
CHAPTER 2

Lectures 3 and 4, 12th and 14th February: The
circle

After the overview last week I will start at the beginning, indeed this week I
will talk about analysis (and even a little geometry!) of the circe, U(1). I have
moved the general discussion of compact manifolds to an appendix.

1. Functions and Fourier series

Now, we specialize to the circle, U(1) which naturally enough plays a funda-
mental role in the discussion of loop spaces. The most obvious model for the circle
for the discussion of basic regularity is as the quotient R/2πZ so that C∞(U(1))
is identified with the subspace of C∞(R) consisting of the 2π-periodic functions –
and similarly for pretty much every other function space between C−∞(U(1)) and
C∞(U(1)).

In particular we have a very natural differential operator on functions, 1
i
d
dt and

the spectral theory of this operator corresponds to Fourier series. Thus there are
identifications

(2.1.1)

C∞(U(1)) −→ S(Z)

L2(U(1)) −→ l2(Z)

C−∞(U(1)) −→ S ′(Z)

u(t) =
∑
k∈Z

cke
ikt, ck =

1

2π

∫
U(1)

u(t)e−ikt|dθ|

where the spaces on the right consists of the rapidly decreasing, square summable,
and polynomially increasing sequences:-

(2.1.2)

S(Z) = {c· : Z −→ C;
∑
k

(1 + |k|)l|ak| <∞ ∀ l ∈ N},

l2(Z) = {c· : Z −→ C;
∑
k

|ak|2 <∞},

S ′(Z) = {c· : Z −→ C;
∑
k

(1 + |k|)−N |ak| <∞ for some N ∈ N}

where in the last case N depends on the sequence.
The use of Fourier series allows much of the general discussion above to be

made explicit on the circle, but does lead to difficulties when it comes to coordinate-
invariance. For example Schwartz kernel theorem in this case becomes the (rela-
tively simply checked) statement that any continuous linear map C∞(U(1)) −→
C−∞(U(1)) is given by an infinite matrix of polynomial growth on the Fourier
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transform side

(2.1.3) (Ac)k =
∑
j

Akjcj , |Ajk| ≤ C(1 + |j|+ |k|)N for some N.

Smoothing operators correspond to matrices in S(Z2) in the obvious sense.
Thus, is A ∈ Ψ−∞(U(1)) is a smoothing operator

(2.1.4)

A(
∑
k

cke
ikt) =

∑
j

dje
ijt, dj =

∑
k

Ajkck,

Ajk ∈ S(Z2), i.e. ∀ N, |Ajk| ≤ CN (1 + |j|+ |k|)−N .

Conversely any such rapidly decreasing matrix defines a smoothing operator.

Exercise 2. Write out the relationship of Fourier series on the 2-torus between
the matrix Ajk and the kernel A ∈ C∞(U(1)2) of a smoothing operator.

2. Hardy space

Of course the circle is extremely special among manifolds! In particular its
identification with the unit circle in C with respect to the Euclidean metric, via the
exponential function, means that there is a special (really a whole lot of special)
subspaces of C∞(U(1)) of ‘half dimension’. The usual choice is the (smooth) Hardy
space

(2.2.1) C∞H (U(1)) = {u ∈ C∞(U(1)); ck = 0 for k < 0 in (2.1.1)}.

The elements of C∞H (U(1)) are precisely those smooth functions which are the re-
striction to the unit circle of a smooth function on the closed ball, {|z| ≤ 1} in C
which is holomorphic in the interior.

Consider the projection onto this subspace, which can be written explicitly in
terms of the expansion in Fourier series

(2.2.2) PHu =
∑
k≥0

cke
ikt, u =

∑
k

cke
ikt, P 2

H = PH .

As such it is clear self-adjoint with respect to the L2 inner product

(2.2.3) 〈u, v〉 =

∫
U(1)

u(t)v(t)dt.

In fact PH is probably the simplest example of non-differential pseudodifferential
operator. To see this of course, you need to know what a pseudodifferential operator
is, but for the moment this does not matter.

The most crucial, perhaps non-obvious, property of PH is that it ‘almost com-
mutes’ with multiplication. Thus suppose a ∈ C∞(U(1)) (maybe complex-valued),
this defines a multiplication operator which I will also denote a :

(2.2.4) a : C∞(U(1)) 3 u 7−→ au ∈ C∞(U(1)).

Lemma 1. For any a ∈ C∞(U(1)), the commutator with PH is a smoothing
operator

(2.2.5) [a, PH ] ∈ Ψ−∞(U(1)).
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Proof. We only need find expressions for aPH and PHa in terms of Fourier
series, which amounts to finding its action on eikt. First observe that multiplication
becomes convolution in the sense that

(2.2.6)

a =
1

2π

∑
l

ale
ilt ∈ C∞(U(1)) =⇒

au =
1

2π

∑
j

bje
ijt where bj =

∑
l

aj−lcl if u =
1

2π

∑
k

cke
ikt.

It follows that

(2.2.7)

(aPH)u =
1

2π

∑
j

∑
l≥0

aj−lcl)

 eijt

(PHa)u =
1

2π

∑
j≥0

(∑
l

aj−lcl)

)
eijt.

Thus the commutator is given by the difference, which means that

(2.2.8)

u =
∑
j

∑
l

Bjlcle
ijt, where

Bj,l =


aj−l if j < 0, l ≥ 0

−aj−l if j ≥ 0, l < 0

0 otherwise.

By assumption, a is smooth, so |aj−l| ≤ CN (1 + |j − l|)−N for each N. For the
non-zero terms in (2.2.8), |j− l| = |j|+ |l| since the signs are always opposite. Thus

|Bj,l| ≤ CN (1 + |j|+ |l|)−N

is rapidly decreasing in all directions on Z2. �

Note that this behaviour can be attributed to one oddity of U(1), the circle,
that distinguishes it from other connected compact manifolds. Namely its cosphere
bundle has two components.

3. Toeplitz operators

This behaviour of commutators allows us to define the Toeplitz algebra. Clearly
C∞(U(1)) forms an algebra of multiplication operators. However, if we project this
onto C∞H (U(1)) by defining

(2.3.1) aH = PHaPH : C∞H (U(1)) −→ C∞H (U(1)).

This is a Toeplitz operator, the ‘projection’ of a multiplication operator onto the
Hardy space. However, these operators do not form an algebra since the composite
is instead

(2.3.2) PHaPHbPH = PHabPH + PHa[PH , b]PH .

The second term here is a smoothing operator – this is one of the basic properties
of pseudodifferential operators, that the composite of a pseudodifferential operator
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and a smoothing operator is smoothing. In particular this means that the compos-
ites with the Hardy projection or multiplication by a smooth function are again
smoothing

(2.3.3) PHA, APH , aA, Aa ∈ Ψ−∞(U(1)) if A ∈ Ψ−∞(U(1)), a ∈ C∞(U(1)).

Exercise 3. Prove (2.3.3).

Definition 1. The Toeplitz operators (with smooth coefficients) consist of the
sum

(2.3.4) ΨTo(U(1)) = PHC∞(U(1))PH + PHΨ−∞(U(1))PH

as an algebra of operators on C∞H (U(1)).

Now, the decomposition (2.3.4) of a Toeplitz operator is unique and moreover
the multiplier can be recovered from

(2.3.5)
PHaPH + Ψ−∞To (U(1)), a ∈ C∞(U(1)).

Ψ−∞To (U(1)) = {PHAPH ;A ∈ Ψ−∞(U(1))}.

To recover a from aH = PHaPH it suffices to look at aHe
ikt for k large. Indeed

from (2.2.7)

(2.3.6)

aHe
ikt =

∑
j≥0

aj−ke
ijt, k ≥ 0 =⇒∫

U(1)

e−i(p+k)t
(
aHe

ikt
)
dt = ap, k + p ≥ 0.

So, by taking k large enough we can recover ap from aHe
ikt and hence we can

recover a ∈ C∞(U(1)). More generally, if A ∈ Ψ−∞To (U(1)) then

(2.3.7) lim
k→∞

∫
U(1)

e−i(p+k)t
(
Aeikt

)
dt = 0

Proposition 1. The Toeplitz-smoothing operators form an ideal in the Toeplitz
operators (with smooth coefficients) and gives a short exact sequence of algebras

(2.3.8) Ψ−∞To (U(1)) // ΨTo(U(1))
σ // C∞(U(1)).

The second homomorphism here is a special case of the ‘symbol map’ for pseudo-
differential operators.

Proof. Basically this is proved above. �

Although this is what I will call the Toeplitz algebra, the name is applied to
several closely related algebras (particularly the norm closure of this algebra as
bounded operators on the L2 version of the Hardy space). Even keeping things
‘smooth’ there is another algebra which is important here, at least as an aid to
understanding. Namely, we can simply ‘compress’ the pseudodifferential operators
on the Hardy space and define

(2.3.9) ΨZ
H(U(1)) = PHΨZ(U(1))PH .

The usual definition of a Toeplitz algebra in higher dimensions is derived from
this. Since multiplication operators and smoothing operators are pseudodifferential
operators,

(2.3.10) ΨTo(U(1)) ⊂ Ψ0
H(U(1)).
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The question then is:- What else is in the space on the right – we could call it the
‘extended Toeplitz algebra’.

The main extra terms are the compressions of pseudodifferential operators of
negative integral order. As matix operator on the Fourier series side these are of
the form, for m ∈ N
(2.3.11)

Aeikt =

∞∑
j=0

Ajke
ijt, Ajk = aj−k(k + 1)−m, j, k ≥ 0, sup

j
|aj |(1 + |p|)N <∞ ∀ N.

This is in fact just the composite of the compression of a multiplication operator,
by a ∈ C∞(U(1)) with Fourier coefficients aj and the convolution operator given
by multiplication by (1 + k)−m on the Fourier series side. Note that the k + 1 is
just to avoid problems at k = 0. Beyond this the extended Toeplitz algebra has a
completeness property.

4. Toeplitz index

How is this related to loops? One way to see a relationship is to observe that

(2.4.1) LU(1) ⊂ C∞(U(1))

consisting of the maps with values in U(1) ⊂ C. These form a group and so we
can look for the invertible elements in ΨTo(U(1)) which map into this group. The
answer is at first a bit disappointing!

Lemma 2. The elements of LU(1) ⊂ C∞(U(1)) which lift to invertible elements
of ΨTo(U(1)) are precisely those with winding number 0, i.e. are contractible to
constant in LU(1).

This you might say is the simplest form of the Atiyah-Singer index theorem, long
predating it of course since it was known to Toeplitz (in the 1920s I think). If we
do a little more we get a true index theorem:-

Theorem 2. If a ∈ C∞(U(1);C∗) (i.e. is non-zero) then, as an operator on
C∞H (U(1)), any element B ∈ ΨTo(U(1)) with σ(B) = a is Fredholm – has finite
dimensional null space and closed range of finite codimension – and

(2.4.2) ind(B) = dim null(B)− dim (C∞H (U(1))/BC∞H (U(1))) = −wn(a)

is determined by the winding number of a.

5. Diffeomorphisms and increasing surjections

6. Toeplitz central extension

Now let me get a little closer to the core topic and show one construction of
the central extension of the loop group on any connected and simply connected
Lie group. There are quite a few other constructions (see for instance that of
Mickelsson).

We can embed Spin(n) in the (real) Clifford algebra Cl(n) and so think of it
concretely as a group in an algebra. This means that L Spin(n) sits inside the
algebra C∞(U(1); Cl(n)). There is a ‘Hardy’ subalgebra of H ⊂ C∞(U(1); Cl(n)
consisting of the functions with vanishing negative Fourier coefficients and a natural
projection ΠH onto it. The Toeplitz operators ΠHC∞(U(1); Cl(n))ΠH , do not form
an algebra, but do so when extended by the Toeplitz smoothing operators with
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values in Cl(n) – because [H, C∞(U(1); Cl(n)] consists of such smoothing operators.
We can call this the Clifford-Toeplitz algebra.

Invertible elements in C∞(U(1); Cl(n)) give Fredholm operators and the fact
that Spin(n) is simply connected means that the index vanishes and so there is
a group of invertible operators in the Clifford-Toeplitz algebra and a subgroup of
unitary extension. This gives a short exact sequence of groups

G−∞H (U(1); Cl(n)) −→ GH −→ L Spin(n)

with kernel the unitary smoothing perturbations of ΠH . The Fredholm determinant
is defined on G−∞H (U(1); Cl(n)) so we may take subgroup of determinannt one; it
is also a normal subgroup of GH . Finally then the quotient group

EL Spin(n) = G/{A ∈ G−∞H (U(1); Cl(n)); det(A) = 1}
is the desired (basic) central extension of L Spin(n). This construction can be mod-
ified to work even for non-simply connected groups such as U(n).


