
CHAPTER 3

Schwartz and smoothing algebras

The standard algebra of operators discussed in the previous chapter is not really
representative, in its global behaviour, of the algebra of pseudodifferential operators
on a compact manifold. Of course this can be attributed to the non-compactness
of Rn. However, as we shall see below in the discussion of the isotropic algebra, and
then again in the later discussion of the scattering algebra, there are closely related
global algebras of pseudodifferential operators on Rn which behave much more as
in the compact case.

The ‘non-compactness’ of the algebra Ψ∞∞(Rn) is evidenced by the fact the
the elements of the ‘residual’ algebra Ψ−∞∞ (Rn) are not all compact as operators
on L2(Rn), or any other interesting space on which they act. In this chapter we
consider a smaller algebra of operators in place of Ψ−∞∞ (Rn). Namely

(3.1) A ∈ Ψ−∞iso (Rn)⇐⇒ A : S(Rn) −→ S(Rn),

Aφ(x) =
∫

Rn
A(x, y)φ(y)dy, A ∈ S(R2n).

The notation here, as the residual part of the isotropic algebra – which has not yet
been defined – is rather arbitrary but it seems better than introducing a notation
which will be retired later; it might be better to think of Ψ−∞iso (Rn) as the ‘Schwartz
algebra.’

After discussing this ‘Schwartz algebra’ at some length we will turn to the
corresponding algebra of smoothing operators on a compact manifold (even with
corners). This requires a brief introduction to manifolds, with which however I will
assume some familiarity, including integration of densities. Then essentially all the
results discussed here for operators on Rn are extended to the more general case, and
indeed the Schwartz algebra itself is realized as one version of this generalization.

By definition then, Ψ−∞iso (Rn) is the algebra which corresponds to the non-
commutative product on S(R2n) given by

(3.2) A ◦B(x, y) =
∫

Rn
A(x, z)B(z, y)dz.

The properties we discuss here have little direct relation to the ‘microlocal’ concepts
which are discussed in the preceeding chapter. Rather they are more elementary, or
at least familiar, results which are needed (and in particular are generalized) later
in the discussion of global properties. This formula, (3.2) extends to smoothing
operators on manifolds and gives C∞(M2), where M is a compact manifold, the
structure of a non-commutative algebra.

In the discussion of the semiclassical limit of smoothing operators at the end
of this chapter the relationship between this non-commutative product and the
commutative product on T ∗M is discussed. This is used extensively later.
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74 3. SCHWARTZ AND SMOOTHING ALGEBRAS

3.1. The residual algebra

The residual algebra in both the isotropic and scattering calculi, discussed
below, has two important properties not shared by the residual algebra Ψ−∞∞ (Rn),
of which it is a subalgebra (and in fact in which it is an ideal). The first is that as
operators on L2(Rn) the residual isotropic operators are compact.

Proposition 3.1. Elements of Ψ−∞iso (Rn) are characterized amongst continu-
ous operators on S(Rn) by the fact that they extend by continuity to define contin-
uous linear maps

(3.3) A : S ′(Rn) −→ S(Rn).

In particular the image of a bounded subset of L2(Rn) under an element of Ψ−∞iso (Rn)
is contained in a compact subset.

Proof. The kernels of elements of Ψ−∞iso (Rn) are in S(R2n) so the mapping
property (3.3) follows.

The norm sup|α|≤1 |〈x〉n+1Dαu(x)| is continuous on S(Rn). Thus if S ⊂ L2(Rn)
is bounded and A ∈ Ψ−∞iso (Rn) the continuity of A : L2(Rn) −→ S(Rn) implies that
A(S) is bounded with respect to this norm. The theorem of Arzela-Ascoli shows
that any sequence in A(S) has a strongly convergent subsequence in 〈x〉nC0

∞(Rn)
and such a sequence converges in L2(Rn). Thus A(S) has compact closure in L2(Rn)
which means that A is compact. �

The second important property of the residual algebra is that it is ‘bi-ideal’ or
a ‘corner’ in the bounded operators on L2(Rn). Note that it is not an ideal.

Lemma 3.1. If A1, A2 ∈ Ψ−∞iso (Rn) and B is a bounded operator on L2(Rn)
then A1BA2 ∈ Ψ−∞iso (Rn).

Proof. The kernel of the composite C = A1BA2 can be written as a distri-
butional pairing
(3.4)

C(x, y) =
∫

R2n
B(x′, y′)A1(x, x′)A2(y′, y)dx′dy′ = (B,A1(x, ·)A2(·, y)) ∈ S(R2n).

Thus the result follows from the continuity of the exterior product, S(R2n) ×
S(R2n) −→ S(R4n). �

In fact the same conclusion, with essentially the same proof, holds for any
continuous linear operator B from S(Rn) to S ′(Rn).

3.2. The augmented residual algebra

Recall that a bounded operator is said to have finite rank if its range is finite
dimensional. If we consider a bounded operator B on L2(Rn) which is of finite rank
then we may choose an orthonormal basis fj , j = 1, . . . , N of the range BL2(Rn).
The functionals u 7−→ 〈Bu, fj〉 are continuous and so define non-vanishing elements
gj ∈ L2(Rn). It follows that the Schwartz kernel of B is

(3.5) B =
N∑
j=1

fj(x)gj(y).
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If B ∈ Ψ−∞iso (Rn) then the range must lie in S(Rn) and similarly for the range of
the adjoint, so the functions fj are linearly dependent on some finite collection of
functions f ′j ∈ S(Rn) and similarly for the gj . Thus it can be arranged that the fj
and gj are in S(Rn).

Proposition 3.2. If A ∈ Ψ−∞iso (Rn) then Id +A has, as an operator on L2(Rn),
finite dimensional null space and closed range which is the orthocomplement of the
null space of Id +A∗. There is an element B ∈ Ψ−∞iso (Rn) such that

(3.6) (Id +A)(Id +B) = Id−Π1, (Id +B)(Id +A) = Id−Π0

where Π0, Π1 ∈ Ψ−∞iso (Rn) are the orthogonal projections onto the null spaces of
Id +A and Id +A∗ and furthermore, there is an element A′ ∈ Ψ−∞iso (Rn) of rank
equal to the dimension of the null space such that Id +A + sA′ is an invertible
operator on L2(Rn) for all s 6= 0.

Proof. Most of these properties are a direct consequence of the fact that A
is compact as an operator on L2(Rn).

We have shown, in Proposition 3.1 that each A ∈ Ψ−∞iso (Rn) is compact. It
follows that

(3.7) N0 = Nul(Id +A) ⊂ L2(Rn)

has compact unit ball. Indeed the unit ball, B = {u ∈ Nul(Id +A)} satisfies
B = A(B), since u = −Au on B. Thus B is closed (as the null space of a continuous
operator) and precompact, hence compact. Any Hilbert space with a compact unit
ball is finite dimensional, so Nul(Id +A) is finite dimensional.

Now, let R1 = Ran(Id +A) be the range of Id +A; we wish to show that this is a
closed subspace of L2(Rn). Let fk → f be a sequence in R1, converging in L2(Rn).
For each k there exists a unique uk ∈ L2(Rn) with uk ⊥ N0 and (Id +A)uk = fk. We
wish to show that uk → u. First we show that ‖uk‖ is bounded. If not, then along
a subsequent vj = uk(j), ‖vj‖ → ∞. Set wj = vj/‖vj‖. Using the compactness
of A, wj = −Awj + fk(j)/‖vj‖ must have a convergent subsequence, wj → w.
Then (Id +A)w = 0 but w ⊥ N0 and ‖w‖ = 1 which are contradictory. Thus the
sequence uk is bounded in L2(Rn). Then again uk = −Auk + fk has a convergent
subsequence with limit u which is a solution of (Id +A)u = f ; hence R1 is closed.
The orthocomplement of the range of a bounded operator is always the null space
of its adjoint, so R1 has a finite-dimensional complement N1 = Nul(Id +A∗). The
same argument applies to Id +A∗ so gives the orthogonal decompositions

(3.8)
L2(Rn) = N0 ⊕R0, N0 = Nul(Id +A), R0 = Ran(Id +A∗)

L2(Rn) = N1 ⊕R1, N1 = Nul(Id +A∗), R1 = Ran(Id +A).

Thus we have shown that Id +A induces a continuous bijection Ã : R0 −→ R1.
From the closed graph theorem the inverse is a bounded operator B̃ : R1 −→ R0.
In this case continuity also follows from the argument above.1 Thus B̃ is the
generalized inverse of Id +A in the sense that B = B̃ − Id satisfies (3.6). It only
remains to show that B ∈ Ψ−∞iso (Rn). This follows from (3.6), the identities in which

1We need to show that ‖B̃f‖ is bounded when f ∈ R1 and ‖f‖ = 1. This is just the
boundedness of u ∈ R0 when f = (Id +A)u is bounded in R1.
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show that

(3.9) B = −A−AB −Π1, −B = A+BA+ Π0

=⇒ B = −A+A2 +ABA−Π1 +AΠ0.

All terms here are in Ψ−∞iso (Rn); for ABA this follows from Proposition 3.1.
It remains to show the existence of the finite rank perturbation A′. This is

equivalent to the vanishing of the index, that is

(3.10) Ind(Id +A) = dim Nul(Id +A)− dim Nul(Id +A∗) = 0.

Indeed, let fj and gj , j = 1, . . . , N, be respective bases of the two finite dimensional
spaces Nul(Id +A) and Nul(Id +A∗). Then

(3.11) A′ =
N∑
j=1

gj(x)fj(y)

is an isomorphism of N0 onto N1 which vanishes on R0. Thus Id +A + sA′ is the
direct sum of Id +A as an operator from R0 to R1 and sA′ as an operator from N0

to N1, invertible when s 6= 0.
There is a very simple proof2 of the equality (3.10) if we use the trace func-

tional discussed in Section 3.5 below; this however is logically suspect as we use
(although not crucially) approximation by finite rank operators in the discussion of
the trace and this in turn might appear to use the present result via the discussion
of ellipticity and the harmonic oscillator. Even though this is not really the case
we give a clearly independent, but less elegant proof.

Consider the one-parameter family of operators Id +tA, A ∈ Ψ−∞iso (Rn). We
shall see that the index, the difference in dimension between Nul(Id +tA) and
Nul(Id +tA∗) is locally constant. To see this it is enough to consider a general
A near the point t = 1. Consider the pieces of A with respect to the decompositions
L2(Rn) = Ni ⊕Ri, i = 0, 1, of domain and range. Thus A is the sum of four terms
which we write as a 2× 2 matrix

A =
[
A00 A01

A10 A11

]
.

Since Id +A has only one term in such a decomposition, Ã in the lower right, the
solution of the equation (Id +tA)u = f can be written

(3.12) (t− 1)A00u0 + (t− 1)A01u⊥ = f1, (t− 1)A10u0 + (A′+ (t− 1)A11)u⊥ = f⊥

Since Ã is invertible, for t − 1 small enough the second equation can be solved
uniquely for u⊥. Inserted into the first equation this gives

(3.13) G(t)u0 = f1 +H(t)f⊥,

G(t) = (t− 1)A00 − (t− 1)2A01(A′ + (t− 1)A11)−1A10,

H(t) = −(t− 1)A01(A′ + (t− 1)A11)−1.

2Namely the trace of a finite rank projection, such as either Π0 or Π1, is its rank, hence
the dimension of the space onto which it projects. From the identity satisfied by the generalized

inverse we see that

Ind(Id +A) = Tr(Π0)− Tr(Π1) = Tr ((Id +B)(Id +A)− (Id +A)(Id +B)) = Tr([B,A]) = 0

from the basic property of the trace.
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The null space is therefore isomorphic to the null space of G(t) and a complement
to the range is isomorphic to a complement to the range of G(t). Since G(t) is
a finite rank operator acting from N0 to N1 the difference of these dimensions is
constant in t, namely equal to dimN0 − dimN1, near t = 1 where it is defined.

This argument can be applied to tA so the index is actually constant in t ∈ [0, 1]
and since it certainly vanishes at t = 0 it vanishes for all t. In fact, as we shall note
below, Id +tA is invertible outside a discrete set of t ∈ C. �

Corollary 3.1. If Id +A, A ∈ Ψ−∞iso (Rn) is injective or surjective on L2(Rn),
in particular if it is invertible as a bounded operator, then it has an inverse of the
form Id +Ψ−∞iso (Rn).

Corollary 3.2. If A ∈ Ψ−∞iso (Rn) then as an operator on S(Rn) or S ′(Rn),
Id +A is Fredholm in the sense that its null space is finite dimensional and its range
is closed with a finite dimensional complement.

Proof. This follows from the existence of the generalized inverse of the form
Id +B, B ∈ Ψ−∞iso (Rn). �

3.3. Exponential and logarithm

Proposition 3.3. The exponential

(3.14) exp(A) =
∑
j

1
j!
Aj : Ψ−∞iso (Rn) −→ Id +Ψ−∞iso (Rn)

is a globally defined, entire, function with range containing a neighbourhood of the
identity and with inverse on such a neighbourhood given by the analytic function

(3.15) log(Id +A) =
∑
j

(−1)j

j
Aj , A ∈ Ψ−∞iso (Rn), ‖A‖L2 < 1

3.4. The residual group

By definition, G−∞iso (Rn) is the set (if you want to be concrete you can think of
them as operators on L2(Rn)) of invertible operators in Id +Ψ−∞iso (Rn). If we identify
this topologically with Ψ−∞iso (Rn) then, as follows from Corollary 3.1, G−∞iso (Rn) is
open. We will think of it as an infinite-dimensional manifold modeled, of course, on
the linear space Ψ−∞iso (Rn) ' S(R2n). Since I have no desire to get too deeply into
the general theory of such Fréchet manifolds I will keep the discussion as elementary
as possible.

The dual space of S(Rp) is S ′(Rp). If we want to think of S(Rp) as a manifold
we need to consider smooth functions and forms on it. In the finite-dimensional
case, the exterior bundles are the antisymmetric parts of the tensor powers of the
dual. Since we are in infinite dimensions the tensor power needs to be completed
and the usual choice is the ‘projective’ tensor product. In our case this is something
quite simple, namely the k-fold completed tensor power of S ′(Rp) is just S ′(Rkp).
Thus we set

(3.16) ΛkS(Rp) = {u ∈ S ′(Rkp); for any permutation

e, u(xe(1), . . . xe(h)) = sgn(e)u(x1, . . . xk)}.
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In view of this it is enough for us to consider smooth functions on open sets
F ⊂ S(Rp) with values in S ′(Rp) for general p. Thus

(3.17) v : F −→ S ′(Rp), F ⊂ S(Rn) open

is continuously differentiable on F if there exists a continuous map

v′ : F −→ S ′(Rn+p) and each u ∈ F has a neighbourhood U

such that for each N ∃ M with

‖v(u+ u′)− v(u)− v′(u;u′)‖N ≤ C‖u′‖2M , ∀ u, u+ u′ ∈ U.
Then, as usual we define smoothness as infinite differentiability by iterating this
definition. The smoothness of v in this sense certainly implies that if f : X −→
S(Rn) is a smooth from a finite dimensional manifold then v ◦ F is smooth.

Thus we define the notion of a smooth form on F ⊂ S(Rn), an open set, as a
smooth map

(3.18) α : F → ΛkS(Rp) ⊂ S ′(Rkp).
In particular we know what smooth forms are on G−∞iso (Rn).

The de Rham differential acts on forms as usual. If v : F → C is a function
then its differential at f ∈ F is dv : F −→ S ′(Rn) = Λ1S(Rn), just the derivative.
As in the finite-dimensional case d extends to forms by enforcing the condition that
dv = 0 for constant forms and the distribution identity over exterior products

(3.19) d(α ∧ β) = (dα) ∧ β + (−1)degαα ∧ dβ.

3.5. Traces on the residual algebra

The algebras we are studying are topological algebras, so it makes sense to
consider continuous linear functionals on them. The most important of these is the
trace. To remind you what it is we consider first its properties for matrix algebras.

Let M(N ;C) denote the algebra of N × N complex matrices. We can simply
define

(3.20) Tr : M(N ;C)→ C, Tr(A) =
N∑
i=1

Aii

as the sum of the diagonal entries. The fundamental property of this functional is
that

(3.21) Tr([A,B]) = 0 ∀ A,B ∈M(N ;C).

To check this it is only necessary to write down the definition of the composition
in the algebra. Thus

(AB)ij =
N∑
k=1

AikBkj .

It follows that

Tr(AB) =
N∑
i=1

(AB)ii =
N∑

i,k=1

AikBki

=
N∑
k=1

N∑
i=1

BkiAik =
N∑
k=1

(BA)kk = Tr(BA)



3.5. TRACES ON THE RESIDUAL ALGEBRA 79

which is just (3.21).
Of course any multiple of Tr has the same property (3.21) but the normalization

condition

(3.22) Tr(Id) = N

distinguishes it from its multiples. In fact (3.21) and (3.22) together distinguish
Tr ∈ M(N ;C)′ as a point in the N2 dimensional linear space which is the dual of
M(N ;C).

Lemma 3.2. If F : M(N ;C) → C is a linear functional satisfying (3.21) and
B ∈M(N ;C) is any matrix such that F (B) 6= 0 then F (A) = F (B)

Tr(B) Tr(A).

Proof. Consider the basis of M(N ;C) given by the elementary matrices Ejk,
where Ejk has jk-th entry 1 and all others zero. Thus

EjkEpq = δkpEjq.

If j 6= k it follows that
EjjEjk = Ejk, EjkEjj = 0.

Thus
F ([Ejj , Ejk]) = F (Ejk) = 0 if j 6= k.

On the other hand, for any i and j

EjiEij = Ejj , EijEji = Eii

so
F (Ejj) = F (E11) ∀ j.

Since the Ejk are a basis,

F (A) = F (
N∑

j,k=1

AijEij)

=
N∑

j,l=1

AjjF (Eij)

= F (E11)
N∑
j=1

Ajj = F (E11) Tr(A).

This proves the lemma. �

For the isotropic smoothing algebra we have a similar result.

Proposition 3.4. If F : Ψ−∞iso (Rn) ' S(R2n) −→ C is a continuous linear
functional satisfying

(3.23) F ([A,B]) = 0 ∀ A,B ∈ Ψ−∞iso (Rn)

then F is a constant multiple of the functional

(3.24) Tr(A) =
∫

Rn
A(x, x)dx.



80 3. SCHWARTZ AND SMOOTHING ALGEBRAS

Proof. Recall that Ψ−∞iso (Rn) ⊂ Ψ∞iso(Rn) is an ideal so A ∈ Ψ−∞iso (Rn) and
B ∈ Ψ∞iso(Rn) implies that AB, BA ∈ Ψ−∞iso (Rn) and it follows that the equality
F (AB) = F (BA), or F ([A,B]) = 0, is meaningful. To see that it holds we just
use the continuity of F. We know that if B ∈ Ψ∞iso(Rn) then there is a sequence
Bn → B in the topology of Ψm

iso(Rn) for some m. Since this implies ABn → AB,
BnA→ BA in Ψ−∞iso (Rn) we see that

F ([A,B]) = lim
n→∞

F ([A,Bn]) = 0.

We use this identity to prove (3.24). Take B = xj or Dj , j = 1, . . . , n. Thus
for any A ∈ Ψ−∞iso (Rn)

F ([A, xj ]) = F ([A,Dj ]) = 0.

Now consider F as a distribution acting on the kernel A ∈ S(R2n). Since the kernel
of [A, xj ] is A(x, y)(yj − xj) and the kernel of (A,Dj) is −(Dyj + Dxj )A(x, y) we
conclude that, as an element of S ′(R2n), F satisfies

(xj − yj)F (x, y) = 0, (Dxj +Dyj )F (x, y) = 0.

If we make the linear change of variables to pi = xi+yi
2 , qi = xi − yi and set

F̃ (p, q) = F (x, y) these conditions become

Dqi F̃ = 0, piF̃ = 0, i = 1, . . . , N.

As we know from Lemmas 1.2 and 1.3, this implies that F̃ = cδ(p) so

F (x, y) = cδ(x− y)

as a distribution. Clearly δ(x− y) gives the functional Tr defined by (3.24), so the
proposition is proved. �

We still need to justify the use of the same notation, Tr, for these two func-
tionals. However, if L ⊂ S(Rn) is any finite dimensional subspace we may choose
an orthonal basis ϕi ∈ L, i = 1, . . . , l,∫

Rn
|ϕi(x)|2dx = 0,

∫
Rn
ϕi(x)ϕj(x)dx = 0, i 6= j.

Then if aij is an l × l matrix,

A =
∑̀
i,j=1

aijϕi(x)ϕj(y) ∈ Ψ−∞iso (Rn).

From (3.24) we see that

Tr(A) =
∑
ij

aij Tr(ϕiϕ̄j)

=
∑
ij

aij

∫
Rn
ϕi(x)ϕj(x)dx

=
n∑
i=1

aii = Tr(a).

Thus the two notions of trace coincide. In any case this already follows, up to a
constant, from the uniqueness in Lemma 3.2.



3.6. FREDHOLM DETERMINANT 81

3.6. Fredholm determinant

For N ×N matrices, the determinant is a multiplicative polynomial map

(3.25) det : M(N ;C) −→ C, det(AB) = det(A) det(B), det(Id) = 1.

It is not quite determined by these conditions, since det(A)k also satisfies then. The
fundamental property of the determinant is that it defines the group of invertible
elements

(3.26) GL(N,C) = {A ∈M(N ;C); det(A) 6= 0}.

A reminder of a direct definition is given in Problem 4.7.
The Fredholm determinant is an extension of this definition to a function on

the ring Id +Ψ−∞iso (Rn). This can be done in several ways using the density of finite
rank operators, as shown in Corollary 4.2. We proceed by generalizing the formula
relating the determinant to the trace. Thus, for any smooth curve with values in
GL(N ;C) for any N,

(3.27)
d

ds
det(As) = det(As) tr(A−1

s

As
ds

).

In particular if (3.25) is augmented by the normalization condition

(3.28)
d

ds
det(Id +sA)

∣∣
s=0

= tr(A) ∀ A ∈M(N ;C)

then it is determined.
A branch of the logarithm can be introduced along any curve, smoothly in the

parameter, and then (3.27) can be rewritten

(3.29) d log det(A) = tr(A−1dA).

Here GL(N ;C) is regarded as a subset of the linear space M(N ;C) and dA is
the canonical identification, at the point A, of the tangent space to M(N,C) with
M(N,C) itself. This just arises from the fact that M(N,C) is a linear space.
Thus dA( dds (A + sB)

∣∣
s=0

= B. This allows the expression on the right in (3.29)
to be interpreted as a smooth 1-form on the manifold GL(N ;C). Note that it is
independent of the local choice of logarithm.

To define the Fredholm determinant we shall extend the 1-form

(3.30) α = Tr(A−1dA)

to the group G−∞iso (Rn) ↪→ Id +Ψ−∞iso (Rn). Here dA has essentially the same meaning
as before, given that Id is fixed. Thus at any point A = Id +B ∈ Id +Ψ−∞iso (Rn) it
is the identification of the tangent space with Ψ−∞iso (Rn) using the linear structure:

dA(
d

ds
(Id +B + sE)

∣∣
s=0

) = E, E ∈ Ψ−∞iso (Rn).

Since dA takes values in Ψ−∞iso (Rn), the trace functional in (3.30) is well defined.
The 1-form α is closed. In the finite-dimensional case this follows from (3.29).

For (3.30) we can compute directly. Since d(dA) = 0, essentially by definition, and

(3.31) dA−1 = −A−1dAA−1

we see that

(3.32) dα = −Tr(A−1(dA)A−1(dA)) = 0.
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Here we have used the trace identity, and the antisymmetry of the implicit wedge
product in (3.32), to conlcude that dα = 0. For a more detailed discussion of this
point see Problem 4.8.

From the fact that dα = 0 we can be confident that there is, locally near any
point of G−∞iso (Rn), a function f such that df = α; then we will define the Fredholm
determinant by detFr(A) = exp(f). To define detFr globally we need to see that this
is well defined.

Lemma 3.3. For any smooth closed curve γ : S1 −→ G−∞iso (Rn) the integral

(3.33)
∫
γ

α =
∫

S1
γ∗α ∈ 2πiZ.

That is, α defines an integral cohomology class, [ α2πi ] ∈ H
1(G−∞iso (Rn);Z).

Proof. This is where we use the approximability by finite rank operators.
If πN is the orthogonal projection onto the span of the eigenspaces of the small-
est N eigenvalues of the harmonic oscillator then we know from Section 4.3 that
πNEπN → E in Ψ−∞iso (Rn) for any element. In fact it follows that for the smooth
curve that γ(s) = Id +E(s) and EN (s) = πNE(s)πN converges uniformly with all
s derivatives. Thus, for some N0 and all N > N0, Id +EN (s) is a smooth curve in
G−∞iso (Rn) and hence γN (s) = IdN +EN (s) is a smooth curve in GL(N ;C). Clearly

(3.34)
∫
γN

α −→
∫
γ

α as N →∞,

and for finite N it follows from the identity of the trace with the matrix trace (see
Section 3.5) that

∫
N
γ∗Nα is the variation of arg log det(γN ) around the curve. This

gives (3.33). �

Now, once we have (3.33) and the connectedness of G−∞iso (Rn) we may define

(3.35) detFr(A) = exp(
∫
γ

α), γ : [0, 1] −→ G−∞iso (Rn), γ(0) = Id, γ(1) = A.

Indeed, Lemma 3.3 shows that this is independent of the path chosen from the
identity to A. Notice that the connectedness of G−∞iso (Rn) follows from the connect-
edness of the GL(N,C) and the density argument above.

The same arguments and results apply to G−2n−ε
∞−iso (Rn) using the fact that the

trace functional extends continuously to Ψ−2n−ε
∞−iso (Rn) for any ε > 0.

Proposition 3.5. The Fredholm determinant, defined by (3.35) on G−∞iso (Rn)
(or G−2n−ε

iso (Rn) for ε > 0) and to be zero on the complement in Id +Ψ−∞iso (Rn) (or
Id +Ψ−2n−ε

iso (Rn)) is an entire function satisfying

(3.36) detFr(AB) = detFr(A) detFr(B), A,B ∈ Id +Ψ−∞iso (Rn)

(or Id +Ψ−2n−ε
iso (Rn)), detFr(Id) = 1.

Proof. We start with the multiplicative property of detFr on G−∞iso (Rn). Thus
is γ1(s) is a smooth curve from Id to A1 and γ2(s) is a smooth curve from Id to A2

then γ(s) = γ1(s)γ2(s) is a smooth curve from Id to A1A2. Consider the differential
on this curve. Since

d(A1(s)A2(s))
ds

=
dA1(s)
ds

A2(s) +A1(s)
dA2(s)
ds
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the 1-form becomes

(3.37) γ∗(s)α(s) = Tr(A2(s)−1 dA2(s)
ds

) + Tr(A2(s)−1A1(s)−1 dA2(s)
ds

A2(s)).

In the second term on the right we can use the trace identity, since Tr(GA) =
Tr(AG) if G ∈ ΨZ

iso(Rn) and A ∈ Ψ−∞iso (Rn). Thus (3.37) becomes

γ∗(s)α(s) = γ∗1α+ γ∗2α.

Inserting this into the definition of detFr gives (3.36) when both factors are in
G−∞iso (Rn). Of course if either factor is not invertible, then so is the product and
hence both detFr(AB) and at least one of detFr(A) and detFr(B) vanishes. Thus
(3.36) holds in general when detFr is extended to be zero on the non-invertible
elements.

Thus it remains to establish the smoothness. That detFr(A) is smooth in any
real parameters in which A ∈ G−∞iso (Rn) depends, or indeed is holomorphic in holo-
morphic parameters, follows from the definition since α clearly depends smoothly,
or holomorphically, on parameters. In fact the same follows if holomorphy is exam-
ined as a function of E, A = Id +E, for E ∈ Ψ−∞iso (Rn). Thus it is only smoothness
across the non-invertibles that is at issue. To prove this we use the multiplicativity
just established.

If A = Id +E is not invertible, E ∈ Ψ−∞iso (Rn) then it has a generalized inverse
Id +E′ as in Proposition 4.3. Since A has index zero, we may actually replace E′ by
E′+E′′, where E′′ is an invertible linear map from the orthocomplement of the range
of A to its null space. Then Id +E′+E′′ ∈ G−∞iso (Rn) and (Id +E′+E′′)A = Id−Π0.
To prove the smoothness of detFr on a neighbourhood of A it is enough to prove the
smoothness on a neighbourhood of Id−Π0 since Id +E′+E′′ maps a neighbourhood
of the first to a neighbourhood of the second and detFr is multiplicative. Thus
consider detFr on a set Id−Π0 + E where E is near 0 in Ψ−∞iso (Rn), in particular
we may assume that Id +E ∈ G−∞iso (Rn). Thus

detFr(Id +E −Π0) = det(Id +E) det(Id−Π0 + (GE − Id)Π0)

were GE = (Id +E)−1 depends holomorphically on E. Thus it suffices to prove the
smoothness of detFr(Id−Π0 +HΠ0) where H ∈ Ψ−∞iso (Rn)

Consider the deformation Hs = Π0HΠ0 +s(Id−Π0)HΠ0, s ∈ [0, 1]. If Id−Π0 +
Hs is invertible for one value of s it is invertible for all, since its range is always
the range of Id−Π0 plus the range of Π0HΠ0. It follows that detFr(Id−Π0 + Hs)
is smooth in s; in fact it is constant. If the family is not invertible this follows
immediately and if it is invertible then

ddetFr(Id−Π0 +Hs)
ds

= detFr(Id−Π0 +Hs) Tr
(
(Id−Π0 +Hs)−1(Id−Pi0)HΠ0)

)
= 0

since the argument of the trace is finite rank and off-diagonal with respect to the
decomposition by Π0.

Thus finally it is enough to consider the smoothness of detFr(Id−Π0 +Π0HΠ0)
as a function of H ∈ Ψ−∞iso (Rn). Since this is just det(Π0HΠ0), interpreted as a
finite rank map on the range of Π0 the result follows from the finite dimensional
case. �
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3.7. Fredholm alternative

Since we have shown that detFr : Id +Ψ−∞iso (Rn) −→ C is an entire function,
we see that G−∞iso (Rn) is the complement of a (singular) holomorphic hypersurface,
namely the surface {Id +E; detFr(Id +E) = 0}. This has the following consequence,
which is sometimes call the ‘Fredholm alternative’ and also part of ‘analytic Fred-
holm theory’.

Lemma 3.4. If Ω ⊂ C is an open, connected set and A : Ω −→ Ψ−∞iso (Rn) is a
holomorphic function then either Id +A(z) is invertible on all but a discrete subset
of Ω and (Id +A(z)) is meromorphic on Ω with all residues of finite rank, or else
it is invertible at no point of Ω.

Proof. Of course the point here is that detFr(Id +A(z)) is a holomorphic
function on Ω. Thus, either detFr(A(z)) = 0 is a discrete set, D ⊂ Ω or else
detFr(Id +A(z)) ≡ 0 on Ω; this uses the connectedness of Ω. Since this corresponds
exactly to the invertibility of Id +A(z) the main part of the lemma is proved. It
remains only to show that, in the former case, (Id +A(z))−1 is meromorphic. Thus
consider a point p ∈ D. Thus the claim is that near p

(3.38) (Id +A(z))−1 = Id +E(z) +
N∑
j=1

z−jEj , Ej ∈ Ψ−∞iso (Rn) of finite rank

and where E(z) is locally holomorphic with values in Ψ−∞iso (Rn).
If N is sufficiently large and ΠN is the projection onto the first N eigenspaces

of the harmonic oscillator then B(z) = Id +E(z)−ΠNE(z)ΠN is invertible near p
with the inverse being of the form Id +F (z) with F (z) locally holomorphic. Now

(Id +F (z))(Id +E(z)) = Id +(Id +F (z))ΠNE(z)ΠN

= (Id−ΠN ) + ΠNM(z)ΠN + (Id−ΠN )M ′(z)ΠN .

It follows that this is invertible if and only if M(z) is invertible as a matrix on
the range of ΠN . Since it must be invertible near, but not at, p, its inverse is a
meromorphic matrix K(z). It follows that the inverse of the product above can be
written

(3.39) Id−ΠN + ΠNK(z)ΠN − (Id−ΠN )M ′(z)ΠNK(z)ΠN .

This is meromorphic and has finite rank residues, so it follows that the same is true
of A(z)−1. �

3.8. Manifolds and functions

Here is a version of the standard definition of a manifold (with corners). First
let M be a Hausdorff topological space. That is, we already have the ‘topology’ of
open subsets of M, closed under arbitrary intersections and finite unions. We then
know which real-functions on M are continuous – namely those f : M −→ R such
that f−1(a, b) ⊂ M is open for every a < b. The Hausdorff condition is that these
continuous functions separate points, so if p1 6= p2 are two points in M then there
is a continuous function f on M such that f(p1) 6= f(p2). We also assume that M
is second countable, that the topology has a countable basis – there is a countable
collection of open subsets such that every open subset is a union of these particular
open subsets.
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A C∞ structure on M can be taken to be a subset C∞(M) ⊂ C0(M) of the space
of continuous functions which has the following properties. First, it is a subalgebra.
Second it generates (product) coordinate systems. That is there is a countable open
cover of M by subsets Ui for each of which there are n elements fi,j ∈ C∞(M) such
that Fi = (f1,1, . . . , fi,n) restricts to Ui to give a topological isomorphism

(3.40) Fi
∣∣
Ui

: Ui −→ [0, 1)k × (−1, 1)n−k ⊂ Rn

and such that if g ∈ C∞c (Rn) has support in (−1, 1)n then

(3.41) g′ =

{
F ∗i g on Ui

0 on M \ Ui
∈ C∞(M),

and that these functions form an ideal in C∞(M). Thirdly we require that C∞(M)
is maximal in the sense that if g : M 7−→ R and for each i, g

∣∣
Ui

= F ∗i hi for some
hi ∈ C∞((−1)n) then g ∈ C∞(M).

In fact I would call a manifold as defined in the preceeding paragraph a t-
manifold. It has various problems. One is that I have not insisted that the local
dimension n is not fixed. This is not a serious problem, but it means that M
may be up to even a countable union of compoents, each of which is a connected
manifold, in the same sense, and hence has fixed dimension. Often this is required
anyway, at at least it is how most people think – that a manifold is connected.
Apart from that there are more serious problems with the boundary when k, which
is the local boundary codimension, takes the value 2 or greater. This is not really
imortant here but I usually insist on an additional condition, that the boundary
faces be embedded. This is actually a combinatorial condition and means that
each boundary hypersurface, defined as the closure of a component of the set of
boundary points of ‘codimension one’ (meaning the union of the the inverse images
of the subsets, in the coordinate patches, of [0, 1)k × (−1, 1)n−k where exactly one
of the first k variables vanishes), is embedded. One way of thinking about this is
that some neighbourhood of each point in the closure of such a boundary point
meets the component of the codimension one boundary in a connected set.

A map between manifolds, f : M −→ N is smooth if and only if the composite
u ◦ f ∈ C∞(M) for every y ∈ C∞(N). It is usual to write this as a pull-back map

(3.42) f∗ : C∞(N) −→ C∞(M), f∗u = u ◦ f.

The discussion above is not a good way to learn about manifolds – I am as-
suming you will look things up somewhere if you don’t know about them. The only
real virtue of this definition is that it is short. 3

3.9. Tangent and cotangent bundles

From one manifold we can make others. The most basic examples of this is
the passage to a boundary face of a manifold with corners and taking products
of manifolds. A more sophisticated example, blow up, is discussed briefly below
and we have already described to compactification of Euclidean space to a ball.
However the most frequently encountered ‘derived’ manifold below is the cotangent

3In case you, gentle reader, really want to learn the elementary theory of manifolds for yourself
and are unable to pick up an appropriate book I have added (or will add) lots of ‘problems’ to

guide, or remind, you a little.
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bundle. Once again the approach I give here is not really introductory, its main
virtue is brevity.

On Euclidean space of a smooth function near a point, z̄, can always be de-
composed in terms of coordinate functions

(3.43) f(z) = f(z̄) +
n∑
j=1

fj(z)(zj − z̄j)

where the coefficient functions fj are smooth near z̄. The fj are not determined
by this Taylor expansion but their values at z̄, namely the derivatives of f at z̄,
are determined. We can capture these derivatives, collectively, as elements of the
vector space
(3.44)
J (z̄)/J (z̄)2, J (z̄) = {f ∈ C∞(Rn); f(z̄) = 0}, J (z̄)2 = {

∑
finite

figi, fi, gi ∈ J (z̄)}.

Thus f(z)− f(z̄) ∈ J (z̄) and J (z̄)/J (z̄)2 is an n-dimensional vector space. In fact
it is only necessary for f to be defined and smooth in some neighbourhood of z̄ for
this to be well defined since if φ is a cutoff, supported sufficiently close to z̄ and
equal to 1 in some neighbourhood, then the class of fφ − f(z̄) in J (z̄)/J (z̄)2 is
independent of the choice of φ. Of course this is the deRham differential. Moreover
the discussion extends immediately to smooth manifold and defines

(3.45) df(p) ∈ T ∗pM = J (p)/J (p)2,

the cotangent space at each point p ∈ M. This is a vector space of dimension n
which is spanned by the differentials of any coordinate system in a neighbourhood
of p.

The union of the cotangent fibres has a natural structure as a manifold

(3.46) T ∗M =
⋃
p∈M

T ∗pM
π−→M.

Namely a coordinate system on an open set U ⊂M gives a global coordinate system
on the open subset π−1(U) identifying it (by definition smoothly) with U × Rn.

The tangent bundle can be defined as the dual of T ∗M or directly in terms of
vector fields; taking the first approach

(3.47) TpM = {v : T ∗pM −→ R, linear}, TM =
⋃
p∈M

TpM
π−→M.

Coordinate systems on M again give coordinate systems on TM.

3.10. Integration and densities

There is no natural notion equivalent to the Lebesgue integral on a manifold,
the problem being that the ‘measure’ part is changes by a positive smooth multi-
ple under coordinate transformations, namely by the Jacobian determinant. It is
therefore necessary either to make a choice of ‘density’ or else to include the density
in the integrand, and integrate only densities. The latter approach is taken here
and this requires the introduction of the density bundle, which is a simple example
of a trivial line bundle which is not canonically trivial.
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Problem 3.1. Show that the smooth functions on Rn \ {0} which are ‘posi-
tively’ homogeneous of some complex degree s, meaning the satify

(3.48) f(rz) = rsf(z), ∀ r > 0, z ∈ Rn \ {0}
(where rs is the standard branch) is a trivial, but not canonically trivial, line bundle
over Sn−1, except in the case s = 0 when it is canonically trivial.

At each point of a manifold consider the 1-dimensional, real, vector space of
totally antisymmetric absolutely homogeneous n-multilinear functions
(3.49)
ΩpM = {ν : TpM×· · ·×TpM −→ R, ν(ve(1), . . . , ve(n)) = sgn eν(v1, . . . , vn), ν(tv1, . . . , vn) = |t|ν(v1, . . . , vn), t ∈ R,
where vi ∈ TpM, i = 1, . . . , n are arbitrary and e is any permutation. It is straight-
forward to check that this is a linear space (it seems a little strange if view of the
absolute value of t in the last identity but it is true). If zi are local coordinates in
a neighbourhood of p then the differentials dzi define a density

(3.50) ν(v1, . . . , vn) = |det dzi(vj)|.
This is the local coordinate representative of Lebesgue measure at the point.

As for the tangent bundle above, the union of the fibres Ωp form a manifold,

(3.51) ΩM =
⋃
p∈M

ΩpM
π−→M.

A section of ΩM, meaning a smooth map ν : M −→ ΩM such that πν = IdM , is
by definition a smooth density on M. The linear space of such sections is denoted
C∞(M ; Ω) and the behaviour of integrals under coordinate transformation reduces
directly to the existence of a well defined integral:

(3.52)
∫
M

: C∞(M ; Ω) −→ R.

Checking that this is well-defined reduces to the usual change-of-variable formula
fo Lebesgue (or Riemann) integral in local coordinates.

3.11. Smoothing operators

Now, we come to the point of interest in this chapter. If M is a compact mani-
fold then the algebra of smoothing operators on M behaves in very much the same
was as the Schwartz algebra on Rn. In fact it is isomorphic to it as an algebra (if the
dimension of M is positive) although there is no natural isomorphism. As we shall
see later, the smoothing operators form the residual part of the pseudodifferential
algebra on a manifold and are important for that reason. However they also play a
crucial role in the index theorem as presented here.

By definition we can take a smoothing operator to be an integral operator with
smooth kernel:-

(3.53) A : C∞(M) −→ C∞(M), Au(z) =
∫
M

A(z, z′)u(z′), A ∈ C∞(M2;π∗RΩ).

Here π :R M2 3 (z, z′) 7−→ z′ ∈ M is the ‘right’ projection. Thus A, the kernel
(where we use the same letter for kernel and operator because they determine each
other and so to use a separate notation is rather wasteful) is just a smooth function
on M2 which ‘carries along with it’ a smooth denisty on the right factor of M. If
one prefers to do so, one can simply choose a positive denisty 0 < ν ∈ C∞(M ; Ω)
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and then the kernel becomes A = A′ν(z′) where A′ ∈ C∞(M2). I prefer the more
invariant approach of hiding the density in the kernel.

Proposition 3.6. The smoothing operators on a compact manifold form an
algebra, denoted Ψ−∞(M), under operator composition.

Proof. Indeed if A and B are smoothing operators on M with kernels having
the same names then, by Fubini’s theorem,
(3.54)

(AB)u(x) = A(Bu)(z) =
∫
M

A(z, z′′)(Bu)(z′′) =
∫
M

A(z, z′′)
∫
M

B(z′′, z′)u(z′)Mso

(AB)(z, z′) =
∫
M

A(z, z′′)B(z′′, z′).

Thus this formula defines an associative algebra structure (because composition of
operators is associative) on Ψ−∞(M) = C∞(M2;π∗RΩ) as claimed. �

A moments thought will show that this argument, and the composition law ,
carry over perfectly well to any compact manifold with corners. This more general
case is interesting in part because of the subalgebras (but not ideals) that then arise
in Ψ−∞(M).

Proposition 3.7. If M is a compact manifold with corners and H ⊂ M is a
boundary face then the subspace of Ψ−∞(M) consisting of kernels which vanish to
order k at H ×M and M ×H is a subalgebra.

The case of k =∞ and H = ∂Bn for a ball is of particular interest since if the ball
is interpreted as the radial compactification Rn of Rn, then

(3.55) Ψ−∞iso (Rn) = {A ∈ Ψ−∞(Rn);A ≡ 0 at (∂Rn × Rn) ∪ (Rn × ∂Rn).}
Here ≡ stands for equality in Taylor series.

Problem 3.2. Prove the equality in (3.55). Let me use the notation

Ċ∞(M) = {u ∈ C∞(M);u ≡ 0 at ∂M} ⊂ C∞(M)

for the space of smooth functions on a manifold with corners which vanish to infinite
order at each boundary point. Then the identity (3.55) becomes

Ċ∞(Rn × Rn) = S(Rn × Rn) = S(R2n)

under radial compactification. First check the single space version

(3.56) Ċ∞(Rn) = S(Rn)

and then generalize (or use a clever argument) to pass to (3.2).

We remark on some related simple properties of smoothing operators. If U ⊂M
is a coordinate neighbourhood, with coordinate map F : U −→ U ′ ⊂ Rn and ψ,
ψ′ ∈ C∞(M) has supp(ψ) ∪ supp(ψ′) ⊂ U then

(3.57)
Aψ,ψ′,F : S(Rn) 3 f 7−→ (F−1)∗

(
ψA(F ∗((F−1)∗ψ′ · f))

)
∈ S(Rn)

is an element of Ψ−∞iso (Rn).

Indeed, the kernel of Aψ,F is
(3.58)
(F−1)∗ψ(z)((F−1)∗×(F−1)∗A)(z, z′)(F−1)∗ψ′(z′) = B|dz′|, B ∈ C∞c (R2n) ⊂ S(R2n).
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*****
Extension of the results above for the residual isotropic algebra on Euclidean

space to smoothing operators on compact manifolds.
*****

3.12. Semiclassical limit algebra

Now we next want to extend the discussion of semiclassical smoothing operators
on Rn, in §2.19 , to smoothing operators on compact manifolds; later we will extend
this to pseudodifferential operators. Initially at least let M be a compact manifold
without boundary. Let ∆ ⊂M2 be the diagonal,

(3.59) ∆ = {(z, z) ∈M2; z ∈M}.

Definition 3.1. An element of Ψ−∞sl (M), the space of semiclassical families
of smoothing operators on a compact manifold (without boundary) M, is a smooth
family of smoothing operators Aε ∈ C∞((0, 1] ×M2;π∗LΩ) such that as ε ↓ 0 the
kernel satisfies the two conditions:

(3.60)

Aεφ(z, z′) ∈ Ċ∞([0, 1)×M2;π∗RΩ) if φ ∈ C∞(M2), supp(φ) ∩∆ = ∅.
For a covering of M by coordinate systems Fj : Uj −→ U ′j

and any elements ψj , ψ′j ∈ C∞(M), supp(ψ) ∪ supp(ψ′j) ⊂ Uj ,
(Aε)ψj ,ψ′j ,Fj ∈ Ψ−∞sl (Rn).

This is just supposed to say that Aε ∈ Ψ−∞sl (M) reduces to a semiclassical family on
Rn in local coordinates. We do not really need quite as much as in the second part
of the defintion, which involves all pairs of smooth functions ψj , ψ′j with compact
support in a covering by coordinate patches. There is an equivalent and more
geometric characterizations of the kernels of these semiclassical families below.

For the moment we note the following more useful description of the local
behaviour of these operators.

Proposition 3.8. On a compact manifold M,

(3.61) {A ∈ C∞([0, 1]ε ×M2;π∗LΩ);A ≡ 0 at {ε = 0}} ⊂ Ψ−∞sl (M).

If F : U −→ U ′ ∈ Rn is a coordinate patch on M and A ∈ Ψ−∞sl (Rn) has kernel
with support in [0, 1]ε ×K ×K, K ⊂ U ′ compact then

(3.62)
AF ∈ Ψ−∞sl (M) where

(AF )ε : C∞(M) −→ C∞(M), (AFu) = F ∗(A(F−1)∗u).

Moreover any element of Ψ−∞sl (M) is the sum of a family of the first type and a
finite sum, over any covering by coordinate patches, of operators as in (3.62).

Proof. For the moment, see the proof of the corresponding theorem for pseu-
dodifferential operators, Lemmas 6.1 and 6.2. The present result is is a bit easier;
I will move the proof here and change it a bit. �

We can capture the ‘semiclassical symbol’ by oscillatory testing.
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Lemma 3.5. If Aε ∈ Ψ−∞sl (M) then there exists a function σsl(Aε) ∈ S(T ∗M)
such that whenever f : M −→ R and ψ ∈ C∞(M) are such that df 6= 0 on supp(ψ)
then

(3.63) Aεe
−if/εψ = e−if/εb, b ∈ C∞([0, 1]×M), b

∣∣
ε=0

= σsl(Aε) ◦ df.

I need to define S(T ∗M) first!

Proof. Do the local, Euclidean, and then patch. �

Proposition 3.9. The semiclassical symbol of an element of Ψ−∞sl (M) is de-
termined by (3.63) and gives a short exact, multiplicative, sequence

(3.64) 0 //εΨ−∞sl (M) //Ψ−∞sl (M) //S(T ∗M) //0

Later, after discussing pseudodifferential operators on manifolds, we will also
discuss semiclassical families of pseudodifferential operators, generalizing the discus-
sion here. However there is one case which is very elementary. Namely the identity
operator can be considered as a semiclassical family, even though it is independent
of the parameter ε. By fiat its semiclassical symbol is declared to be the constant
function 1 on the cotangent bundle. This is consistent with the multiplicativity of
the semiclassical symbol, since of course for any family Aε ∈ Ψ−∞sl (M),

(3.65) σsl(Aε) = σsl(Id ◦Aε) = 1× σsl(Aε).

We can also immediately allow the algebra Ψ−∞sl (M) to be ‘valued in matrices’,
just by taking matrices of operators; we will denote this algebra as Ψ−∞sl (M ;CN )
since the act on N -vectors of smooth functions on M. The symbol is then also
valued in matrices.

Proposition 3.10. If a ∈ S(T ∗M ;M(N,C)) is such that IdN×N −a is invert-
ible at every point of T ∗M then any semiclassical family Aε ∈ Ψ−∞sl (M ;CN ) with
σsl(Aε) = a is such that Id−Aε is invertible for small ε > 0 with inverse of the
form Id−Bε for some Bε ∈ Ψ−∞sl (M ;CN ).

3.13. Submanifolds and blow up

A brief description of blow up of a submanifold, enough to introduce the semi-
classical resolution of [0, 1]×M2 in the next section.

3.14. Resolution of semiclassical kernels

3.15. Quantization of projections

Proposition 3.11. If a ∈ S(T ∗M ;M(N,C)) is such that for a constant projec-
tion π0 ∈M(N,C), i.e. such that π2

0 = π0, π0 +a is a smooth family of projections,
(π0 + a)2 = π0 + a then there exists a semiclassical family Aε ∈ Ψ−∞sl (M ;CN ) such
that σsl(Aε) = a and such that

(3.66) (π0 +Aε)2 = π0 +Aε

is a semiclassical family of projections.

Proof. Just ‘quantizing’ a by choosing a semiclassical familyA′ε ∈ Ψ−∞sl (M ;Cn)
with σsl(A′ε) = a ensures that

(3.67) (π0 +A′ε)
2 − (πo +A′ε) = εE(1)

ε , E(1)
ε ∈ Ψ−∞sl (M ;CN ).
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We proceed to show, inductively, that there is a series of ‘correction terms’ A(j) ∈
Ψ−∞sl (M ;CN ) such that for all l,
(3.68)

(π0 +A′ε +
l∑

k=1

εkA(k)
ε )2 − (πo +A′ε

l∑
k=1

εkA(k)
ε ) = εl+1E(l+1)

ε , E(l)
ε ∈ Ψ−∞sl (M ;CN ).

Composing on the left and on the right with πo + A′ε
l∑

k=1

εkA
(k)
ε and using the

associativity of the product it follows that

(3.69) π0σsl(E(l+1)
ε ) = σsl(E(l+1)

ε )π0.

This in turn means that if A(l+1)
ε ∈ Ψ−∞sl (M ;CN ) satisfies

(3.70) σsl(A(l+1)
ε ) = (2π0 − Id)σsl(E(l+1)

ε )

then the next identity, (3.68), for l + 1, holds.
Now, if A′′ε is an asymptotic sum of the series then

(3.71) (π0 +A′′ε )2 − π0 +A′′ε ∈ {A ∈ C∞([0, 1]; Ψ−∞(M ;CN );A ≡ 0 at {ε = 0}}.

To correct this family of ‘projections to infinite order’ P ′ε = π0 + A′′ε to a true
projection we may use the holomorphic calculus of smoothing operators. Thus, the
family

(3.72) Q(s) = s−1(Id−P ′) + (s− 1)−1P ′, s ∈ C \ {0, 1}

satisfies the ‘resolvent identity’ to infinite order in ε :
(3.73)

(s Id−P ′)Q(s) = (s(Id−P ′)− (1− s)P ′) (Q(s) =

(Id−P ′)2 + (P ′)2 + s−1(s− 1)(Id−P ′)P ′ + (s− 1)−1sP ′(Id−P ′) = Id +R(s)

where Rε(s) is a family of smoothing operators vanishing to infinite order at ε = 0
and depending holomorphically on s ∈ C \ {0, 1}. Thus in any region |s| ≥ δ,
|1 − s| ≥ δ, that is away from s = 0 and s = 1, R(s) has uniformly small norm as
ε→ 0. It follows that (Id +R(s))−1 = Id +M(s) exists in this region, for ε > 0 small,
and M(s) is a holomorphic family of smoothing operators vanishing to infinite order
at ε = 0.

Thus the resolvent exists in this region and

(3.74) (s Id−P ′)−1 = Q(s) +M ′(s)

where M ′(s) is another holomorphic family of smoothing operators vanishing to
infinite order at ε = 0.

To ‘correct’ P ′ to a family of projections we simply define

(3.75) P =
1

2πi

∮
|1−s|= 1

2

(s− P ′(s))−1ds.

From the decomposition (3.74) and (3.72) we see immediately that

(3.76) P = P ′ +M, M =
1

2πi

∮
|1−s|= 1

2

M(s)ds ∈ ε∞Ψ−∞sl (M).
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Moreover it follows from (3.75) that P is a projection. First, using Cauchy’s the-
orem, we can shift the contour away from s = 1 a little, to |s − 1| = γ for some
γ > 0, small. Then

(3.77) P 2 =
1

2πi

∮
|1−s|= 1

2

1
2πi

∮
|1−t|= 1

2 +γ

(t− P ′(t))−1(s− P ′(s))−1dsdt.

The resolvent identity

(3.78) (t− P ′(t))−1(s− P ′(s))−1 = (s− t)−1
(
(t− P ′(t))−1 − (s− P ′(s))−1

)
allows the integral to be split into two. In the first double integral there are no
singularities in s within |1 − s| ≤ 1

2 since |1 − t| = 1
2 + γ, so by Cauchy’s theorem

this evaluates to zero. In the remaining term the t integral can be evaluated by
residues, with the only singular point being at t = s so

(3.79)

P 2 = − 1
2πi

∮
|1−s|= 1

2

1
2πi

∮
|1−t|= 1

2 +γ

(s− t)−1(s− P ′(s))−1dsdt

=
1

2πi

∮
|1−s|= 1

2

(s− P ′(s))−1ds = P.

Thus P is a semiclassical quantization of the projection-valued symbol to a family
of projections. �

We will show below that this same argument works in other contexts.


