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Introduction

In this course I will discuss analysis and geometry of loop spaces. These are
particular, but as it turns out very special, examples of Fréchet manifolds. One
thing I will not try to do is discuss analysis in general Fréchet manifolds — for one
thing there is very little to discuss! Nevertheless, let me first describe these and
try to show what the problem is. Then I will go on to give an overview of loop
spaces, why the are of current interest and where I hope to get to by the end of the
semester.

Prerequisites:- I will assume familiarity with standard theory of smooth man-
ifolds, but will try to discuss anything substantial that is used. The same applies
to Fréchet spaces, groups, operator algebras and the like.






CHAPTER 1

Lectures 1 and 2: An overview, February 5 and 7,
2013

1. Manifolds, maybe big

There is general agreement about what a finite dimensional manifold is, less
about the infinite dimensional case. Let me try to indicate what the issues are.

Let’s agree from the beginning that a manifold X is a topological space, that it
is Hausdorff and that it is paracompact. You might wonder about this last condition
but although the infinite-dimensional spaces we consider are big, they are not so
big. One significant thing that is lost in passing to the infinite dimensional case is
local compactness. This makes it very difficult to integrate functions.

In addition to these basic properties, a manifold is supposed to have a ‘local
regularity structure’ given by local coordinate systems.

The local coordinates correspond to the choice of a model space V and X is
supposed to have a covering by open sets U, with homeomorphisms F, : U, — V,
where V, C V is open and

Fup : Vo = Fa(Ua n Ub) — Fb(Ua n Ub) = Vba

is required to lie in a specified groupoid Dff(V') consisting of homeomorphisms
between open subsets of V.

2. Transformation groupoid

This is where the real issues start,
What is Dff(V')?

We will want Dff (V') to preserve some space of ‘smooth functions’ C*°(V') on
open subsets of V' — certainly they are supposed to be continuous. Usually V will
be some linear space; in the cases of interest here a Fréchet space — a complete
countably normed space. This includes Banach and so Hilbert spaces.

I will usually denote a finite dimensional manifold by M. In this familiar case
V = R"™ and the transition groupoid Dff (R™) consists of the smooth maps with
smooth inverses between open subsets, Fyp : Vo — Vi such that Fiy (C®(Vy,)) =
C>®(Vap). There are restricted choices (for instance symplectic diffeomorphisms)
but pretty much everyone agrees that this is the definition of a finite-dimensional
smooth manifold. Of course one can vary the local structure by considering C* or
real-analytic manifolds.

Note however that the transition groupoid, or even the global group of dif-
feomorphisms Dff (R™) is not so easy to deal with. For any (say compact) finite-
dimensional manifold, Dff (M) is a Fréchet Lie group, with Lie algebra V(M), the
space of real smooth vector fields on M. So Dff(M) is in some sense a manifold
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8 1. LECTURES 1 AND 2: AN OVERVIEW, FEBRUARY 5 AND 7, 2013

modelled on V(M) as model space. This is the sort of infinite dimensional manifold
we will consider, one modelled on a space like the smooth functions on a finite
dimensional manifold. I will review the properties of Dff (M) later, but let me
warn you that it is not quite like a finite-dimensional Lie group. For instance, the
exponential map (which does exist in the compact case) is not surjective from a
neighbourhood of 0. Fortunately the structure of Dff(R™) does not arise directly
in dealing with finite-dimensional manifolds since we really only consider a finite
number of elements at any one time.

3. Riemann manifolds

While I am at it, let me remind you about Riemann manifolds.

With any finite-dimensional smooth manifold we can associate may others, one
particularly important one being the tangent bundle which comes with a smooth
map TM — M. Because it is constructed from M, the groupoid for TM is also
Dff(R™), but we can expand it to C>°(R™; GL(n)) (sending a diffeomorphism to its
differentials). On the tangent bundle we can choose a Riemann metric — a smooth
family of fibre metrics and so shrink the groupoid again to C>°(R™; O(n)) which we
can think of in terms of the principal O(n)-bundle of orthonormal frames in 7M.
The choice of a Riemann metric also gives a ‘nice’ covering of M by coordinate
systems corresponding to small balls and the exponential map with all (non-trivial)
intersections contractible. I will come back to all of this later.

4. Examples

Now, what about really infinite-dimensional manifolds? When the model V/
is infinite-dimensional, there are many possible choices for Dff(V'), many of them
quite ugly! I will not try to discuss the zoo of choices, but just mention some
important examples. One important Banach manifold is GL(H) (or U(H)) the
space of invertible (or unitary) operators on a separable Hilbert space. The model
here is B(H) (or A(H)) the bounded (and self-adjoint) operators. An important
(and reasonably simple) result is Kuiper’s theorem, that GL(H) is contractible (in
the uniform topology). A similar, but ‘smoother’ manifold is G=°°(M), the group of
invertible smoothing perturbations of the identity acting on functions on a compact
finite-dimensional manifold M. The model here is C>°(M?). This is a Fréchet Lie
group, but one where the exponential map is a local diffeomorphism — it is also a
classifying group for (odd) K-theory.

The fundamental problem with defining an infinite-dimensional manifold is:
What is the regularity we require of the functions on open subsets of the model, V,
and what do we require of the transition groupoid which is supposed to preserve this
regularity between open sets — and so transfer it to our manifold. The ‘obvious’ def-
initions or infinite differentiability of functions and taking the ‘maximal groupoid’
— which is the direct extension of the finite-dimensional case — do not work at all
well. This is the problem. For instance we know almost nothing about the space
of homeomorphisms between open subsets of C*(R) which preserve regularity of
function on these sets. And what we do know is not encouraging!

5. Loop spaces

So, we need to be guided by some reasonably sensible examples. The simplest
of these really are the loop manifolds. These are the manifolds I want to concentrate
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on in this course. So, just consider
LM =C*(U(1); M)

the space of all smooth maps from the circle into M, say a compact finite manifold,
of finite dimension. I treat the circle here as the 1-dimensional Lie group for reasons
that will become clear. Note that in the very imporant case, that appears often
below, that M = G is a Lie group, LG is also a group under ‘pointwise product’.

The model is indeed essentially the smooth functions on a finite-dimensional
manifold — in this case it is C*°(U(1); R™) which is just the product of n copies
of real-valued functions on U(1). So, what is the structure groupoid? We should
perhaps ask what is the precise definition of smooth functions on open subsets of
C>(U(1)), but it is better to postpone that.

One of the first things I will go through carefully is the fact that the structure
groupoid of the loop space ‘is’ meaning it is natural to take it to be, a groupoid
which is very like the finite dimensional case. Not some huge thing at all but simply

Dff(LM) = C*°(U(1); DEE(R™))

just the loops in the groupoid for M. Basically this is becase LM is a space ‘asso-
ciated to M’.

6. Local coordinates

This needs to be properly justified, but let me give an outline of the ‘proof’ (I
have not said exactly what the theorem is of course)! Take a Riemann metric on
M and choose € > 0 smaller than the injectivity radius, so all the geodesic balls of
this size are really balls. Now, for a loop [ : U(1) — M look at the set of loops

(1.6.1) N(l;e) ={l' : U(1) — M;d(l'(s),l(s)) < eV seUl)}.

We can use the ‘exponential’ map of the metric on M to identify B(I(s),€) with a
ball around 0 in the tangent space Tj(;) M. This gives an identification of N (I, €) with
‘loops in the tangent bundle’, meaning sections — with length less than € everywhere
— of *T'M the pull-back to U(1) of the tangent bundle. Well, let’s assume that
M is orientable. Then this is actually a trivial bundle over the circle and we
are really looking at C*°(U(1);R™) as indicated above. What happens when we
change base loop and look at the neighbourhood of another? Two N(I;,¢€) ¢ = 1,2
intersect only if there is a loop which is everywhere € close to each — meaning that
d(l1(s)la(s)) < 2e for all s € U(1). When this is true the ‘coordinate change’ is a
fibre-preserving map from 7'M pulled back to one to the pull-back to the other.
So, you see it is a loop into the local diffeomorphisms of R™.

7. Whitehead tower

Now, for the rest of today and probably the next lecture, I want to discuss the
question: Why? What makes loop manifolds interesting/important? For us the
first reason — and something that I need to discuss in some detail, is because of the
difficulties presented by the analytic properties (or lack thereof) of the Whitehead
tower. So what is the Whitehead tower? For us it is about successive special
properties of manifolds.

Let’s go back and talk about what is really interesting, namely finite dimen-
sional manifolds. Let me take the dimension n to be at least 5 so I don’t have to
keep making qualifying statements.
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The tangent bundle of M can be given a Riemann metric, which reduces its
‘structure group’ to O(n), the space of orthogonal transformations. This just means
that the bundle over M of orthogonal frames in the fibres of T'M forms a principal
O(n) bundle over M — the fibres are diffeomorphic to O(n) and O(n) acts freely
and locally trivially.

The orthogonal group O(n) has two components, the identity component being
SO(n) for which the first few homotopy groups are

mo(O(n)) = Zs, m(SO(n)) = Zo,
m2(SO(n) = {Id}, 73(SO(n)) = Z,
m;(SO(n)) = {Id}, i = 4,5, pig(SO(n)) = Z.

The non-triviality of 71 (SO(n)) corresponds to the existence of a non-trivial
double cover — the spin group. In fact Whitehead’s theorem says that there is a
‘tower’ of group homomorphisms — in general only topological groups

(1.7.1) O(n) =<—— SO(n) =<— Spin(n) <—— String(n) . ..

where for each successive group the bottom homotopy group is killed but the higher
ones survive unscathed.

The first three groups here are (meaning have realizations as) Lie groups, the
last cannot since 73(G) = Z for any finite-dimensional connected Lie group.

8. Orientation

As T am confident is well-known to you, the first inclusion corresponds to the
orienatility of M. Said formally:

When can the structure group of TM be reduced from O(n) to SO(n)?

In this case we can associate with M another manifold O M which is just M with one
of the two possible choices of orientation of T, M at each point — and hence nearby.
This double cover is trivial, has two components, if and only if M is orientable. As
is very well known, this can be expressed by saying that M is orientable if and only
if wy € HY(M;Zs) the first Stiefel-Whitney class, vanishes.

9. Spin structure

As is also well-known, the second homomorphism in (1.7.1) corresponds to the
question of the existence of a spin structure on M. Now we assume that M is
oriented — connected, orientable and with an orientation chosen and now ask

Can the structure group SO(n) of TM be lifted to Spin(n)?

This can be made precise by looking at Fso(,) M, the bundle of oriented orthonormal
frames of M — by the choice of an orientation the structure group has been reduced
from O(n) to SO(n) so this is a principal SO(n)-bundle. The precise question then
is — does there exists a principal Spin(n) bundle F' = Fgy;, (I denote the spin frame
bundle just as F since it will appear often in the sequel) with fibre covering map
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F — F50(n) giving a commutative diagram

Spin(n) — F
|
SO(n) Fsom)
i
M.

Again the answer is well-known, that this is possible — there exists a spin struc-
ture — if and only if wy € H?(M;Zy), the second Stieffel-Whitney class, vanishes.
There seems to be a pattern! There is, but it is not as simple as that.

10. Spin Dirac operator

Why should you be interested in spin structures? From the point of view of
differential equations (remember this is, at least in principle, a course on differential
equations) one important consequence of the existence of a spin structure is the
existence of the spin Dirac operator. I will talk about this and the fact that it
is elliptic and that its index is the A—genus of the manifold. This is a number
associated to an oriented compact manifold which is generally rational but in the
case of a spin manifold is an integer — this was actually known before the index of
the Dirac operator was understood by Atiyah and Singer and the existence of the
Dirac operator serves as an explanation of the integrality of the genus

(1.10.1) A = ind(Jspin).

Here the spin Dirac operator is defined by associating a vector bundle to F —
using the spin representation of Spin — observing that it inherits the Levi-Civita
connection and combining that with Clifford multiplication to get

(1.10.2) Ogpin = cloV.
11. Spin and loops

What is the relationship between spin structures and £LM? The most obvious
relationship with loops is that Spin(n) is a double cover of SO(n) and this can be
constructed as usual for the universal cover using loops. We do something similar
for the spin structure.

Now, we are assuming that M is oriented, but not that it has a spin structure.
The orientation implies that the orthonormal frame bundle is trivial over each loop
in M, so the loops in Fgo(,) form a bundle, LFso(,) over LM which is actually
a principal bundle with structure group £SO(n). This loop group has two com-
ponents, so there is an orientation question — can the structure group be reduced
to the connected component of £SO(n)? The universal cover construction shows
that the connected component of £SO(n) is canonically £ Spin(n) and so there is
a natural choice of an ‘orientation map’ giving a short exact sequence

(1.11.1) L Spin — LSO — Zs.

It was observed by Atiyah that if M is spin then LM is orientable in this sense of
having a reduction of the structure group to £ Spin. Conversely, it was proved by
McLaughlin [2] that the orientability of LM implies that M is spin, provided M
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is simply connected. However, in general it is not the case that orientability in the
sense of the reduction of the structure group of LF50(,) to the component of the
identity is equivalent to the existence of a spin structure on M. One needs another
condition on the orientation.

What one needs to add is the idea of fusion, introduced at least in this context
by Stolz and Teichner; I will talk about this quite a bit. The combination, ‘a fusion
orientation” of LM ensures that it does correspond precisely to a spin structure
on M. To see where the fusion condition comes from, suppose that M does have
a spin structure; we proceed to construct an ‘orientation’ on LM. Namely, a loop
in LFso(n) is ‘positively oriented’ if it can be covered by a section of LF. This
constructs a map *

(1112) Of ‘CFSO(n) — ZQ = {1, —1}

It should be continuous, and that is what an orientation of LM is — a continuous
map (1.11.2) which restricts to a fibre 2 of LFsom) — LM to give an orientation
of £SO —meaning (1.11.1) or its opposite.

Instead of thinking about loops, consider paths in M; these are just smooth
maps [0,7] — M. I take this interval because it is ‘half a circle’ but it really does
not matter. In fact we will consider only flat-ended segments, meaning that all
derivatives of the path vanish at the end-points, denote the collection of these as
IM. Clearly we have a map

(1.11.3) IM — M?

mapping to the two end-points of a segment. In fact this is a fibre bundle in an
appropriate sense and we can consider the fibre-product (pairs of loops with the
same ends). From this there is a ‘join’ map

J:IBM — M

obtained by following the first segment by the reverse of the second which maps
into loops. Note that the flatness of the paths at the end-points means that they
join up smoothly to a loop — not an arbitrary loop of course because it is ‘flat’ at
the points 1 and —1 on the circle; other than that it is arbitrary.

From ZM P! — triples of segments all three with the same ends — there are three
maps into LM, taking (f1, f2, f3) to J(f1, f2), J(fe, f3) and J(f1, f3) respectively.

This discussion applies to any manifold, so we can consider ZFgo(y), the flat-
ended loops into Fgo(,) with its map to FSQO(n). So ‘join’ becomes a map

(1.11.4) J: I[Q]Fso(n) — LF50(n)-

As noted above, a spin structure on M allows us to assign an orientation (1.11.2)
to each element of LFgo(y). This assignment is by ‘holonomy’ — lift the intial point
into the spin frame bundle and then travel around the curve (there is a unique local
lift to F' because it is just a double cover) and ask whether you have come back
to the same point or to the other lift. The three paths determined by a triple, an
element of 7 [3]Fso(n), each have an orientation and the construction by holonomy
means that the product of the orientation of two of them is the orientation of the

IThis is where Fso(n) became F in v3
21f this happens on one fibre it happens on all
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third. We can think of this in a fancier way, useful for later generalization, that
there are simplicial projection maps

(1.11.5) miz, mag, i3 I Fso () — TP Fso ),

where m;; drops the missing index. Now the compatibility condition on the orien-
tation is that the product of the three maps

(1116) (7'('12 o J)*OF . (7723 o J)*OF . (71'13 o J)*OF = 1.

[There should really be an inverse on the third factor but of course here it makes
no difference.]

Now, we can say a loop-orientation of LM — meaning a continuous map (1.11.2)
with the right behaviour on each fibre, is ‘fusion’ if it satisfies (1.11.6).

THEOREM 1 (Stolz and Teichner [8], 2005). There is a 1-1 correspondence
between fusion orientations and equivalence classes (up to smooth principal-bundle
isomorphism) of spin structures on M and each is classified by H'(M;7Z).3

PROOF. * You can of course consult [8]. In fact this proof is quite illustrative.

The passage from spin structures to fusion orientations is discussed above, but
let me repeat it briefly. The principal Spin(n) bundle, F, associated to a spin
structure is a double cover of Fso(y), the oriented orthonormal frame bundle. So,
given a loop | € LF50(y,) we may lift the initial point I(1) to a point I'(1) € F above
it; there are two choices. Once the initial point is chosen there is a unique path in
F covering the loop in Fgo(,) and we assign o(l) = £1 corresponding to whether
the lifted path does, or does not, return to its starting point. It follows that this
assignment is independent of the choice of initial point, it is the holonomy of the
curve corresponding to the Zy bundle which is F' — Fgo(,). The fact that the
fibre F, above m € M has a spin action covering the SO(n) action on (Fso(m))m
means that the map o on loops in a given fibre takes both signs, corresponding
to the fact that m1(SO(n)) = Zy but that Spin(n) is simply connected. Thus o is
an orientation of LM in the sense of (1.11.2). That the spin structure leads to a
fusion loop-orientation follows from the definition of fusion. Namely at any point
in 703! Fs0(n) the three loops in (1.11.6) come from three paths i; with the same
endpoints. The orientation of the first loop is the holonomy along i; followed by the
reverse of io, the orientation of the second is obtained by going along i and then i3
reversed. We can certainly use as initial point in the second case the end-point of
the lift used in the first case. Then the holonomy along the ‘fused’ loop is obtained
by lifting above iy and then i3 in reverse. However, adding the detour along i and
then reversed along i5 does not do anything so the holonomy along the fusion is
indeed the product which gives (1.11.6).

Now, to go in the opposite direction, i.e. to construct a spin structure from
a fusion loop-orientation, choose a base point in Fso(,) and consider the ‘pointed
paths’ fFSO(n) C ZFso(n), just those flat-ended paths which start at the base
point. Evaluating at 7 gives a map i-FSO(n) — Fs0(n) which is surjective by the
connectedness of M and SO(n).

Now, look at the product iFso(n) X Zo and define a relation on it:

(1.11.7) (i,8) ~ (i, 8') <= i(r) = i (1), o(J(i,i'))s = s.

3Also a typo here in v3
4There were missing SO(n) subscripts in v3
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The fusion condition is exactly what is needed to see that this is an equivalence
relation. First, we need to know that (4, s) ~ (i,s) which reduces to o(J(3,7)) = 1.
That is, the orientation of a ‘there-and-back’ loop is +1. This follows from (1.11.6)
since (o(J(i,4)))® = 1. Similarly symmetry reduces to o(J(i,4’)) = o(J(i’,i)). Again
this follows from (1.11.6) applied to the three paths i,4,4" since

(1.11.8) o(J(i,0))o(J(5,7)) = o(J(@, 7).

The transitivity of ~ is the full fusion condition.

Now, the quotient F' = fFSO(n) X Zg/ ~ is a double cover F — Fs0(n) since
locally near a point of Fgo(y) it is just the product of a neighbourhood with Zs.
In fact this construction applied to SO(n) is one of the standard constructions of
Spin(n).

Note that there is a slightly sticky issue here, that the loop-orientation con-
struction applied to the spin structure just associated to a fusion loop-orientation
should reconstruct the original loop-orientation. This is certainly true on loops
obtained by joining two flat-ended paths since a path in the new F' is really just a
path in F5o(,) with some choice of & € Zy. However, an orientation is determined
by its restriction to the image of the joint map. This is a strengthened form of
the independence of the parameterization and we need to deal with it seriously as
‘flattening’ below.

Note that we are also using the fact that the holonomy is unchanged under
a principal bundle isomorphism but this is clear from the definition. The last
statement in the theorem, follows from the fact that spin structures are so classified.
Namely a spin structure is a Zp bundle over Fgo(,) which encodes the Spin(n)
action. It follows that the tensor product of these two Zs bundles is the pull-back
of a Zy bundle from M under the projection and conversely. That H*(M;Zy) may
be identified with the equivalence classes of Zs bundles over M is standard. ([

It is worth thinking a little about the last part of this proof to see how the
classification of loop-orientation structures by H!(M;Z) arises directly. Namely
for two loop-orientations the product is the pull-back of a continuous map

(1.11.9) LM — 7,

under the projection map LFgo(n) — LM since it is constant on the fibres. This
map also has the fusion property for loops on M since this follows by looking at
lifts to paths and loops in Fgo(,) for loop-orientations — i.e. follows by taking the
product of the identity (1.11.6) for the two loop-orientations (so you need to check
that each element of LIBIM does have a lift to £I°] Fso(n)- So what this comes down
to is the identification

(1.11.10) H'(M;Zy) = {Fusion maps (1.11.9)}.
EXERCISE 1. Check (1.11.10) — it is a simpler version of the proof above.

This is all part of the general principal that ‘transgression’ and ‘regression’
which are maps from objects on M to objects on LM and conversely become
isomorphisms (or functors) provided the correct ‘fusion’ condition is added on the
loop side. You might, by the way, complain that the notation is messed up and
that (1.11.10) should really be the space of ‘loop-orientations’ on LM (or M) but
it is too late to try to reverse history.
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12. Regularity

Let me just note some things about Theorem 1. The fact that we can away
without having to worry about regularity is due to the discreteness of Z,. A map
into Zs is as smooth as it can be as soon as it is continuous — which is to say it
is locally constant. The same applies to the spin structure, the bundle F' when it
exists has the same regularity as Fso(y) since it is locally the same. When we go
to more serious questions we will have to tackle regularity head on.

Just think for a moment what a continuously differentiable function on some
Fréchet manifold modelled on say C*°(M) for a smooth manifold M should be.
There are different notions of derivative but in any case such a function should
have a derivative at each point. What should that be? The minimal condition
would that it be a linear function on the tangent space at each point. However, the
tangent space — given the patching definition outlined briefly above — would usually
be interpreted as essentially the model space, C*°(M), although not canonically.
Still, this means the derivative should be a functional on C*°(M) which is to say a
distribution — given that it is continous which we would surely want. So, hidden
in a continously differentiable function is a distribution at each point. This is a
bit of a problem as soon as we try to do something as is implicit in (1.10.2) which
requires some sort of multiplication operation.

Of course there is an implicit bias at work here, ‘preferring’ the tangent to
the cotangent space. It would be reasonable to demand (and we shall) much more
regularity than this and claim that the derivative should itself be (or if you want to
think in terms of distributions, be given by) an element of C*°(M). Such a function
would be ‘very smooth’. Still, in order for this to make sense we have to make
sure that such notions, and corresponding issues for higher derivatives, transform
correctly under the transformation groupoid.

13. Reparameterization

Another property of the holonomy definition of the orientation map on LFgon)
defined from a spin structure is that it is independent of the parameterization
of a loop. This is easy to see from the definition and suggests what is natural
anyway, that the ‘best’ objects on a loop space will be independent (in some sense)
of the parameterization of the curves. In fact the group DffT(U(1)) of oriented
diffeomorphisms of the circle (or the unoriented ones for that matter) act on say
LM by reparameterizing loops and we can therefore think about the quotient

(1.13.1) LM/ DT (U(1)).

The problem is that this is quite singular, since for instance the constant loops are
fixed points for the action which is very much non-free. Still, it is natural to look
for invariance, or equivariance, under this action as we certainly have in the case
of the orientation.

There is however a tension between reparameterization and fusion, both of
which are clearly important. Namely, the fusion operation from paths to loops
only really makes sense if we have flat-ended paths so that the resulting loops are
smooth. One can go along way with piecewise-smooth loops, which is what you
get by joining smooth but not flat-ended paths with the same ends, but then the
topology is going to get out of hand since one needs to allow the breaks to occur
anywhere.
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These are the sort of issues that I hope to nail down properly. They do not arise
above, but they immediately come up below and that is one reason these problems
have remained open for quite a long time.

14. String structures

Now, on to the main topic of the first part of these lectures. Namely the next
structure in the Whitehead tower, the notion of a string structure on M. That
is, when does a manifold with a spin structure have a String(n) principal bundle
covering the Spin(n) bundle:-

(1.14.1) String(n) Fistring
Spin(n) ——— }j
M.

The existence of a decent model for String(n) is not so trivial.

In fact the answer is also well-established. The spin structure defines a charac-
teristic class in H*(M;Z) twice which is the usual py, the first Pontryagin class. So
it is generally denoted %pl but it is integral. The statement here depends a bit on
finding a decent model for String so I will not go into it at precisely at this stage
but a lift (1.14.1) exists if and only if $p; = 0. Note that the pattern

Orientation — Spin — String — (Fivebrane)

does continue in the sense that the extension to successive groups in the Whitehead
tower is obstructed by a cohomology class, not the class involved in the third step
(and in the next too) is an integral cohomology class, not a Zy class.

At this point you might well have a couple of big questions. Why would we
care about string structures? And in any case, what have they to do with loops?
What is this thing that comes next? I will not get into the next step!

From looping behaviour,

m2(L Spin(n)) = m3(Spin(n)) = Z.

In the absence of other groups nearby this implies that H?(L Spin(n)) = Z, so
there is a line bundle over £ Spin(n). This line bundle is in fact ‘primitive’, i.e.
corresponds to a central extension by a circle

U(1) — ELSpin(n) — L Spin(n).

At the level of Lie algebras this is the Kac-Moody extension.

15. Loop-spin structures

The existence of a string structure on M is then related to the existence of a
‘loop-spin’ structure on LM in the sense of a covering of the £ Spin(n) principal
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bundle by an EL Spin(n)-principal bundle

(1.15.1) EL Spin(n) DEF
L Spin(n) Ef
M

3

where D is an ‘appropriate’ circle bundle over LF.

The situation is similar to spin and loop-orientation above. There is an ob-
struction (Dixmier-Douady) class in H3(LM;Z) to the existence of an extension
principal bundle. Recently Waldorf has shown that there is a notion of ‘fusion’
structure for a loop-spin structure and the existence of such a structure is equiva-
lent to the existence of a string structure. With any luck (i.e. it does not blow up
in the writing) Chris Kottke and I have shown that there is a 1-1 correspondence
between string and fusive (this is a strengthening of the fusion condition that we
will get to) loop-spin structures up to natural equivalence; these are both classified
by H3(M;Z). Moreover there are analogues in this case of the direct constructions
outlined above.

16. Bundle gerbes

What more do we need to carry through this construction? One thing we
will use is a geometci realization of 3-dimensional integral cohomology, in the form
of bundle gerbes [3]. I will develop the theory of these as needed. In particular
they apply directly to analyse extensions of principal bundles corresponding to
central extensions of their structure groups as in (1.15.1). In fact we need some
sort of geometric realization of 4-dimensional integral cohomology, to capture the
obstructure class %pl. These are ‘2-gerbes’ in this case the Brylinski-McLaughlin
bundle 2-gerbe.

17. Witten genus

So, why is this interesting? The basic ‘claim’ is that analysis is much easier
on the loop-spin side of this correspondence than on the string side. In particular,
Witten has given a Physical discussion of the index of a differential operator, the
Dirac-Raymond operator, on LM, which is associated to the loop-spin bundle. This
index is not a number, but is rather a formal power series with integer coefficients
— the Witten genus. Again this is analogous to the A genus, with integrality of
the coefficients a consequence of the existence of a spin structure. To discuss all
this properly we would need an analytic-geometric theory of elliptic cohomology,
in which the Witten genus resides. I can hope to do this during the semester, but
I do not know how to do it now!

18. In the sky

What else would I like to (be able to) do? Full analysis of the Dirac-Ramond
operator to derive the Witten genus as the equivariant index. Discuss the rela-
tionship to quantum field theory and topological quantum field theory. Give a
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geometric realization of elliptic cohomology and topological modular forms. Don’t
hold your breath on this.



CHAPTER 2

Lectures 3 and 4, 12th and 14th February: The
circle

After the overview last week I will start at the beginning, indeed this week I
will talk about analysis (and even a little geometry!) of the circe, U(1). I have
moved the general discussion of compact manifolds to an appendix.

1. Functions and Fourier series

Now, we specialize to the circle, U(1) which naturally enough plays a funda-
mental role in the discussion of loop spaces. The most obvious model for the circle
for the discussion of basic regularity is as the quotient R/277Z so that C>°(U(1))
is identified with the subspace of C*°(R) consisting of the 2m-periodic functions —
and similarly for pretty much every other function space between C~>°(U(1)) and
C>(U(1)).

In particular we have a very natural differential operator on functions, %% and
the spectral theory of this operator corresponds to Fourier series. Thus there are
identifications

C>(U(1)) — S(2)
L2(U(1)) — P*(2)

(2.1.1) C~>*(U(1)) — S'(z)
, 1 ,
u(t) = cpe™t o = — u(t)e_lkt|d9|
% 2w Ju

where the spaces on the right consists of the rapidly decreasing, square summable,
and polynomially increasing sequences:-

S(Z)={c.:Z—C;» (1+ [k|)|ar| < 00 V1€ N},

k
(2.1.2) P(Z)={c:Z—C; ) _|ax* < oo},
k
S (Z)={c :Z—C; Z(l + k)" |ax| < oo for some N € N}

k

where in the last case N depends on the sequence.

The use of Fourier series allows much of the general discussion above to be
made explicit on the circle, but does lead to difficulties when it comes to coordinate-
invariance. For example Schwartz kernel theorem in this case becomes the (rela-
tively simply checked) statement that any continuous linear map C*(U(1)) —
C~>°(U(1)) is given by an infinite matrix of polynomial growth on the Fourier

19
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transform side

(2.1.3) (Ac) = ZAkjcj, |Ajk] < O+ 4] + [k[)Y for some N.
J

Smoothing operators correspond to matrices in S(Z?) in the obvious sense.
Thus, is A € ¥~°°(U(1)) is a smoothing operator

A(Z cre*ty = Zdjeijt, d; = ZAjkckv
k j k

Aj € S(Z?), ie. Y N, |Aj] < On(1+ 5]+ [K))~V.

(2.1.4)

Conversely any such rapidly decreasing matrix defines a smoothing operator.

EXERCISE 2. Write out the relationship of Fourier series on the 2-torus between
the matrix A;; and the kernel A € C>(U(1)?) of a smoothing operator.

2. Hardy space

Of course the circle is extremely special among manifolds! In particular its
identification with the unit circle in C with respect to the Euclidean metric, via the
exponential function, means that there is a special (really a whole lot of special)
subspaces of C*°(U(1)) of ‘half dimension’. The usual choice is the (smooth) Hardy
space

(2.2.1) C2(U(1)) = {u € C=(U(1))iex = 0 for k < 0 in (2.1.1)}.

The elements of C(U(1)) are precisely those smooth functions which are the re-
striction to the unit circle of a smooth function on the closed ball, {|z| < 1} in C
which is holomorphic in the interior.

Consider the projection onto this subspace, which can be written explicitly in
terms of the expansion in Fourier series

(2.2.2) Pyu=Y cpe™, u=> cpe™™, Pj =Py
k>0 %

As such it is clear self-adjoint with respect to the L? inner product

(2.2.3) (, v) = /U o

In fact Py is probably the simplest example of non-differential pseudodifferential
operator. To see this of course, you need to know what a pseudodifferential operator
is, but for the moment this does not matter.

The most crucial, perhaps non-obvious, property of Py is that it ‘almost com-
mutes’ with multiplication. Thus suppose a € C*°(U(1)) (maybe complex-valued),
this defines a multiplication operator which I will also denote a :

(2.2.4) a:C*(U(1)) 3 u+— au € C®(U(1)).

LEMMA 1. For any a € C*(U(1)), the commutator with Py is a smoothing
operator

(2.2.5) [a, Py] € U~>(U(1)).
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PROOF. We only need find expressions for aPy and Pgya in terms of Fourier

series, which amounts to finding its action on e***. First observe that multiplication
becomes convolution in the sense that

1 ilt 9]
—_—g U(l)) =
a 5 l ae™ € C*(U(1))

1 g 1 ;
au = ﬂgj:bje”t where b; = zl:ajflcl if u= - Zk:cke““t.

It follows that

(2.2.6)

1 g
(aPH)UZZZ Zaj,lcl) et

(2.2.7) 7oA=0
1 -
(Pga)u = Py Z <Z aj_lcl)> elt,
>0 \' 1

Thus the commutator is given by the difference, which means that

u = g E lecleijt, where
i o1

(2.2.8) aj;  ifj<0,0>0
Bj,l =94 —aj—1 lf] > O,l <0
0 otherwise.

By assumption, a is smooth, so |aj_;| < Cn(1 4 |j —1|)™" for each N. For the
non-zero terms in (2.2.8), |j —I| = |j| +]!| since the signs are always opposite. Thus

|Bjal < Cn (L[] + 1)~
is rapidly decreasing in all directions on Z2. O
Note that this behaviour can be attributed to one oddity of U(1), the circle,

that distinguishes it from other connected compact manifolds. Namely its cosphere
bundle has two components.

3. Toeplitz operators

This behaviour of commutators allows us to define the Toeplitz algebra. Clearly
C>(U(1)) forms an algebra of multiplication operators. However, if we project this
onto C(U(1)) by defining

(2.3.1) ax = PyaPy - C(U(1)) — C3(U(1)).

This is a Toeplitz operator, the ‘projection’ of a multiplication operator onto the
Hardy space. However, these operators do not form an algebra since the composite
is instead

(232) PyaPybPy = PHabPH+PHa[PH,b]PH.

The second term here is a smoothing operator — this is one of the basic properties
of pseudodifferential operators, that the composite of a pseudodifferential operator
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and a smoothing operator is smoothing. In particular this means that the compos-
ites with the Hardy projection or multiplication by a smooth function are again
smoothing
(2.3.3) PyA, APy, aA, Aa € $7°(U(1)) if A € T7°°(U(1)), a € C*=(U(1)).
EXERCISE 3. Prove (2.3.3).
DEFINITION 1. The Toeplitz operators (with smooth coefficients) consist of the
sum
(2.3.4) U (U(1) = PuC™(U(L) Pt + Pu®~(U(1)) Py
as an algebra of operators on Cg(U(1)).

Now, the decomposition (2.3.4) of a Toeplitz operator is unique and moreover
the multiplier can be recovered from

PyaPy +U5°(U(1)), a € C®(U(L)).

(2.3.5) U:°(U(1)) = {PyAPg; A € U=°(U(1))}.

To recover a from ay = PgaPy it suffices to look at age’* for k large. Indeed
from (2.2.7)

apge™t = E a]—,ke”t, k>0—=
j=0

(2.3.6)
/ e ikt (aHe““‘) dt =ap,, k+p>0.
u(1)

t

So, by taking k large enough we can recover a, from age’** and hence we can

recover a € C*°(U(1)). More generally, if A € W,.>°(U(1)) then

(2.3.7) lim e~ PRt (Ae™™) dt = 0
k—o0 U(1)
PROPOSITION 1. The Toeplitz-smoothing operators form an ideal in the Toeplitz
operators (with smooth coefficients) and gives a short exact sequence of algebras

(2.3.8) U2 (U(L)) — o (U(1)) —7> C2(U(1)).

The second homomorphism here is a special case of the ‘symbol map’ for pseudo-
differential operators.

PRroOF. Basically this is proved above. (Il

Although this is what I will call the Toeplitz algebra, the name is applied to
several closely related algebras (particularly the norm closure of this algebra as
bounded operators on the L? version of the Hardy space). Even keeping things
‘smooth’ there is another algebra which is important here, at least as an aid to
understanding. Namely, we can simply ‘compress’ the pseudodifferential operators
on the Hardy space and define

(2.3.9) U4 (U(1)) = Pg¥%(U(1))Pg.

The usual definition of a Toeplitz algebra in higher dimensions is derived from
this. Since multiplication operators and smoothing operators are pseudodifferential
operators,

(2.3.10) U, (U(1)) € Y (U(1)).
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The question then is:- What else is in the space on the right — we could call it the
‘extended Toeplitz algebra’.

The main extra terms are the compressions of pseudodifferential operators of
negative integral order. As matix operator on the Fourier series side these are of
the form, for m € N
(2.3.11)

oo
A =N " Ajret, Aje = a; g (k+1)7™, j,k >0, sup |a;|(1 + [p))Y < o0 ¥ N.
3=0 J

This is in fact just the composite of the compression of a multiplication operator,
by a € C>(U(1)) with Fourier coefficients a; and the convolution operator given
by multiplication by (1 + k)~ on the Fourier series side. Note that the k + 1 is
just to avoid problems at £ = 0. Beyond this the extended Toeplitz algebra has a
completeness property.

4. Toeplitz index

How is this related to loops? One way to see a relationship is to observe that
(2.4.1) LU(1) CcC>*(U(1))

consisting of the maps with values in U(1) C C. These form a group and so we
can look for the invertible elements in ¥, (U(1)) which map into this group. The
answer is at first a bit disappointing!

LEMMA 2. The elements of LU(1) C C*°(U(1)) which lift to invertible elements
of Uro(U(1)) are precisely those with winding number 0, i.e. are contractible to
constant in LU(1).

This you might say is the simplest form of the Atiyah-Singer index theorem, long
predating it of course since it was known to Toeplitz (in the 1920s I think). If we
do a little more we get a true index theorem:-

THEOREM 2. If a € C*(U(1);C*) (i.e. is non-zero) then, as an operator on
Cx(UQ1)), any element B € U, (U(1)) with o(B) = a is Fredholm — has finite
dimensional null space and closed range of finite codimension — and

(2.4.2) ind(B) = dimnull(B) — dim (C% (U(1))/BC% (U(1))) = — wn(a)

is determined by the winding number of a.

5. Diffeomorphisms and increasing surjections
6. Toeplitz central extension

Now let me get a little closer to the core topic and show one construction of
the central extension of the loop group on any connected and simply connected
Lie group. There are quite a few other constructions (see for instance that of
Mickelsson).

We can embed Spin(n) in the (real) Clifford algebra Cl(n) and so think of it
concretely as a group in an algebra. This means that £ Spin(n) sits inside the
algebra C*°(U(1); Cl(n)). There is a ‘Hardy’ subalgebra of H C C*(U(1);Cl(n)
consisting of the functions with vanishing negative Fourier coefficients and a natural
projection I onto it. The Toeplitz operators IIzC>(U(1); Cl(n))Ig, do not form
an algebra, but do so when extended by the Toeplitz smoothing operators with
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values in Cl(n) — because [H,C>(U(1); Cl(n)] consists of such smoothing operators.
We can call this the Clifford-Toeplitz algebra.

Invertible elements in C*°(U(1);Cl(n)) give Fredholm operators and the fact
that Spin(n) is simply connected means that the index vanishes and so there is
a group of invertible operators in the Clifford-Toeplitz algebra and a subgroup of
unitary extension. This gives a short exact sequence of groups

G (U(1); Cl(n)) — Gir — L Spin(n)
with kernel the unitary smoothing perturbations of II7. The Fredholm determinant

is defined on G;>(U(1); Cl(n)) so we may take subgroup of determinannt one; it
is also a normal subgroup of Gy . Finally then the quotient group

ELSpin(n) = G/{A € G5~ (U(1); Cl(n)); det(A) = 1}

is the desired (basic) central extension of £ Spin(n). This construction can be mod-
ified to work even for non-simply connected groups such as U(n).



APPENDIX A

Finite-dimensional manifolds

First let me recall basic facts about compact manifolds, mainly to set up no-
tation before specializing to the circle. Some of this I do not really need, but it
seems a good idea to put things in context. In fact as you can see I got rather
carried away and wrote down almost everything I could think of which might be
relevant. Don’t worry if you do not get ALL of this, since I generally do not need
this much but if you want me to explain any of it a little more I am happy to do
so. I do not plan to lecture on most of what is in this first section but am open to
counter-proposals. In Lecture 3 I plan to start directly with §1.

Perhaps the most basic object associated with a compact C* manifold, M, is
the space C*°(M) of (real- or complex-valued, if necessary I can use the notation
C>°(M;R), C>°(M;C)) functions on M. From this one can construct the tangent
and cotangent bundles, TM, T* M — for instance the fibre of T*M at m € M can
be identified with Z,,,/Z2,, Z,, C C>°(M) being the ideal of functions vanishing at
m and Z3, being the finite span of at two factors from Z,,,.

I assume we are familiar with the notion of a vector bundle, V, real or complex,
and of the operations on them giving the dual, V*, the tensor product of two
V ® W, the bundle of fibre homomorphisms from V' to W, hom(V, W), that this is
canonically W ® V*, exterior products as antisymmetric parts of tensor products
etc.

There is one construction which is maybe slightly less familiar than these stan-
dard ones, and which only works for rank one real bundles. Namely, if L is such a
real line bundle then it can be identified (as in general) with (L*)*, so elements of
L., are linear maps

(A.0.1) i (L") — R

Instead one can consider maps which are absolutely homogeneous of any given
degree a € R :

(A02) w: (L), \ {0} — R, w(sp) = [s|"w(p), ¥ s € R\ {0}, p € (L), \ {0}.

Clearly w is determined by its value at any one point and moreover the space of
such w is actually linear and extends to give a smooth bundle. One could denote
this bundle, somewhat confusingly, as |L|®. It is always trivial so nothing much is
going on with this construction, but note that |L|* ® |L|® = |L|**® canonically and
|L|° is canonically the trivial bundle. The notation comes from the fact that if I €
C>*(M; L) is a smooth section then |I|* € CY(M;|L|*) is a well-defined constinuous
section. However the bundle |L|* always has a global smooth positive section.

25
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The reason for interest is that we wish to set Q%(M) = |[AY™ M )f|e and call
this the bundle of a-densities on M. Then the Riemann integral is well defined

(A.0.3) / :COM;Q) — R, QM = Q' M.

These are the objects that can be integrated. One version of an orientation of M
is that it is an isomorphisms o : AY™M )M — QM such that any positive global
section of the density bundle is the absolute value of its pull-back.

To be definite I will take TM = (T*M)* to be the dual bundle of T*M. The
fibre T, M can also be identified with the space of derivations on C*°(M) at m. A
Riemann metric on M is a smooth positive-definite quadratic form on the fibres of
T M, so in particular a section of the symmetric part of T*M ® T*M. Any vector
bundle (over a compact manifold) can be embedded in a trivial bundle.

The topology on C>(M) is the Fréchet topology given by all the C* semi-norms
on compact subsets of coordinate patches, or equivalently the Sobolev norms on
balls. It is countably normed and a Montel space — there is a sequence of norms
Il - lx, k& € N, giving the topology such that a bounded set with respect to || - ||x+1
is precompact with respect to || - ||x. The space C>°(M;V) of sections of a vector
bundle has a similar topology which is the same as the product topology in the
trivial case and consistent with embedding.

Now, once we have introduced the density bundle we can recall the standard
notation for distributions. Namely ‘distributional functions’ form the dual space

C~°(M) = (C*(M;Q))’ or more generally

(A.04) ,
CT2(M;V) = (C*(M; Q20 V7))
This is done so that the smooth sections map naturally into the ‘distributional

sections’ (not quite sections of course)
(A.0.5)

Co¥(M;V) — C™=(M; V), ¢ —i(¢) € (CT(M; Q@ V7)), i(¢)(¥) = /<¢7¢<

since the pointwise pairing of ¢ € C®(M;V) and ¢ € C®(M;Q @ V*) gives a
section of the density bundle.
The space of smooth vector fields

(A.0.6) V(M) ={V : M — TM;V(m) € T,, M}

is a Lie algebra and its universal enveloping algebra consists of the (smooth, linear)
differential operators on C*°(M). There is a corresponding space of differential oper-
ators, Diff*(M; V, W), between the sections of any two smooth (finite-dimensional)
vector bundles V and W over M with Diff’(M; V, W) = hom(V, W). Note that this
is not a vector bundle over M (if k& > 0) because the transition maps are not bundle
maps.

Although seldom really used it is good to know the basic theorems about dif-
ferential operators and distributions. Namely the embedding (A.0.5) of smooth
functions into distributins extends to map L!'(M;V) injectively into C=°°(M; V)
(and we regard this injection as an identification). In particular C°(M;V) —
L?(M;V) — LY(M; V) are all identified with subspaces of distributions. Schwartz’
representation theorem gives a partial inverse of this. Namely the action of smooth
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differential operators extends uniquely

(A.0.7) C®(M; V) —E > C(M; W) V P € Dift*(M;V,W).

| |

C™o(M;V) —=C>=(M; W)

Then for any u € C~°(M;V) there exists P € Diff*(M;V) = Diff*(M;V, V)
(where k depends on u) such that w = Pv, v € L?(M;V). Pushing this a bit
further one can define global Sobolev spaces so that

C(M;V) = | H™(M;V), (| H™(M;V) =C>(M;V),
(A.O.S) meR meR
P € Diff*(M; V,W) = P : H™(M;V) — H™ *(M;W).

The other big, related, theorem is the Schwartz kernel theorem. It can be
interpreted in terms of completion of tensor products (and spawned a big industry
in the 1960s along these lines). To state it we need to give C~°°(M; V') a topology
— the weak (or is it weak®) topology is given by the seminorms |u(-)| for v €
C>®(MIQ ® V*) acting through the duality pairing. There are other topologies but
this is okay for this purpose. Then we know what a continuous linear map

(A.0.9) Q:C®(M;V) — C™>(M;W)

is. Schwartz’ kernel theorem says there is a bijection (tological too) between such
continuous linear ‘operators’ and C~°°(M?; Hom(W,V) ® n5Q). Here, mg is the
projection onto the right factor of M and Hom(V, W) is the two-point homorphism
bundle, with fibre over (m,m’) € M? the space hom(V,,/, W,,,). The map @ asso-
catiated to Q € C~°(M?; Hom(W, V) @ n5Q) is determined by the condition
(A.0.10) Q) (w) = Q(w X wv)
where you need to sort out the pairing over M? on the right to get the pairing over
M on the left.

One class of operators we will consider (mostly over the circle as with everything
else) are the smoothing operators. These correspond to the subspace

(A.0.11) C*®(M?* Hom(W, V) @ m5Q) € C~°(M?; Hom(W, V) @ n5Q)

in Schwartz’ theorem and form an algebra. The action then is really give by an
integral so that @ € C>°(M?; Hom(W,V) @ n52) defines

(A.0.12) Q:C®(M;V) — C®(M; W), (Qv)(m):/ (Q(m,-),v(-))

M

where again the pairing leading to a density needs to be sorted out. I will denote
the algebra of smoothing operators on V' by U~°°(M; V) for reasons that will be-
come clear below — the module of smoothing operators between sections of different
bundles will be denoted U—°(M;V, W).

One important (fairly elementary) result is that the group of operators

(A0.13) G==(M;V) = {Id+A, Ae Vv >(M;V);
IBe U *(M;V), (Id+A)(1d+B) =1d }
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is a classifying space for odd K-theory. For our purposes it is more important
for the moment that it carries the Fredholm determinant. In fact this is a well-
defined (entire analytic) function on ¥~°°(M; V'), which we write as detp (Id +A4),
A € U°°(M;V), and which has many of the properties of the finite-dimensional
determinant so

Id4+A e G*(M;V) <= detg(Id+A4) # 0,
(A.0.14) detg, (Id+A)(Id +B)) = detg,(Id +A)detg (Id +B),

(%detﬁ(ld +sA) = detgr (Id+sA4) Tr(A)

where the trace functional Tr : U=>°(M;V) — C is the unique continuous lin-
ear map vanishing on commutators and such that on finite rank projections (or
idempotents) in ¥~°°(M;V) it reduces to the rank.

The relationship between dety, and the K-theoretic statement above is that
ﬁdetpr : G7°(M;V) — C* generates the 1-dimensional integral cohomology
of G=°°(M;V) and this is the bottom part of the odd Chern character — the rest
can be written down similarly. Remember that one of the things that this course
is at least related to is ‘smooth cohomology’ and this is somewhat epitomized by
G~>°(M;V) which carries smooth universal odd Chern classes. The even version
is not much more complicated.

Although we will not need (at least I don’t think it will come up) the general
case, it seems appropriate to understand a little about the space of pseudodiffer-
ential operators over M. These are operators like the smoothing operators in that
they map C*®(M;V) to C(M; W) for any two vector bundles. In fact it is useful
to consider (classical) pseudodifferential operators of complex order ¥*(M;V, W).
These compose sensibly

(A.0.15) U*(M;Va, Vi) 0 U% (M; Vi, V) = W=+ (M V4, Vs)

and have lots of other properties too. The main point though is that they, as a
space of operators, are much more like C* rather than C~°°.

More precisely, there is a symbol map giving a short exact sequence for any z :
(A.0.16)

UY(M; VW) —— U*(M; V, W) —— C=(S*M; 7* hom(V, W) @ N*).

Here S*M = (T*M \ Oy;)/R™ is the cosphere bundle of M and N~ is the bundle
with sections over S*M which are functions on 7% M \ Op; which are positively (not
absolutely) homogeneous of degree z. So this is a trivial bundle with section given
by a metric for instance, |£|*.

The main point about this sequence, which will show up mostly when z € Z,
is that we can ‘iterate’ it and the notation is consistent

(A.0.17) UM V, W) € UR(M; VW)
is the subspace of operators with vanishing symbol of order k£ and
(A.0.18) U (M V, W) = () UE(M; VW),

kEZ

the ‘residual’ space is indeed the space of smoothing operators.

The pseudodifferential operators can be characterized quite explicitly in terms
of their Schwartz kernels, and I will talk more about this in the case of the circle.
However, in brief, the Schwartz kernels of the elements of say W*(M;V, W) are
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sections over M? of the appropriate bundle Hom(V, W) ® 75 with the following
special properties
(1) The kernels are smooth away from the diagonal
(2) A neighbourhood of the diagonal is diffeomorphic to a neighbourhood
of the zero section of TM and the bundles to the pull-backs of their
restrictions to the diagonal, which is identified with the zero section so
trivial on the fibres. Cutting off the kernels by a smooth function of
compact support in the neighourhood the Fourier t.ransform in the fibre
directions reduces the kernels to ‘Laurent’ sections of the bundles over
T*M — the radial compactification of the cotangent bundle to a (closed)
ball bundle. This means that these Fourier transforms are precisely of the
form |£|~*a where a is a smooth section of the bundle including up to the
boundary of the ball. The symbol is (taking care of densities correctly)
the restriction of a to ‘infinity’.

The differential operators are the subspace of the pseudodifferential operators
with Schwartz kernels supported in the diagonal (this is ‘locality’ of differential
operators). Their symbols are homogeneous polynomial sections of the appropriate
bundle on T* M.

Now, I went as far as including classical pseudodifferential operators of complex
order so as to be able to describe the residue trace introduced by Wodzicki and later
by Guillemin. One can actually find an entire family

(A.0.19) R(z) € U*(M; V)

which are invertible, with R(—z) the inverse of R(z). In fact Seeley did this, just
find a positive-definite self-adjoint differential operator, P, of order 2 on sections of
V' with respect to some Hermitian inner product — such a thing is like a quantize
metric and always exists (nothing very natural about the choice). Then the complex
powers exists and R(z) = P?/2 is of the form (A.0.19).

Now, if we take an element A € W*(M; V) of integral order we can form

(A.0.20) R(2)A € U*TF(M; V).

The trace functional Tr(A) discussed above on smoothing operators actually ex-
tends by continuity to ¥*(M;V) provided z < —dim M — the elements of this
space are trace class operators on L2(M; V). Seeley already observed that the trace
has an analytic extension so one can say
(A.0.21)
Tr(R(z)A) is meromorphic with poles only at z = —dimM —k—j, j €Z, j > 0.
The first poles just corresponds to the point where the operator stops being trace
class (assuming its symbol doesn’t vanish). What we are particularly interested in
is the pole at z = 0 which might occur by (A.0.21) if k£ > —dim M.

The pole at z = 0 is always simple and the residue

(A.0.22) Trr(A4) = lir%zTr(R(z)A)
z—
is called the residue trace. It does not depend on the choice of R with the prop-

erties above — not so surprising since R(0) = Id. By construction it vanishes on
Y- dimM=1(7A7-) Tt can be explicitly computed as

(A023) TIR(A) = C/ o_ dimM(A)7 Ae \I/_dimM(M; V)
S*M
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and really for all the integral-order pseudodifferential operators.
The residue trace is a trace. We will also be interested in the functional, the
‘regularized trace’

(A.0.24) Trp(A) = lim (Tr(R(2)A) - Trg (4)/2)

which does depend on R and which is not a trace, but does restrict to Tr on
operators of order < —dim M.

We will use the regularized trace later (for the circle) to define connections on
bundles.
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