
}

leads to the k-form bundle

ΛkX =
⋃
x∈X

ΛkxX, Λ1X ' T ∗X

where equivalence means there exists (in this case a natural) C∞ diffeomorphism
mapping fibres to fibres linearly (and in this case projecting to the identity on X).
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A similar construction leads to the density bundles

ΩαxX =
{
u :

n=dimX factors

TxX ∧ · · · ∧ TxX −→ R; absolutely homogeneous of degree α
}

that is
u(tv1 ∧ . . . vn) = |t|αu(v1 ∧ · · · ∧ vn).

These are important because of integration. In general if π : V −→ X is a vector
bundle then

C∞(X;V ) =
{
u : X −→ V ; π ◦ u = Id

}
is the space of sections. It has a natural linear structure. Suppose W ⊂ X is a
coordinate neighbourhood and u ∈ C∞(X; Ω), Ω = Ω1X, has compact support in
W. Then the coordinate map gives an identification

Ω∗xX ←→ Ω∗F (x)R
n ∀ α

and

(6.14)
∫
u =

∫
Rn

gu(x), u = gu(x)|dx|

is defined independent of coordiantes. That is the integral

(6.15)
∫

: C∞c (X; Ω) −→ R

is well-defined.

6.3. Pseudodifferential operators

We will start with a definition of pseudodifferential operators on a (not nec-
essarily compact) manifold which has lots of properties but may be a bit hard to
verify in practice.

Definition 6.2. If X is a C∞ manifold and C∞c (X) ⊂ C∞(X) is the space
of C∞ functions of compact support, then, for any m ∈ R, Ψm(X) is the space of
linear operators

(6.16) A : C∞c (X) −→ C∞(X)

with the following properties. First,

(6.17)

if φ, ψ ∈ C∞(X) have disjoint supports then ∃ K ∈ C∞(X2; ΩR)

such that ∀ u ∈ C∞c (X) φAψu =
∫
X

K(x, y)u(y),

and secondly if F : W −→ Rn is a coordinate system in X and ψ ∈ C∞c (X) has
support in W then

∃ B ∈ Ψm
∞(Rn), supp(B) ⊂ F (W )× F (W ) s.t.

ψAψu �W = F ∗(B((F−1)∗(ψu))) ∀ u ∈ C∞c (X).

This seems a pretty horrible definition, since it requires us to check every coor-
dinate system, at least in principle. In practice the coordinate-invariance we proved
earlier (see Proposition 5.4) means that this is not necessary and also that there
are plenty of examples as we proceed to see.
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Lemma 6.1. The space Ψ−∞(X) =
⋂
m Ψm(X) contains all the smoothing

operators on X, those with kernels K ∈ C∞(X2; ΩR).

In fact there is equality between Ψ−∞(X) and the space of smoothing operators
but it is easier to see this after a little more thought!

Proof. Smoothing operators, having smooth kernels, satisfy the first part
of the definition and also the second since smoothing operators with compactly
supported kernels are pseudodifferential operators on Rn. �

Lemma 6.2. If G : U −→ Rn is a coordinate patch on X and B ∈ Ψm
∞(Rn) has

kernel with support supp(B) b G(U)×G(U) then

(6.18) Au = G∗B(G−1)∗(u
∣∣
U

) defines A ∈ Ψm(X).

Proof. Since the kernel of a pseudodifferential operator is smooth outside the
diagonal the first part of the definition holds for A – indeed if φ, ψ ∈ C∞(X) then

(6.19) φAψ = G∗B′(G−1)∗(u
∣∣
U

), B′ = ((G−1)∗φ)B((G−1)∗ψ) ∈ Ψ−∞∞ (Rn)

since (G−1)∗φ, (G−1)∗ψ ∈ C∞(G(U)) have disjoint supports. Similarly for the
second part, the identity (6.19) still holds and if φ and ψ are both supported in
some other coordinate patch F : W −→ Rn then the support of the kernel of B′ is
contained in G(U ∩W ) × G(U ∩W ) and H = F ◦ G−1 is a diffeomorphism from
G(U ∩W ) to F (U ∩W ). The local coordinate invariance in Proposition 2.11 shows
that B′′ = H∗B′(H−1)∗ ∈ Ψm(Rn) has kernel with support in F (U∩W )×F (U∩W )
and (6.19) becomes

(6.20) φAψ = F ∗B′′(F−1)∗(u
∣∣
W

)

which implies the second condition. �

Thus there are lots of examples – if B ∈ Ψm
∞(Rn) and ψ ∈ C∞c (X) has support

in a coordinate patch with image ψ′ in the local coordinates then applying (6.18)
to ψ′Bψ′ gives an element of Ψm(X). In fact each pseudodifferential operator is
a sum of a smoothing operator and terms of this type. To see this, first note the
following elementary result. Any open cover of a C∞ manifold has a partition of
unity subordinate to it, i.e. if Ar ⊂ X are open sets for r ∈ R and

(6.21) X =
⋃
r∈R

Ar

there exists φi ∈ C∞c (X), all non-negative with locally finite supports:

(6.22) ∀ i supp(φi) ∩ supp(φj) 6= ∅ for a finite set of indices j,

where each supp(φi) ⊂ Ar for some r = r(i) and

(6.23)
∑
i

φi(x) = 1 ∀ x.

In fact one can do slightly better than this.

Lemma 6.3. Given an open cover Ua of X there exists a partition of unity φi
(so with locally finite supports) and

(6.24) ∀ i, j ∃ a such that supp(φj) ∩ suppj ⊂ Ua.
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Taking i = j shows that the partition of unity is subordinate to the given open cover
and the condition (6.24) is automatically satisfied if the intersection of supports is
empty.

Proof. Take any partition of unity ψa subordinate to the cover Ua and indexed
so that supp(ψa) ⊂ Ua. Thus, the support of each supp(ψa) is compact and only
meets finitely many of the others. It follows that each point p ∈ supp(φa) has a
neighbourhood V (p) which is contained in the intersection of all of the Ub such
that p ∈ supp(ψb). For each a take a partition of unity of X subordinate to the
cover by such V (p)’s and X \ supp(ψa). Then replace ψa by the finitely many non-
zero products with this partition of unity (any term from a factor with support in
X \ supp(ψa)) gives zero. Taken together all the resulting (non-zero) functions give
a partition of unity as desired since when two of the supports intersect they are
contained in one of the V (p)’s. �

Proposition 6.1. If φi is a partition of unity subordinate to a coordinate
covering of X satisfying the condition of Lemma 6.3 and for each pair i, j such that
supp(φi)∩ supp(φj) 6= ∅ Fij : Ωij −→ Rn is a coordinate system in a neighbourhood
Ωij of this set, then an operator A : C∞c (X) −→ C∞(X) is a pseudodifferential
operator on X if and only if

(6.25) φiAφj has smooth kernel if supp(φi) ∩ supp(φj) = ∅
and otherwise is of the form F ∗ijAij(F

−1
ij )∗ with Aij ∈ Ψm

∞(Rn)

and kernel supported in F (Ωij)× F (Ωij).

Proof. The necessity of these conditions follows directly from the definition.
Conversely if A satisifies all these conditions then for each φ, ψ ∈ C∞c (X) φAψ is
a finite sum (by local finiteness of the partition of unity) of terms to which either
Lemma 6.1 or Lemma 6.2 applies. Thus it is an element of Ψm(X). �

So, this means that the original defintion can be replaced by the same one with
respect to any given cover by coordinate patches – meaning that a pseudodifferential
operator is just a (locally finite) sum of a smoothing operator plus pseudodifferential
operators acting in a cover by coordinate patches Fi : Ωi −→ Rn :

(6.26) A ∈ Ψm(X) =⇒ A = A′ +
∑
i

Ai, A
′ ∈ C∞(X2; ΩR), Ai = F ∗i Bi(F

−1
i )∗,

Bi ∈ Ψm
∞(Rn), supp(Bi) bi (Ωi)× Fi(Ωi).

Theorem 6.1. Let X be a compact C∞ manifold then the pseudodifferential
operators Ψ∗(X) form an order filtered ring.

Proof. The main point of course is that they form a ring, the order-filtering
means that

(6.27) Ψm(X) ◦Ψm′(X) ⊂ Ψm+m′(X).

Since X is compact, C∞c (X) = C∞(X) and all the operators act on C∞(X), so
the product is well-defined. From the remarks above, it suffices to consider the
four cases of products A ◦ B where A and B are either smoothing operators or
pseudodifferential operators with supports in a coordinate patch. In fact using a
partition of unity as in Lemma 6.3 corresponding to a coordinate cover and then
applying Proposition 6.1 if they are both pseudodifferential operators we can assume
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they have support in the same coordinate patch. Then the result follows from the
local composition theorem of Chapter 2. So it is enough to suppose that at least one
of the operators is a smoothing operator. If both are smoothing then this follows
from the fact that the kernel of the composite is given in terms of the kernels of
the factors by

(6.28) (A ◦B)(p, p′) =
∫
X

A(p, ·)B(·, p′) ∈ C∞(X2; ΩR).

When one factor is smoothing and the other is a local pseudodifferential the com-
poste is smoothing since it is given by the action of the pseudodifferential operator
(or its transpose) on the kernel of the smoothing operator, in one of the vari-
ables. �

Note that if X is not compact we cannot in general compose pseudodifferential
operators, since the first one maps C∞c (X) into C∞(X) and the second may not act
on C∞(X). This is sorted out below.

Now, it is most important to show that the symbol maps still makes sense and
has at leat most of the properties it had on Rn. This is not quite obvious because
of the non-uniqueness inherent in a presentation such as (6.25). First however we
need to check that there is a place for the symbol to take values.

Recall that for an open set Ω ⊂ Rn we defined the symbol spaces Sm∞(Ω;Rp)
as consisting of the smooth functions satisfying (2.1). Let π : W −→ X be a real
vector bundle over a manifold X. So X is covered by local coordinate patches Ωi
over which W is trivial, meaning there is a diffeomorphism

(6.29) Fi : π−1(Ωi) −→ Ω′i × Rp

which maps each fibre π−1(p) to the corresponding {p′} × Rq and is a linear map.
Then if we choose a partition of unity subordinate to the cover we can set

(6.30) Sm(W ) =

{
a : W −→ C; a =

∑
i

φiF
∗
i ai for some ai ∈ Sm(Ω′i × Rp)

}
provided we show this is independent of choices.

Proposition 6.2. If W −→ X is a real vector bundle over a smooth manifold
X then the space, Sm(W ), of symbols on W is well-defined for each m ∈ R by
(6.30).

Proof. We need to check to things here, what happens under changes of
coordinate covering and changes of local trivializations. Notice that can move the
φ into local coordinates to get φ′i ∈ C∞c (Ω′i) and write (6.30) as

(6.31) Sm(W ) =

{
a : W −→ C; a =

∑
i

F ∗i φ
′
iai for some ai ∈ Sm(Ω′i × Rp)

}
.

Then φ′iai actually has compact support in the base variables, so is a global symbol
on Rn × Rp. If ψj is a partition of unity subordinate to another coordinate patch
then we can lift these functions under π to W and write a ∈ Sm(W ) as

a =
∑
i,j

ψjF
∗
i φ
′
iai =

∑
i,j

F ∗i ψ
′
jφ
′
iai.
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Thus each ψjφi is supported in the intersection of the two coordinate patches. Thus
it suffices to show that if

(6.32) F : ω × Rp −→ Ω′ × Rp, F (x, ξ) = (f(x), A(x)ξ)

is a diffeomorphism, so f is a diffeomorphism and A(x) is smooth and invertible,
then a ∈ Sm(Ω′;Rp), supp(a) ⊂ K × Rp imples that F ∗a ∈ Sm(Ω;Rp). We can
do this in two steps since F = F ′ ◦ (f, Id) where F ′ is of the same form with
f = Id . The second map amounts to a coordinate change and it is easy to see
that the estimates in (2.1) are preserved by such a transformation. Thus it suffices
to show that if a ∈ Sm(Rm;Rp) has support in K × Rp for some compact K and
A : Ω←→ GL(p,R) is a smooth map in an open neighbourhood of Ω ⊃ K then

(6.33) a(x,A(x)ξ) ∈ Sm(Rn;Rp).
The basic symbol estimate

|a(x,A(x)ξ)| ≤ C sup
K
〈A(x)ξ〉m ≤ C ′〈ξ〉m

therefore follows from the invertibility of A(x) and the fact that a vanishes outside
K × Rp. VijξiDξj and Dxk . The symbol estimates on a function b just amount to
requiring the estimate

(6.34) |P (x, V,Dx)b(x, ξ)| ≤ C〈ξ〉m

for all polynomials P with smooth coefficient in x (since b vanishes outside K ×
Rp. The diffeomorphism (x, ξ) 7−→ (x,A(x)ξ) maps the space of these differential
operators into itself, so the symbol estimates carry over. �

Suppose A ∈ Ψm(X) and ρi is a square partition of unity subordinate to a
coordinate cover Fi : Ωi −→ Rb, so we can suppose

(6.35) supp(ρi) ⊂ Ωi,
∑
i

ρ2
i = 1.

Then

(6.36) A−
∑
i

ρiAρi ∈ Ψm−1(X)

since [A, ρi] ∈ Ψm−1(X) as follows from (6.26) and the corresponding local property.
This lead us to set

(6.37) σm(τ)(A) =
∑

{i,π(τ)∈supp(ρi)}

bi(x(i), ξ(i))

where

(6.38) τ = F ∗i (
∑
j

ξ
(i)
j · dxj) ξ(i) · dx ∈ T ∗x(i)Rn, x(i) = Fi(π(τ))

and the bi are representatives of the symbols of the ρiAρi. This defines a function
on T ∗X\0, in fact the equivalence class

(6.39) σm(A) ∈ Sm−[1](T ∗X) = Sm(T ∗X)/Sm−1(T ∗X)

is well-defined.

Proposition 6.3. The principal symbol map in (6.39), defined as in (6.37),
gives a short exact sequence:

(6.40) 0 ↪→ Ψm−1(X) ↪→ Ψm(X) σm−→ Sm−[1](T ∗X) −→ 0.
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Proof. First we need to check that σm(A) is indeed well-defined. This involves
checking what happens under a change of coordinate covering and a change of
partition of unity subordinate to it. For a change of coordinate covering for a fixed
square partition of unity it suffices to use the transformation law for the principal
symbol under a diffeomorphism of Rn.

Now, if ρ′j is another square partition of unity, subordinate to the same covering
note that ∑

j

ρ′jρiAρ
′
jρi ≡ ρiAρi

where equality is modulo Ψm−1, since [φ,Ψm] ⊂ Ψm−1 for any C∞ function φ.
It follows from (6.40) that the principal symbols, defined by (6.37), for the two
partitions are the same.

The principal symbol is therefore well defined. Moreover, it follows that if
φ ∈ C∞(X) then

(6.41) σm(φA) = φσm(A) since ρi(φA)ρi = φ(ρiAρi).

Certainly if A ∈ Ψm−1(X) then σm(N) ≡ 0. Moreover if A ∈ Ψm(X) and
σm(A) ≡ 0 then it follows from (6.41) that σm(ρiAρi) = 0 and hence, from the
properties of operators on Rn that ρiAρi is actually of order m − 1. This proves
that the null space of σm is exactly Ψm−1(X).

Thus it only remains to show that the map σm is surjective. If a ∈ Sm(T ∗X)
choose Ai ∈ Ψm

∞(Rn) by

(6.42) σL(Ai) = ρi(x)(F ∗)−1aiρi(y) ∈ Sm∞(Rn × Rn)

and set

(6.43) A =
∑
i

F ∗i AiG
∗
i Gi = F−1

i .

Then, from (6.37) σm(A) ≡ a by invariance of the principal symbol. �

6.4. The symbol calculus

The other basic properties of the calculus on a compact manifold are easily
established. For example to check that

(6.44) σm+m′(A ·B) = σm(A) · σm(B)

if A ∈ Ψm(X), B ∈ Ψm′(X) note that

(6.45) AB =
∑
i,j

ρ2
iAρ

2
jB =

∑
i,j

ρiAρi · ρjBρi mod Ψm+m′−1.

In § 5.9 we used the symbol calculus to construct a left and right parametrix for
an elliptic element of Ψm(X), where X is compact, i.e. an element B ∈ Ψ−m(X),
such that

(6.46) AB − Id, BA− Id ∈ Ψ−∞(X).

As a consequence of this construction note that:

Proposition 6.4. If A ∈ Ψm(X) is elliptic, and X is compact, then

(6.47) A : C∞(X) −→ C∞(X)
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is Fredholm, i.e. has finite dimensional null space and closed range with finite di-
mensional complement. If ν is a non-vanishing C∞ measure on X and a generalized
inverse of A is defined by

(6.48)
Gu = f if u ∈ Ran(A), Af = u, f ⊥ν Nul(A)

Gu = 0 if u ⊥ν Ran(A)

then G ∈ Ψ−m(X) satisfies

(6.49)
GA = Id−πN
AG = Id−πR

where πN and πR are ν-orthogonal projections onto the null space of A and the
ν-orthocomplement of the range of A respectively.

Proof. The main point to note is that E ∈ Ψ−∞(X) is smoothing,

(6.50) E : C−∞(X) −→ C∞(X) ∀ E ∈ Ψ−∞(X).

Such a map is compact on L2(X), i.e. maps bounded sets into precompact sets by
the theorem of Ascoli and Arzela. The second thing to recall is that a Hilbert space
with a compact unit ball is finite dimensional. Then

(6.51) Nul(A) = {u ∈ C∞(X);Au = 0} = {u ∈ L2(X);Au = 0}

since, from (6.51) Au = 0 =⇒ (BA − Id)u = −Eu, E ∈ Ψ∞(X), so Au = 0,
u ∈ C−∞(X) =⇒ u ∈ C∞(X). Then

(6.52) Nul(A) = {u ∈ L2(X);Au = 0
∫
|u|2ν = 1} ⊂ L2(X)

is compact since it is closed (A is continuous) and so Nul(A) = E(Nul(A)) is
precompact. Thus Nul(A) is finite dimensional.

Next let us show that Ran(A) is closed. Suppose fj = Auj −→ f in C∞(X),
uj ∈ C∞(X). By what we have just shown we can assume that uj ⊥ν Nul(A). Now
if B is the parametrix

(6.53) uj = Bfj + Euj , E ∈ Ψ−∞(X).

Suppose, along some subsequence, ‖uj‖ν −→∞. Then

(6.54)
uj
‖uj‖ν

= B

(
fj
‖uj‖ν

)
+ E

(
uj
‖uj‖ν

)
shows that uj

‖uj‖ν lies in a precompact subset of L2,
uj
‖uj‖ν −→ u. This is a con-

tradiction, since Au = 0 but ‖u‖ = 1 and u ⊥ν Nul(A). Thus the norm sequence
‖uj‖ is bounded and therefore the sequence has a weakly convergent subsequence,
which we can relabel as uj . The parametrix shows that u = Bfj + Euj is strongly
convergent with limit u, which satisfies Au = f.

Finally we have to show that Ran(A) has a finite dimensional complement.
If πR is orthogonal projection off Ran(A) then from the second part of (6.46)
f = πRE

′f for some smoothing operator E. This shows that the orthocomplement
has compact unit ball, hence is finite dimensional. �

Notice that it follows that the two projections in (6.49) are both smoothing
operators of finite rank.
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6.5. Pseudodifferential operators on vector bundles

Perhaps unwisely I have carried through the discussion above for pseudodiffer-
ential operators acting on functions. The extension to operators between sections
of vector bundles is mainly notational.

Theorem 6.2. If W −→ Y is a C∞ vector bundle and F : X −→ Y is a C∞
map then F ∗W −→ X is a well-defined C∞ vector bundle over X with total space

(6.55) F ∗W =
⋃
x∈X

WF (x);

if φ ∈ C∞(Y ;W ) then F ∗φ is a section of F ∗W and C∞(X;F ∗W ) is spanned by
C∞(X) · F ∗C∞(Y ;W ).

Distributional sections of any C∞ vector bundle can be defined in two equivalent
ways:

(6.56) “Algebraically” C−∞(X;W ) = C−∞(X)
⊗
C∞(X)

C∞(X;W )

or as the dual space

(6.57) “Analytically” C−∞(X;W ) =
[
C∞c (X; Ω⊗W ′)

]′
where W ′ is the dual bundle and Ω the density bundle over X. In order to use
(6.57) we need to define a topology on C∞c (X;U) for any vector bundle U over X.
One can do this by reference to local coordinates.

We have just shown that any elliptic pseudodifferential operator, A ∈ Ψm(X)
on a compact manifold X has a generalized inverse B ∈ Ψ−m(X), meaning

(6.58)
BA = Id−πN
AB = Id−πR

where πN and πR are the orthogonal projections onto the null space of A and
the orthocomplement of the range of A with respect to a prescribed C∞ positive
density ν, both are elements of Ψ−∞(X) and have finite rank. To use this theorem
in geometric situations we need first to make the “trivial” extension to operators
on sections of vector bundles.

As usual there are two ways (at least) to approach this extension; the high road
and the low road. The “low” road is to go back to the definition of Ψm(X) and
to generalize to Ψm(X;V,W ). This just requires to take the definition, following
(6.16), but using a covering with respect to which the bundles V,W are both locally
trivial. The local coordinate representatives of the pseudodifferential operator are
then matrices of pseudodifferential opertors. The symbol mapping becomes

(6.59) Ψm(X;V,W ) −→ Sm−[1] (T ∗X; Hom(V,W ))

where Hom(V,W ) ' V ⊗W ′ is the bundle of homomorphisms from V to W and
the symbol space consists of symbolic sections of the lift of this bundle to T ∗X. We
leave the detailed description and proof of these results to the enthusiasts.

So what is the “high” road. This involves only a little sheaf-theoretic thought.
Namely we want to define the space Ψm(X;V,W ) using Ψm(X) by:

(6.60) Ψm(X;V,W ) = Ψm(X)
⊗
C∞(X2)

C∞(X2;V �W ′).
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To make sense of this we first note that Ψm(X) is a C∞(X2)-module as is the space
C∞(X2;V �W ′) where V �W ′ is the “exterior” product:

(6.61) (V �W ′)(x,y) = Vx ⊗W ′y.

The tensor product in (6.60) means that

(6.62) A ∈ Ψm(X;V,W ) is of the form A =
∑
i

Ai ·Gi

where Ai ∈ Ψm(X), Gi ∈ C∞(X2;V �W ′) and equality is fixed by the relation

(6.63) φA ·G−A · φG ≡ 0.

Now what we really need to note is:

Proposition 6.5. For any compact C∞ manifold Y and any vector bundle U
over Y

(6.64) C−∞(Y ;U) ≡ C−∞(Y )
⊗
C∞(Y )

C∞(Y ;U).

Proof. C−∞(Y ;U) = (C∞(Y ; Ω ⊗ U ′))′ is the definition. Clearly we have a
mapping

(6.65) C−∞(Y )
⊗
C∞(Y )

C∞(Y ;U) 3
∑
i

Ai · gi −→ C−∞(Y ;U)

given by

(6.66)
∑
i

ui · gi(ψ) =
∑
i

ui(gi · ψ)

since giψ ∈ C∞(Y ; Ω) and linearity shows that the map descends to the tensor
product. To prove that the map is an isomorphism we construct an inverse. Since
Y is compact we can find a finite number of sections gi ∈ C∞(Y ;U) such that any
u ∈ C∞(Y ;U) can be written

(6.67) u =
∑
i

higi hi ∈ C∞(Y ).

By reference to local coordinates the same is true of distributional sections with

(6.68) hi = u · qi qi ∈ C∞(Y ;U ′).

This gives a left and right inverse. �

Theorem 6.3. The calculus extends to operators on sections of vector bundles
over any compact C∞ manifold.

6.6. Hodge theorem

The identification of the deRham cohomology of a compact manifold with the
finite dimensional vector space of harmonic forms goes back to Hodge in the al-
gebraic setting and to Hermann Weyl in the general case. It is a rather direct
consequence of the Fredholm properties on smooth sections of the Laplacian. In
fact this has nothing much to do with the explicit form of the deRham complex, so
let’s do it in the natural context of an elliptic complex over a compact manifold M.
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Thus let Ei, i = 0, . . . , N be complex vector bundles and suppose di ∈ Diff1(M ;Ei, Ei+1),
i < N, form a complex of differential operators, meaning that for each i < N di+1

annihilates the range of di which means just that

(6.69) di+1di = 0 ∈ Diff1(M ;Ei;Ei+2), i < N.

Such a complex is said to be exact (on C∞ sections) if
(6.70)

C∞(M ;E0)
d0 //C∞(M ;E1)

d1 // . . . C∞(M ;EN−1)
dN−1 //C∞(M ;EN )

is exact, meaning that conversely

(6.71) null(di+1) = diC∞(M : Ei) ∀ i < N.

The principal symbol σi(di) ∈ C∞(T ∗M ;π∗ hom(Ei, Ei+1) is a homogeneous poly-
nomial of degree 1 and from (6.69) these bundle maps for a complex over T ∗M.
Of course the all vanish at the zero section so, excluding that, we say the original
complex is elliptic if the symbol complex
(6.72)

C∞(T ∗M \ 0;π∗E0)
σ1(d0) //C∞(T ∗M \ 0;π∗E1)

σ1(d1) // . . .

C∞(T ∗M \ 0;π∗EN−1)
σ1(dN−1)//C∞(T ∗M \ 0;π∗EN )

is exact.
Now, choose an Hermitian inner product on each of the Ei and a smooth

density on M so that we can define the adjoints δi of the di−1 (so that the subscript
corresponds to the subscript of the vector space on which the operator acts)

(6.73) δi = (di−1)∗ ∈ Diff1(M ;Ei, Ei−1), i = 1, . . . , N.

Then form the Hodge operator and the Laplacian

(6.74) (d+ δ)i ∈ Diff1(M ;Ei, Ei−1⊕Ei+1), ∆i = δi+1di +di−1δ
2
i ∈ Diff2(M ;Ei).

We can also take the direct sum of all the terms in the complex and set

(6.75) d = ⊕idi ∈ Diff1(M ;E∗), δ = ⊕iδi ∈ Diff1(M ;E∗).

Then (6.69) and the induced identity δi−1δi = 0 together show that

(6.76) (d+ δ)2 = ⊕i∆i ∈ Diff2(M ;E∗)

since applied to C∞(M ;Ei)
(6.77)
(d+ δ)2

∣∣
C∞(M ;Ei)

= (d+ δ)di + (d+ δ)δi = (di+1 + δi+1)di + (di−1 + δi−1)δi = ∆i.

Theorem 6.4. For an elliptic complex the operators d + δ and all the ∆i are
elliptic,

(6.78) null(∆i) = {u ∈ C∞(M ;Ei); diu = 0, δiu = 0}
and the inclusion of this space into the null space of di induces an isomorphism of
vector spaces

(6.79) null(∆i) ' {u ∈ C∞(M ;Ei); diu = 0} /di−1C∞(M ;Ei).

In particular the vector spaces on the right in (6.79) are finite dimensional; these
are the (hyper-)cohomology spaces of the original complex.
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Proof. The symbol of ∆i is exactly

(6.80) σ2(∆i) = σ1(δi+1)σ1(di) + σ1(di−1)σ1(δi).

Over points of T ∗M \ 0 we can use the (pointwise) inner product on the Ei’s and
the fact that σ1(δi) = (σ1(d∗i−1) to see that

〈f, σ1(∆i)f〉 = 〈f, σ1(δi+1)σ1(di)f〉+ 〈f, σ1(di−1)σ1(δi)f〉 = |σ1(di)f |2 + |σ1(δi)f |2.

Thus an element of the null space of σ2(∆i) is in the intersection of the null spaces
of σ1(di) and σ1(δi). The null space of the latter is precisely the orthocomplement
to the range of the former, so (by the assumed ellipticity) σ2(∆i) is injective and
hence an isomorphism. As an elliptic operator the null space of ∆i, even acting
on distributions, consists of elements of C∞(M ;Ei). Moreover integration by parts
then gives

(6.81) ∆iu = 0 =⇒
∫
M

〈u,∆iu〉ν = ‖diu‖2L2 + ‖δiu‖2L2 =⇒ diu = 0, δiu = 0.

The converse is obvious, so this proves (6.78).
We know that any elliptic operator on a compact manifold is Fredholm. More-

over ∆i is self-adjoint, directly from the definition in (6.74). Thus the range of ∆i

is precisely the orthocomplement (with respect to the L2 inner product) of its own
null space:

(6.82) C∞(M ;Ei) = null(∆i)⊕∆C∞(M ;Ei).

Now expanding out ∆i we can decompose each element of the second term as

(6.83) ∆u = di−1δiu+ δi+1diu = di−1vi−1 + δi+1wi+1.

The two terms here are orthogonal in L2(M ;Ei) and this allows us to rewrite (6.82)
as The Hodge Decomposition

(6.84) C∞(M ;Ei) = null(∆i)⊕ di−1C∞(M ;Ei−1)⊕ δi+1C∞(M ;Ei+1).

Indeed, all three terms here are orthogonal as follows by integration by parts and
the fact that d2 = 0 and hence there must be equality in (6.84) since each element
has such a decomposition, as follows from (6.82) and (6.83).

Now if u ∈ C∞(M ;Ei) satisfies diu = 0, consider its Hodge decomposition

(6.85) u = u0 + du1 + δv.

The last term must vanish since applying d to (6.85), dδv = 0 and then integrating
by parts

(6.86)
∫
M

〈v, dδv〉ν = ‖δv‖2L2 = 0.

The map u〉u0 therefore takes the left side of (6.79) to the right. It is injective,
since u0 = 0 means that u is ‘exact’ and it is surjective since u0 is itself closed and
the decomposition (6.85) is unique, so it is mapped to u0. This gives the Hodge
isomorphism (6.79). �

In fact the same argument works with distributional sections of the various
bundles. We know that, as an elliptic operator

(6.87) ∆i : C−∞(M ;Ei) −→ C−∞(M ;Ei)
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also has range exactly the annihilator of the null space of its adjoint, also ∆i, on
C∞ sections. Thus we get a distributional decomposition

(6.88) C−∞(M ;Ei) = null(∆i)⊕∆C−∞(M ;Ei)

which we can still think of as ‘orthogonal’ since the pairing exists between the
smooth harmonic forms and the general distibutional sections. A distributional
form of the Hodge decomposition follows as before which we can write as

(6.89) C−∞(M ;Ei) = null(∆i)⊕
(
di−1C−∞(M ;Ei−1)+̇δi+1C−∞(M ;Ei+1)

)
.

Here the second two terms do not formally ‘pair’ under extension of the L2 inner
product so we just claim that the intersection is empty. This follows from the fact
that an element of the intersection is harmonic and hence smooth and thus, from
(6.88), vanishes. This lead immediately to a distributional Hodge isomorphism

(6.90) null(∆i) =
{
u ∈ C−∞(M ;Ei); diu = 0

}
/di−1C−∞(M ;Ei)

completely analogous to (6.78). The proof is almost the same. A closed distribu-
tional form has a decomposition as in (6.89), u = u0 + du′+ δv where u1 and v are
now distributional sections. However applying d we see that dδv = 0 and δδv = 0
so δv is harmonic, hence smooth, and the integration by parts argument as before
shows that δv = 0 (not of course that v = 0). This gives a map from right to left
in (6.90) which is an isomorphism just as before.

In particular this shows that the ‘distributional deRham’ and ‘smooth deRham’
cohomologies are isomorphic. In fact the isomorphism is natural, even though both
isomorphisms (6.78) and (6.90) depend on the choice of inner product and smooth
density (since of course the harmonic forms depend on these choices). Namely the
isomorphism is induced by the natural ‘inclusion map’
(6.91)
{u ∈ C∞(M ;Ei); diu = 0} /di−1C∞(M ;Ei) −→

{
u ∈ C−∞(M ;Ei); diu = 0

}
/di−1C−∞(M ;Ei).

In many applications in differential geometry it is important to go a little further
than this. The Hodge theorem above identifies the null space of the Laplacian with
the intersections of the null spaces of d and δ. More generally consider the spectral
decomposition associated to the ∆i.

Proposition 6.6. If (C∞(M ;Ei))+ is the orthocomplement to null(∆i) for
each i then the di induce and exact complex
(6.92)

(C∞(M ;E0))+ d0 // (C∞(M ;E1))+d1 // . . . (C∞(M ;EN−1))+
dN−1 // (C∞(M ;EN ))+

which restricts to an exact finite-dimensional complex on the subspaces which are
eigenspaces of ∆i for a fixed λ > 0.

Proof. All the null spaces vanish and exactness follows from the Hodge de-
composition. �

Of course the adjoint complex is the one for δ and the same result holds for distri-
butional sections. Note that this means that the eigenspaces of ∆i, corresponding
to non-zero eigenvalues, can be decomposed into exact and coexact parts. Thus
even though the Hodge operator d + δ mixes form degrees, all its eigenvectors are
can be decomposed into eigenvectors of ∆ which have ‘pure degree’.
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6.7. Sobolev spaces and boundedness

[Following discussions with Sheel Ganatra]
In the discussion above, I have shown that elliptic pseudodifferential operators

are Fredholm on the spaces of C∞ sections directly from the existence of parame-
terices, rather than using the more standard argument on Sobolev spaces. However,
let me now recall this starting with operators of order 0. In fact it is convenient
to define the Sobolev spaces for other orders so that boundedness is ‘obvious’ and
then check that the definition is sensible.

Lemma 6.4. On any compact manifold M each A ∈ Ψ0(M ;V,W ) for vector
bundles V and W extends by continuity from C∞(M ;V ) to a bounded operator

(6.93) A : L2(M ;V ) −→ L2(M ;W ).

Proof. There are two obvious alternatives here. The first is to use the same
construction of approximate square roots as before. That is, using the symbol
calculus onie can see that if A is as above and we choose inner products on V and
W and a smooth volume form on M so that A∗ is defined then for a large positive
constant C there exists B ∈ Ψ0(M ;V ) so that

(6.94) C −B∗B = A∗A+G, G ∈ Ψ−∞(M ;V ).

This starts by solving the equation at a symbolic level, so showing that σ0(A) exists
such that

(6.95) C − σ0(B)∗σ0(B) = σ0(A)2, σ∗0(A) = σ0(A).

Thus σ0(A) is the square root of the positive definite matrix C − σ∗0(B)σ0(B).
Then one can proceed inductively using the symbol calculus, as before, to solve the
problem modulo smoothing.

Alternatively we can simply use the known boundedness of smoothing opera-
tors on M and of pseudodifferential operators on Rn. Thus the local (matrices of)
operators, or order 0, as in (6.18) are bounded on L2(Rn) and since u ∈ L2(M ;V )
is equivalent to (Fi)∗ψiuj ∈ L2(Rn) for a partition of unity ψi subordinate to a
coordinate cover over each element of which the bundle is trivial, the boundedness
(6.93) follows. Of course we are also using the density of C∞(M ;W ) in L2(M ;W )
which follows from the same argument. �

defines

Definition 6.3. On a compact manifold and for a vector bundle W we set
(6.96)
Hs(M ;W ) =

{
u ∈ C−∞(M ;W );Au ∈ L2(M ;V ) ∀ A ∈ Ψ−s(M ;W,V )

}
, s ∈ R.

Here we are demanding this for all pseudodifferential operators and all vector bun-
dles V. This of course is gross overkill.

Proposition 6.7. For each s ∈ R, C∞(M ;V ) is dense in Hs(M ;V ), every
element A ∈ Ψm(M ;V,W ) extends by continuity to a bounded linear operator

(6.97) A : Hs(M ;V ) −→ Hs−m(M ;W ) ∀ s ∈ R, ∀ s ∈ R

and if A ∈ Ψm(M ;V,W ) is elliptic then

(6.98) Au ∈ Hs(M ;V ) =⇒ u ∈ Hs+m(M ;W ).
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Proof. Since I have not quite fixed the topology on Hs(M ;V ), the density
statement is to be interpreted as meaning that if u ∈ Hs(M ;V ) then there is
a sequence un ∈ C∞(M ;V ) such that Pun → Pu in L2(M ;W ) for every P ∈
Ψs(M ;V,W ). In fact the simplest thing to prove is that, with the ugly definition
(6.96) of Hs(M ;V ) that

(6.99) P ∈ Ψs(M ;V,W ), u ∈ Hs(M ;V ) =⇒ Pu ∈ L2(M ;W )

since this is precisely what the definition requires. Conversely we can see that

(6.100) P ∈ Ψs(M ;V,W ), u ∈ L2(M ;V ) =⇒ Pu ∈ H−s(M ;W )

Here we are using the action of pseudodifferential operators on distributions. In-
deed, if A ∈ Ψ−s(M ;W,U) for some other vector bundle U then we just need
to show that APu ∈ L2(M ;U). However, by the composition theorem, AP ∈
Ψ0(M ;V,U) so this follows from Lemma 6.4.

Combining these two special cases of (6.97) we can get the general case. Note
that there is always an elliptic element Ps ∈ ψs(M ;V ) for any s ∈ R and any vector
bundle V. There is certainly an elliptic symbol, say (1+ |ξ|2)

s
2 IdV where | · | is some

Riemannian metric. The surjectivity of the symbol maps shows that there is in fact
a pseudodifferential operator Ps with this symbol, which is therefore elliptic. By
the elliptic construction above this operator has a parameterix Qs ∈ Ψ−s(M ;V )
which is also elliptic and satisfies

(6.101) QsPs − Id, PsQs − Id ∈ Ψ−∞(M ;V ).

Now, given a general A ∈ Ψm(M ;W,V ) composing with this identity shows that
(6.102)
A = (AQs)Ps +G = BPs +G, B = AQs ∈ Ψm−s(M ;V,W ), G ∈ Ψ−∞(M ;V,W ).

A smoothing operator certainly satisfies (6.97) (since C∞(M ;V ) ⊂ Hs(M ;V ) for
all s) so it suffices to consider BPs in place of A. Applying (6.99) to Ps and (6.100)
to B, with s replaced by m− s shows that

(6.103) Hs(M ;V )
Ps //L2(M ;V ) B //Hs−m(M ;W )

which gives (6.97).
If A is elliptic then (6.98) follows since if Q ∈ Ψ−m(M ;W,V ) is a parametrix

for A then
(6.104)
QA = Id−G, G ∈ Ψ−∞(M ;V ), Au ∈ Hs(M ;W ) =⇒ u = QAu+Gu ∈ Hs+m(M ;V ).

This means that the original definition can be written in the much simpler form
(6.105)
Hs(M ;W ) =

{
u ∈ C−∞(M ;W );P−su ∈ L2(M ;W ) for some elliptic P−ss ∈ Ψ−s(M ;W )

}
.

Here of course ‘some’ means for any one elliptic element.
Finally then the density also follows. Namely, if u ∈ Hs(M ;V ) then

(6.106) u = Qs(Psu) +Gu, Ps ∈ Ψs(M ;V ), Qs ∈ Ψ−s(M ;V ), G ∈ Ψ−∞(M ;V ).

Thus Psu ∈ L2(M ;V ). Let vn → Psu in L2(M ;V ) then Gu ∈ C∞(M ;V ) and
(6.107)
Qsun+Gu→ u ∈ Hs(M ;V ) since PQsun+PGu→ Gu ∈ L2(M ;W ) ∀ P ∈ Ψs(M ;V,W ).

�
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Using the Fredholm properties of elliptic operators we see that if Ps/2 ∈
Ψs/2(M ;V ) is elliptic then, if s > 0,

(6.108) Bs = P ∗s/2Ps/2 + 1 ∈ Ψs(M ;V )

is an isomorphism. Indeed, it is elliptic so we know that any element u of its null
space is in C∞(M ;V ). However integration by parts is then justified and shows that

(6.109) Bsu = 0 =⇒ 〈Ps/2u, Ps/2u〉+ ‖u‖2L2 = 0 =⇒ u ≡ 0.

Thus its null space consists of {0} and since it is (formally) self-adjoint, the same
is true of the null space of its adjoint. Thus, being Fredholm, it is an isomorphism.
In fact its inverse

(6.110) B−1
s ∈ Ψ−s(M ;V )

is also invertible. We have already shown (6.110) since B−1
s is the generalized

inverse.
Thus we have shown the main part of

Proposition 6.8. For any compact manifold M and any vector bundle V over
M there is an invertible element Bs ∈ Ψs(M ;V ) for each s and then

(6.111) Hs(M ;V ) = {u ∈ C−∞(M ;V );Bsu ∈ L2(M ;V )}, ‖u‖s = ‖Bsu‖L2

shows that Hs(M ;V ) is a Hilbert space. Moreover ψiu has entries in Hs(Rn) for
any covering of M by coordinate patches over each of which the bundle is trivial
and for any partition of unity subordinate to it.

Proof. The last part just follows by looking at the local coordinate represen-
tative of Bs. Namely ψiu is a (vector of) compactly supported distributions in the
coordinate patch and (1 + |D|2)−s/2ψiu ∈ L2(Rn) since it is smooth outside the
image of the support of ψi by pseudolocality and inside the coordinate patch by
the boundedness of pseudodifferential operators discussed above. �

Proposition 6.9. The L2 pairing with respect to an inner product and smooth
volume form extends by continuity to a non-degenerate pairing

(6.112) Hs(M ;V )×H−s(M ;V ) −→ C

which allows H−s(M ;V ) to be identified with the dual of Hs(M ;V ) for any s.

Proof. Exercise! �

6.8. Pseudodifferential projections

We are interested in constructing projections in the pseudodifferential algebra
corresponding to arbitrary symbolic projections.

Theorem 6.5. If M is compact, E is a complex vector bundle over M and
p ∈ C∞(S∗M ; hom(E)) is valued in the projections in the sense that p2 = p then
there exists an element P ∈ Ψ0(M ;E) with symbol p which is itself a projection.

First we work modulo smoothing operators, for later applications we shall do
this without assuming the compactness of M.
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Lemma 6.5. If E −→ M is a complex vector bundle and p ∈ C∞(S∗M ;E)
satisfies p2 = p then there exists Q ∈ Ψ0(M ;E) which is properly supported and
such that

(6.113) Q2 −Q ∈ Ψ−∞(M ;E).

Proof. Of course the first step is simply to choose Q0 ∈ Ψ0(M ;E) which is
properly supported and has σ0(Q) = p. This gives a version of (6.113) but only
modulo terms of order −1 :

(6.114) Q2
0 −Q0 = E1 ∈ Ψ−1(M ;E).

However note, by composing with Q0 first on the left and then on the right, that
Q0E1 = E1Q0. It follows that

(6.115) (Id−P )EiP, PEi(Id−P ) ∈ Ψ−i−1(M ;E)

for i = 1. Then set Q1 = −Q0E1Q0 + (Id−Q)E0(Id−Q0) and Q(1) = Q0 +Q1. It
follows from (6.114) and (6.115) that

(6.116) Q2
(i) −Q(i) = Ei+1 = Ei +Q(i)Qi +QiQ(i) −Qi ∈ Ψ−i−1(M ;E).

Thus we can proceed by induction and successively find Qj ∈ Ψ−j(M ;E), always
properly supported, such that

(6.117) Q(i) =
i∑

j=1

Qj satisfies (6.116) for all i.

Then taking Q to be a properly supported asympotic sum of this series gives an
operator as claimed. �

Proposition 6.10. If M is compact, E is a complex vector bundle over M and
Q ∈ Ψ0(M ;E) is such that Q2 −Q ∈ Ψ−∞(M ;E) then there exists P ∈ Ψ0(M ;E)
such that P 2 = P and P −Q ∈ Ψ−∞(M ;E).

Proof. As a bounded operator on L2(M ;E), Q has discrete spectrum outside
{0, 1}. Indeed, if τ /∈ {0, 1} then

(6.118) (Q− τ Id)((1− τ)−1Q− τ−1(Id−Q)) = Id +(1− τ)−1τ−1(Q2 −Q)

gives a parametrix for Q− τ Id . The right side is invertible for |τ | large and hence
for all τ outside a discrete subset of C \ {0, 1} with inverse Id +S(τ) where S(τ)
is meromorphic with values in Ψ−∞(M ;E). Letting Γ be the circle of radius 1

2 − ε
around the origin for ε > 0 sufficiently small it follows that Q− τ Id is invertible on
Γ with inverse ((1− τ)−1Q− τ−1(Id−Q))(Id +S(τ). Thus, by Cauchy’s theorem,

(6.119) Id−P =
1

2πi

∮
Γ

(τ −Q)−1dτ = Id−Q+ S, S ∈ Ψ−∞(M ;E)

and moreover P is a projection since choosing Γ′ to be a circle with slightly larger
radius than Γ,

(6.120)

(Id−P )2 =
1

2πi
2πi∮

Γ′

∮
Γ

(τ ′ −Q)−1(τ −Q)−1dτ ′dτ

=
1

2πi
1

2πi

∮
Γ′

∮
Γ

(
(τ ′ − τ)−1(τ ′ −Q)−1 + (τ ′ − τ)−1(τ −Q)−1

)
dτ ′dτ

= Id−P
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since in the first integral the integrand is holomorphic in τ inside Γ and in the
second the τ ′ integral has a single pole at τ ′ = τ inside Γ. �

The following more qualitative version is used in the discussion of the Calderón
projection .

Proposition 6.11. If M is compact, E is a complex vector bundle over M and
Q ∈ Ψ0(M ;E) is such that Q2 −Q ∈ Ψ−∞(M ;E) and F ⊂ Hs(M ;E) is a closed
subspace corresponding to which there are smoothing operators A,B ∈ Ψ−∞(M ;E)
with Id−Q = A on F and (Q+B)L2(M ;E) ⊂ F then there is a smoothing operator
B′ ∈ Ψ−∞(M : E) such that F = Ran(Q+B′) and (Q+B′)2 = Q+B′.

Proof. Assume first that s = 0, so F is a closed subspace of L2(X;E). Ap-
plying Proposition 6.10 to Q we may assume that it is a projection P, without
affecting the other conditions. Consider the intersection E = F ∩Ran(Id−P ). This
is a closed subspace of L2(M ;E). With A as in the statement of the proposition,
E ⊂ Nul(Id−A). Indeed P vanishes on Ran(Id−P ) and hence on E and by hypoth-
esis Id−P − A vanishes on F and hence on E. From the properties of smoothing
operators, E is contained in a finite dimensional subspace of C∞(M ;E), so is itself
such a space. We may modify P by adding a smoothing projection onto E to it,
and so assume that F ∩ Ran(Id−P ) = {0}.

Consider the sum G = F + Ran(Id−P ) and the operator Id +B = (P + B) +
(Id−P ), with B as in the statement of the Proposition. The range of Id +B is
contained in G. Thus G must be a closed subspace of L2(M ;E) with a finite di-
mensional complement in C∞(M ;E). Adding a smoothing projection onto such a
complement we can, again by altering P by smoothing term, arrange that

(6.121) L2(M ;E) = F ⊕ Ran(Id−P )

is a (possibly non-orthogonal) direct sum. Since P has only been altered by a
smoothing operator the hypotheses of the Proposition continue to hold. Let Π
be the projection with range F and null space equal to the range of Id−P. It
follows that P ′ = P + (Id−P )RP for some bounded operator R (namely R =
(Id−P )(P ′ − P )P.) Then restricted to F, P ′ = Id and P = Id +A so R = −A on
F. In fact R = AP ∈ Ψ−∞(M ;E), since they are equal on F and both vanish on
Ran(Id−P ). Thus P ′ differs from P by a smoothing operator.

The case of general s follows by conjugating with a pseudodifferential isomor-
phism of Hs(M ;E) to L2(M ;E) since this preserves both the assumptions and the
conclusions. �

6.9. The Toeplitz algebra

6.10. Semiclassical algebra

Recall the notion of a semiclassical 1-parameter family of pseudodifferential
operators (which we will nevertheless call a semiclassical operator) on Euclidean
space in Section 2.19. Following the model in Section 6.3 above we can easily
‘transfer’ this definition to a manifold M, compact or not. The main thing to decide
is what to require of the part of the kernel away from the diagonal. This however
is clear from (2.210). Namely in any compact set of M2 which does not meet the
diagonal, the kernel should be smooth uniformly down to ε = 0, including in ε itself,
and it should vanish there to infinite order. This motivates the following definition
modelled closely on Definition 6.2 and the discussion of operators between sections
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of vector bundles in Section 6.5. This time I have chosen to define the classical
operators, of course the spaces Ψm

sl-∞(X,E) have a similar definition.

Definition 6.4. If X is a C∞ manifold and E = (E+, E−) is a pair of com-
plex vector bundles over X then, for any m ∈ R, Ψm

sl (X;E) is the space of linear
operators

(6.122) Aε : C∞c ([0, 1]×X;E+) −→ C∞([0, 1]×X;E−)

with the following properties. First,
(6.123)
if φ, ψ ∈ C∞(X) have disjoint supports then ∃ Kε ∈ C∞([0, 1]ε ×X2; ΩR ⊗Hom(E)),

Kε ≡ 0 at {ε = 0}such that ∀ u ∈ C∞c ([0, 1]×X;E+) φAψu =
∫
X

Kε(x, y)u(y),

and secondly if F : W −→ Rn is a coordinate system in X over which E is trivial,
with trivializations h±E±

∣∣
W
←→ W × CN± , and ψ ∈ C∞c (X) has support in W

then

∃ Bε ∈ Ψm
sl (Rn;CN+ ,CN−), supp(Bε) ⊂ [0, 1]× F (W )× F (W ) s.t.

ψAεψu �W = h−F
∗(Bε((F−1)∗(h−1

+ ψu))) ∀ u ∈ C∞c ([0, 1]×X;E+).

A semiclassical operator (always a family of course) is said to be properly
supported if its kernel has proper support in [0, 1]×X ×X, that is proved the two
maps

(6.124) supp(Bε)
πL

zzvvvvvvvvv
πR

$$HHHHHHHHH

X X

are both proper, meaning the inverse image of a compact set is compact. Since

(6.125) πX supp(Bεu) ⊂ πL(supp(Bε) ∩ π−1
R (πX supp(u))

(where supp(u) ⊂ [0, 1]×X and πX is projection onto the second factor) it follows
that a properly supported operator satisifes

(6.126) Bε : C∞c ([0, 1]×X;E+) −→ C∞c ([0, 1]×X;E−).

The same is true of the adjoint, so in fact by duality

(6.127) Bε : C∞([0, 1]×X;E+) −→ C∞([0, 1]×X;E−).

The discussion above now carries over to give similar results for semiclassical
families.

Proposition 6.12. The subspaces of properly supported semiclassial operators
for any manifold have short exact symbol sequences

(6.128)
0 ↪→ Ψm−1

sl (X) ↪→ Ψm(X) σm−→ Sm−[1](T ∗X) −→ 0,

0 ↪→ εΨm
sl (X) ↪→ Ψm

sl (X) σm−→−→ 0,

compose as operators (6.126) and (6.127) and their symbols, standard and semi-
classical, compose as well:

(6.129)
σm+m′(AεBε) = σm(Aε) ◦ σm′(Bε),
σsl(AεBε) = σsl(Aε) ◦ σsl(Bε).
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The L2 boundedness in Proposition 2.14 carries over easily to the manifold
case.

Proposition 6.13. If M is compact and E is a complex vector bundle over M
then Aε ∈ Ψ0

sl(M ;E) then

(6.130) sup
0<ε≤1

‖Aε‖L2(M ;E) <∞.

We are particularly interested in semiclassical operators below because they
make it possible to easily ‘quantize’ projections.

Proposition 6.14. Suppose p ∈ C∞(slT ∗X; hom(E)) is a smooth family of
projections for a compact manifold X then there exists a semiclassical family of
projections Pε ∈ Ψ0

sl(X;E) such that σsl(Pε) = p.

Proof. By the surjectivity of the semiclassical symbol map we can choose
Aε ∈ Ψ0

sl(X;E) with σsl(Aε) = p and we can arrange that σ0(Aε) is the constant
family of projections defined by p on the sphere bundle at infinity. Then

(6.131) A2
ε −Aε = Eε ∈ εΨ−1

sl (X;E).

Composing on the left in (6.131) gives the same result as composing on the right,
so

(6.132) AεEε = EεAε =⇒ σ(e) = pσ(e)p+ (Id−p)σ(e)(Id−p)
where the symbolic identity is true in both sense, for σ(e) = σsl(e) and σ(e) =
σ−1(e).

Now, we wish to ‘correct’ Aε so this error term is smoothing and vanishes to
infinite order at ε = 0. First we add the term

A(1)
ε = AεA

(1)
ε Aε − (Id−Aε)A(1)

ε (Id−Aε) ∈ Ψ−1
sl (X;E)

to Aε. This modifies (6.131) to

(6.133) (Aε +A(1)
ε )2 −Aε −A(1)

ε = Eε +AεA
(1)
ε +A(1)

ε Aε −A(1)
ε ∈ ε2Ψ−2

sl (X;E).

Repeating this step generates an asymptotic solution and summing the asymptotic
series gives a solution modulo rapidly decreasing smoothing error terms.

�

6.11. Heat kernel

6.12. Resolvent

6.13. Complex powers

6.14. Problems

Problem 6.1. Show that compatibility in the sense defined before Defini-
tion 6.1 is an equivalence relation on C∞ structures. Conclude that there is a
unique maximal C∞ structure containing any give C∞ structure.

Problem 6.2. Let F be a C∞ structure on X and let Oa, a ∈ A, be a covering
of X by coordinate neighbourhoods, in the sense of (6.2) and (6.3). Show that the
maximal C∞ structure containing F consists of ALL functions on X which are of
the form (6.3) on each of these coordinate patches. Conclude that the maximal C∞
structure is an algebra.
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Problem 6.3 (Partitions of unity). Show that any C∞ manifold admits parti-
tions of unity. That is, if Oa, a ∈ A, is an open cover of X then there exist elements
ρa,i ∈ C∞(X), a ∈ A, i ∈ N, with 0 ≤ ρa,i ≤ 1, with each ρa,i vanishing outside
a compact subset Ka,i ⊂ Oa such that only finite collections of the {Ka,i} have
non-trivial intersection and for which∑

a∈A,i∈N
ρa,i = 1.


