18.158, Spring 2013: Analysis on loop spaces

Richard Melrose

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOL-OGY

 $E\text{-}mail \ address: \texttt{rbmQmath.mit.edu}$

ABSTRACT. Lecture notes written progressively during Spring 2013.

Contents

Introduction	5
Chapter 1. Lectures 1 and 2: An overview, February 5 and 7, 2013	7
1. Manifolds, maybe big	7
2. Transformation groupoid	7
3. Riemann manifolds	8
4. Examples	8
5. Loop spaces	8
6. Local coordinates	9
7. Whitehead tower	9
8. Orientation	10
9. Spin structure	10
10. Spin Dirac operator	11
11. Spin and loops	11
12. Regularity	15
13. Reparameterization	15
14. String structures	16
15. Loop-spin structures	16
16. Bundle gerbes	17
17. Witten genus	17
18. In the sky	17
Chapter 2. Lectures 3 and 4, 12th and 14th February: The circle	19
1. Functions and Fourier series	19
2. Hardy space	20
3. Toeplitz operators	21
4. Toeplitz index	23
5. Diffeomorphisms and increasing surjections	23
6. Toeplitz central extension	23
Appendix A. Finite-dimensional manifolds	25
Appendix. Bibliography	31

Introduction

In this course I will discuss analysis and geometry of loop spaces. These are particular, but as it turns out very special, examples of Fréchet manifolds. One thing I will *not* try to do is discuss analysis in general Fréchet manifolds – for one thing there is very little to discuss! Nevertheless, let me first describe these and try to show what the problem is. Then I will go on to give an overview of loop spaces, why the are of current interest and where I hope to get to by the end of the semester.

Prerequisites:- I will assume familiarity with standard theory of smooth manifolds, but will try to discuss anything substantial that is used. The same applies to Fréchet spaces, groups, operator algebras and the like.