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8. Lecture VIII, 2 October, 2003

Handwritten notes: Pages 1-10

(1) n even k =
n

2
, 0 < ej ≤ 1.

The poles of ud
t,M can only be in the same places.
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9. Lecture IX, October 7, 2003

Let me start today by doing a little piece of analysis using the Mellin transform.

Lemma 1. If u ∈ x−tL2
b([0,∞)) for some t > 0 has support in x < 1 and is such

that x d
dx

u ∈ L2
b([0,∞)) then there exists uj ∈ Ċ∞([0,∞)) such that uj → u in

x−tL2
b([0,∞) and x d

dx
uj → x d

dx
uj in L2

b([0,∞).

Exercise 1. If you are so inclined, find a proof which does not use the Mellin
transform!

Proof. First note that if u ∈ Lb(X) then xεu → u in L2
b(X) as ε ↓ 0 for any compact

manifold with boundary.

Exercise 2. Write out a careful proof of this.

Since we know that x d
dx

: H1
b([0,∞) −→ L2

b([0,∞)) is continuous and that

Ċ∞([0,∞)) is dense in H1
b([0,∞)) it suffices to show that the sequence can be chosen

in this space. So, the obvious way to get such a sequence is to take uj = xεj u, with
εj ↓ 0. From the Paley-Wiener theorem, the Mellin transform of u is holomorphic
in Im s < −t and is square integrable on real lines in this half space with uniformly
bounded L2 norm. On the other hand,

(1) (x
d

dx
u)M = −isuM

must be similarly holomorphic and L2 in Im s < 0. Thus certainly, uj → u in
x−δL2

b([0,∞) for any fixed δ > 0 (and in particular u lies in this space.) Now

x
d

dx
(xεu) = xε(x

d

dx
u) + εxεu

and as already noted, the first term converges in L2
b to x d

dx
u as ε ↓ 0 so it suffices

to show that the second term converges to 0 in this space. The square of the L2

norm of its Mellin transform may be estimated as follows:

ε2
∫

R

|u(s − iε)|2ds

≤ ε

∫

|s|≥ε
1

2

|(s − iε)u(s − iε)|2ds +

∫

|s|≤ε
1

2

|(s − iε)u(s− iε)|2ds

where in the first term the estimate |s−iε|2 ≥ ε is used and in the second |s−iε| ≥ ε2.
By the assumed square-integrability of x d

dx
u both terms tend to 0 with ε. �

Using this and some related analysis I next want to write down the domains of
d + δ that we have been discussing. First, we always have

(2) x−n
2
+1H1

b(X ; CΛ∗) ⊂ DA ∩ DR.

This is a direct result of the fact (discussed further below) that

(3) Ċ∞(X ; Λ∗) ⊂ x−n
2
+1H1

b(X ; CΛ∗)

is dense with respect to the natural Sobolev norm and

(4) d, δ : x−n
2
+1H1

b(X ; CΛ∗) −→ L2
c(X : CΛ∗)

are continuous. Thus for an element u ∈ x−n
2
+1H1

b(X ; CΛ∗) there is an approxi-

mating sequence φj ∈ Ċ∞(X ; Λ∗), with φj → u, dφj → du and δφj → δu all in
L2

g(X ; Λ∗).
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From the behaviour of solutions to du = 0 and δu = 0 in the model case we can
add a few more pieces to the domains. These are all determined by the eigenfunc-
tions of the limiting metric, h0, on the boundary. Choose χ ∈ C∞(X), a cut-off
function supported very near the boundary and identically equal to 1 in some
neighbourhood of it. Then set, for n odd

(5)
EA = χ · H

n
2
− 1

2

Ho(h0)
(∂X),

ER = χ · dx ∧ H
n
2
− 1

2

Ho(h0)
(∂X)

in terms of the Hodge cohomology, i.e. harmonic forms, on the boundary for the
metric h0.

Similarly we fix spaces associated to non-harmonic eigenforms of the tangential
Laplacian. If λ is such an eigenvalue for exact k forms on the boundary, so there is
a non-trivial

(6) 0 6= eλ ∈ C∞(∂X ; Λk), eλ = de′λ, dδeλ = λeλ

we consider

(7) fλ = x−isλ(xk(−isλ + k)eλ + xk−1dx ∧ e′λ), where

− isλ = −
n

2
+ |

n

2
− k| + eλ, eλ =

√

(
n

2
− k)2 + λ − |

n

2
− k|

and then let

(8)

G
n
2
− 1

2 =
∑

0<eλ< 1

2
, k= n

2
− 1

2

Cχfλ,

G
n
2 =

∑

0<eλ<1, k= n
2

Cχfλ,

G
n
2
+ 1

2 =
∑

0<eλ< 1

2
, k= n

2
+ 1

2

Cχfλ

be the corresponding finite dimensional subspace of k-forms on X. Here, each eigen-
value of the boundary Laplacian on exact k forms, with eλ in the indicated range,
is repeated with its (finite) multiplicity, as the eλ run over a basis. Of course the
first and third spaces only make sense when n is odd, and the second when n is
even.

Observe that each of these spaces is contained in L2
g(X ; Λ∗) but intersects the

smaller space xL2
g(X ; Λ) in 0. The point here is that

(9) du, δ0u ∈ Ċ∞(X ; Λ∗), u ∈ Gk

provided δ0 corresponds to a product-type conic metric, equal to dx2 + x2h0 near
the boundary.

Exercise 3. Check (9) carefully! It follows from the formulæ for d and δ and the
fact that the 2-vector implicit in (7) is a null vector of the 2× 2 matrix implicit in
the computation of the joint (formal) null space of d and δ0 above

(10)

(

−1 −isλ + k
isλ − (n − k) λ

) (

−isλ + k
1

)

= 0.

Here of course sλ has been chosen so the matrix has rank 1.
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This takes care, as we shall see, of all the possible poles we discovered within the
‘critical strip’ −n

2 < Im s < −n
2 + 1 for the Mellin transform of a form annihilated

by d and δ0. We need also to consider the poles on the line Im s = −n
2 + 1. To

handle these we consider an infinite-dimensional space of functions on the line

(11) L =

{

h ∈ x−εL2
b([0,∞)), ε > 0; h = 0 in x > 1, x

d

dx
h ∈ L2

b([0,∞))

}

.

Notice that Lemma 1 applies to elements of this space and shows in particular that
it is independent of the choice of ε. With these functions as coefficients we consider
spaces related to those in (5) and determined by the harmonic n

2 − 1 forms on the
boundary with respect to h0 :

(12)
E

n
2
−1

L = L(x) · H
n
2
−1

Ho(h0)
(∂X),

E
n
2
+1

L = x2L(x) · dx ∧ H
n
2
−1

Ho(h0)
(∂X).

Exercise 4. Again you should do the little computation to see that if n is even then

(13) E
n
2
±1

L ⊂ L2
g(X ; Λ∗) and u ∈ E

n
2
±1

L =⇒ du, δ0u ∈ L2
g(X ; Λ∗).

Similarly we consider spaces closely related to those in (8) involving the form (7)
corresponding to an exact boundary k-form which is an eigenform for the boundary
Laplacian:

(14)

G
n
2
− 1

2

L =
∑

eλ= 1

2
, k= n

2
− 1

2

L · fλ,

G
n
2

L =
∑

eλ=1, k= n
2

L · fλ,

G
n
2
+ 1

2

L =
∑

eλ= 1

2
, k= n

2
+ 1

2

L · fλ.

Notice that the non-triviality of these spaces corresponds to an ‘accident’ in which
there is a positive eigenvalue for which eλ takes on a specific value.

Exercise 5. If you haven’t thought about this already, given an example of a func-
tion which is in L but is not in L2

b([0,∞)).

Finally we get to an explicit description of the domains.

Proposition 1. For a conic metric on a compact manifold with boundary

(15) D =
{

u ∈ L2
g(X ; Λ∗); du, δu ∈ L2

g(X ; Λ∗)
}

= x− n
2
+1H1

b(X ; CΛ∗) + E∗
A + E∗

R + G∗ + E∗
L + G∗

L;

and DA and DR are the same without the summands G∗
R and G∗

A respectively.

Remark 1. a) Before proceeding to the proof of this, note that the difference
between DA and DR amounts to the repalacement of a finite dimensional
subspace of the domain by another, of the same dimension – because by

Poincaré duality H
n
2
± 1

2 (∂X) have the same dimension.
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b) The ‘complicated’ (in particular infinite-dimensional) extra terms in (15),
E∗

L and G∗
L, are really rather insignificant. As follows from the discussion

below, if we give D the obvious norm

(16) ‖u‖2
D = ‖u‖2

L2
g

+ ‖du‖2
L2

g
+ ‖δu‖2

L2
g

then x−n
2
+1H1

b(X ; CΛ∗)+E∗
L +G∗

L is the closure of x−n
2
+1H1

b(X ; CΛ∗) (and

hence also of Ċ∞(X ; Λ∗)) in D.
c) In particular this means that the quotient of D by D0, the closure of

Ċ∞(X ; Λ∗) in D, is finite dimensional.

Exercise 6. Check the statement following (16); the discussion below shows that
this set is contained in the closure; the converse amounts to the exclusion of the
other sets E∗

A, E∗
R and G∗. For the first two this is done below and a similar

argument also works for the third.

Exercise 7. Show that the bilinear form

(17) W : D × D 3 (u, v) 7−→

∫

X

((du + δu, v) − (u, dv + δv)) dg

is antisymmetric (if we are dealing with real forms and the real pairing) and van-
ishes on D0. Let Dm = DA ∩ DR be the subspace of D consisting of the elements
have approximating sequences uj ∈ Ċ∞(X ; Λ∗) such that uj → u and duj → du in
L2

g and also are approximable in L2
g by a possibly different sequence vj for which

δvj converges in L2
g. Show that W vanishes on Dm and that that D/Dm is a sym-

plectic vector space in which DA/D0 and DR/D0 are complementary Lagrangian
subspaces.

Proof. From elliptic regularity (which I still have to prove) we ‘know’ that

(18) u ∈ L2
g(X ; CΛ∗), du, δu ∈ L2

g(X ; CΛ∗) =⇒ u ∈ x− n
2 H1

b(X ; CΛ∗).

Thus, we start off with one factor of x less than we need to get into the first term
in the putative expansion of D.

Exercise 8. Check again that you know why all the terms in (15) are in L2
g(X ; CΛ∗).

Now, we are dealing with a conic metric which is not necessarily of product type
near the boundary. On the other hand, the result we are looking for only depends
on the limiting metric h0 and not the higher perturbations

(19) g = dx2 + x2h(x, y, dy, dx) = g0 + xq(x, y, xdy, dx), g0 = x2 + x2h0(y, dy).

To see this directly observe that the Hodge star operator has a similar property

(20) ?g = ?g0
+ xA

where A is a smooth homomorphism of CΛ∗.

Exercise 9. See if you can do this reasonably neatly!

This in turn implies that

(21) δg = δg0
+ B, B ∈ Diff1

b(X ; CΛ∗).

Thus B has no 1/x factor. Now,

(22) D ⊂ x
n
2 H1

b(X ; CΛ∗)
B
−→ L2

g(X ; CΛ∗)
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from which it follows that D, DA and DR for the metric g are the same as they are
for a product metric g0 with the same limiting metric h0. Thus we are reduced to
the case of a product-type metric for which we were able to do computations using
the Mellin transform.

All the terms in the expansion of D, apart from the first, correspond to the poles
we discovered in examining the condition du = δ0u = 0. We are now working with
weaker regularity, namely that du, δ0u ∈ L2

g. Thus, writing out u ∈ D in terms of
its normal and tangential parts as before tangential parts

(23)

(

−dt x∂x + k
0 dt

) (

un

ut

)

∈ x−n
2
+1L2

b([0,∞); L2(∂X))

(

−δt 0
−x∂x − (n − k) δt

) (

un

ut

)

∈ x− n
2
+1L2

b([0,∞); L2(∂X))

The analysis of the (truncated) Mellin transform proceeds very much as before
except that the right side in (23) leads only to a holomorphic Mellin transform
in Im s < −n

2 + 1 with L2 integral on real lines in this set uniformly bounded.
Moreover, the invertibility of the full matrix

(24)

(

−dt − δt x∂x + k
−x∂x − (n − k) dt + δt

)

off the imaginary axis follows as before and it only has a finite number of poles
in −n

2 < Im s < −n
2 + 1 of finite multiplicity. Thus we conclude that uM is

meromorpic as a function in Im s < −n
2 + 1 with values in H1(∂X ; CΛ∗) and suM

is square-integrable, with values in L2, on real lines except possibly near Re s = 0.
Writing out the steps in the argument we find

(1) From the tangential part of the first condition and the normal part of the
second, the coexact part of ut and the exact part of un, in terms of the
Hodge decomposition with respect to h0, must be the Mellin transforms of
functions in x−n

2
+1H1

b(∂X ; CΛ∗).
(2) The harmonic parts must be such that (−is + k)uH

n,M and (is−n + k)uH
t,M

are the Mellin transforms of functions in x−n
2
+1([0,∞)) with values in this

vector space.
(3) For the exact part of un,M and the coexact part of ut,M the projection onto

the span of the eigenforms with eigenvalues larger than some R are neces-
sarily in x−n

2
+1H1

b . Each of the components corresponding to an eigenvalue
λ satisfy the same equation as before with an error in x

n
2
+1H1([0,∞)).

So the poles in Im s < −n
2 + 1 of the Mellin transform of u ∈ D are therefore

precisely the same as thos of the solutions of du = δ0u = 0 as analysed before.
The terms in the spaces G∗

A, G∗
Rand E∗ have exactly these poles, with arbitrary

coefficients of the appropriate type. Thus, subtracting them we may arrange that
uM has no poles below Im s = −n

2 + 1. However the result may still not be the

Mellin transform of a function in x−n
2
+1H1

b(X ; CΛ∗). However, a similar argument
for the poles lying on Im s = −n

2 + 1 gives rise to terms in G∗
L and E∗

L. After

subtracting these terms the result is a form in x−n
2
+1H1

b(X ; CΛ∗) which shows that
D is indeed given by (15).

To shows that DR is as indicated, we need to show that all terms apart from EA

are contained within it, and that EA∩DR = {0}. The first requires the construction

of approximations uj ∈ Ċ∞(X ; Λ∗) such that uj → uand duj → du in L2
g. For terms
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in E∗
R a simple cut-off suffices. For terms in E∗

L and G∗
L approximability follows

from Lemma 1. For the terms in G∗, which are of the form

χx−isλ(xk(−isλ + k)eλ + xk−1dx ∧ e′λ)

we first approximate the normal term using a simple cut-off setting

uj,n = x−isλ(1 − χ(x/ε))(−isλ + k)dx ∧ e′λ

and then fix the tangential part by solving

(25) uj,t = (−isλ + k)χ(x)x−k

∫ x

0

tk−1−isλ(1 − χ(t/ε)dteλ.

That �
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10. Lecture X; in part

So, I had some difficulties in this lecture! Zhang Zhou pointed out subsequently
that the proof of self-adjointness of d+ δ with domain DR is inadequate. This is a
case of me trying to avoid work earlier, only to cause trouble later. The difficulty
is that from the definition of D∗

R,

(1) D∗

R =
{

u ∈ L2
g(X ; Λ∗);DR 3 φ 7−→ 〈(d+ δ)φ, u〉

extends by continuity to L2
g(X ; Λ∗)

}

it does not follow directly that the domain is order-graded. That is, we certainly
deduce that (d + δ)u ∈ L2

g for the distributional action of the differential operator

but we do not know that du, δu are separately in L2
g. So, we are forced to go back

to the earlier analysis and work harder to derive not just the structure of D but
the structure of the, in general larger, space

(2) Dmax(d+ δ) =
{

u ∈ L2
g(X ; Λ∗); (d+ δ)u ∈ L2

g(X ; Λ∗)
}

.

As I said, I should have done this directly but maybe it is better to postpone it to
this point where we have the experience to do it relatively easily.

Proposition 2. The maximal domain Dmax(d+ δ) = D+U ′ where U ′ is the finite
dimensional vector space which for even n is

(3) U ′ = χ(x) sp{x−isσ+k((is− (n− k − 2))ψk − dx ∧ dωk)

where the linear span is over k and coexact k-forms ψk which are eigenforms of the
boundary Laplacian, ∆ψk = σψk with

(4) −is = −
n

2
+ 1−

√

(
n

2
− 1− k)2 + σ > −

n

2
.

It follows immediately that such forms can occur only in for dimensions k = n
2
−1 if

n is even of k = n
2
−1± 1

2
if n is odd. The forms in (3) can never be degree-graded,

unless zero of course.

Proof. Elliptic regularity applies as before to show that if u ∈ Dmax(d + δ) for a
conic metric then u ∈ x−

n

2 H1
b(X ; CΛ∗). Thus, exactly as with the discussion of D,

the space Dmax is the same for any two metrics with the same boundary metric
h0. We can therefore work with a product-type metric and analyse the conditions
under which

(5) v = χ
∑

k

(xkut,k(x) + xk−1dx ∧ un,k−1(x))

is such that (d+ δ)u ∈ L2
g, given that u itself is in L2

g, which is just the condition

(6) un,∗, ut,∗ ∈ x
−

n

2 L2
b(X ; Λ∗(∂X)).

The Hodge decomposition on the boundary allows these tangential and normal
parts to be divided. Namely we set

(7) L2(∂X ; Λ∗) + L2(∂X ; Λ∗) = H +G+ U

where H is the harmonic part in all degrees, G is the part we discussed extensively
before

(8) u ∈ G⇐⇒ un ∈ dH
1(∂X ; Λ∗), ut ∈ δH

1(∂X ; Λ∗)
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and U is the remaining part

(9) u ∈ U ⇐⇒ un ∈ δH
1(∂X ; Λ∗), ut ∈ dH

1(∂X ; Λ∗).

The harmonic part is finite dimensional, given by a smoothing operator applied to
(ut, un) whereas the components in G and U are given by the action of pseudodif-
ferential projections of order 0. This means that, as necessary, we can track their
regularity in Sobolev spaces.

The point of the decomposition (7) is that it is directly related to the action of
d + δ, in the product-conic case. Thus, dt + δt maps exact to coexact forms and
conversely so the components of (un, ut) in H, G and U are mapped, respectively,
into H, U and G so must separately take values in L2

g. The H and G components
were analysed earlier, so consider the component in U. From the form of d and δ
(and taking care to get the value of k right for the action in a given form degree)
we arrive at the condition

(10) −δ0un,k+1 + (x∂x + k)ut,k ∈ xL
2
g(−x∂x − (n− k − 2))un,k+1 + dut,k ∈ xL

2
g

as conditions between the tangential component in degree k and the normal com-
ponent in degree k + 1 (as opposed to k − 1 for G.)

As before we analyse the degree to which the condition (10) does not imply that
u ∈ x−

n

2
+1H1

b(X ; CΛ∗) by using the Mellin transform to find any possible poles in
the strip −n

2
< Im s ≤ −n

2
+ 1. Such poles must satisfy

(11) −δφk+1 + (−is+ k)ψk = 0, (is− (n− k − 2))φk+1 + dψk = 0

where φk+1 is exact and ψk is coexact. Eliminating between the equations as before
gives

(12) δδψk + (is− (n− k − 2))(−is+ k)ψk = 0

which is to say that (is − n + k + 2)(is− k) = σ must be a positive eigenvalue of
∆ acting on coexact k-forms. Completing the square we find

(13) −is = −
n

2
+ 1±

√

(
n

2
− 1− k)2 + σ.

This of course is pure imaginary and can lie in the ‘critical strip’ only when the
sign is − and then only when k = n

2
− 3

2
, k = n

2
− 1 or k − n

2
− 1

2
and only for

correspondingly small eigenvalues, namely σ n

−

3

2

< 3

4
, σ n

−

1 < 1 and σ n

−

1

2

< 3

4
. In

particular there are never such ‘accidental poles’ on the line −is = −n
2

+ 1. These
poles can be removed by subtracting a term as in (3). �

Now, the defect form Q is defined on the whole of Dmax :

(14) Q(u, v) =

∫

X

(〈(d+ δ)u, v〉 − 〈u, (d+ δ)v〉) dg.

Moreover by the approximability conditions already discussed it vanishes if either
factor is in

(15) Dmin(d+ δ) =
{

u ∈ L2
g(X ; Λ∗);

∃un → u in L2
g, un ∈ Ċ

∞(X ;λ∗), (d+ δ)un → (d+ δ)u in L2
g

}

.

For the moment we know at least that Dmin contains all put the finite dimensional
parts E∗

A, E
∗

R, G
∗ in D and U∗ in Dmax. There remains a little computation to do:
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Lemma 2. The defect (or boundary) pairing Q defines non-degenerate pairings
between E∗

A and E∗

R and also between G∗ and U∗ and vanishes on all other pairings.

Proof. Well, we already know the first part. The second part follows by a similar
integration-by-parts argument and the eigendecomposition of boundary forms. �

Exercise 10. Carry through the argument here!

So, with this extra work we can see why

(16) D∗

R = DR.

Namely, u ∈ D∗

R certainly implies that u ∈ Dmax(d+δ). Then the definition implies
that Q must vanish on DR×D

∗

R. The fact that G∗ ⊂ DR and the lemma above then
shows that U∗ ∩D∗

R = {0}, which is to say D∗

R ⊂ D where the previous argument,
just the pairing argument for E∗

∗ takes over and shows that D∗

R ⊂ DR, and hence
they are equal.

Exercise 11. Use the same argument to decide on the exact identity of Dmin(d+δ).
Show that an self-adjoint operator ðB which is given by d+δ acting on some domain
DB with Dmin ⊂ B ⊂ Dmax corresponds to a maximal subspace of E∗ +G∗ + U∗

on which Q vanishes.

Since my handwritten lecture notes for today are at best misleading on blow-up
of a boundary face of a manifold with corners I have typed up something closer to
what I actually said.

Rather than just define X2
b = [X2; (∂X)2], which we need for the definition of the

algebra Ψ−∞

b
(X), I will give the general definition of [Z, F ] where F is a boundary

face of a compact manifold with corners, Z. By definition (and this is what makes
this easier than the general case of an appropriately embedded submanifold) there
are global defining functions for F. Namely, if Hi are the boundary hypersurfaces
of Z which contain F and xi are defining functions for the Hi, i = 1, . . . , k then
the simultaneous vanishing of the xi defines F, at least locally near F (there may
be other components of the intersection of these k hypersurfaces).

Now to define a manifold it suffices to give the space of smooth functions on it.
We can set

(17) C∞([Z;F ]) =

{u ∈ C∞(Z \ F );u is smooth in any normal polar coordinates at a point of F} .

Here, by normal polar coordinates, I mean polar coordinates in the defining func-
tions xi. Thus the local coordinates are xi, yj , j = 1, . . . , n−k. By polar coordinates
I will, for the moment, mean ‘projective’ polar coordinates. These are the k func-
tions

(18) r = x1 + · · ·+ xk , ti =
xi

r
, i = 1, . . . , k − 1, yj .

Notice that (as always locally near F ) r = 0 only at F. It is only because it is a
‘corner’ of Z that we can do this. We can replace any one of the ‘angular’ variables
ti by tk = xk

r
, or more generally take any k− 1 of these k variables as coordinates.

To see that the definition (17) really makes sense, we need to show that it does
not actually depend on the choices of the xi and yj , although the latter is pretty
obvious.
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Lemma 3. If F : U, 0 −→ U ′, 0 is a diffeomorphism of (relatively) open subsets
of Rn,k with F (0) = 0 then the pull-back under F of any C∞ function of the polar
coordinates r, t1, . . . , tk−1, yj is also a C∞ function of these variables.

Proof. It suffices to show that the pull-pack functions F ∗r, F ∗ti and F ∗yj are C∞

functions of r, ti and yj , since then the same is true for any smooth function of
these variables. It is clear than any relabelling of the xi has this property, so we
can assume that F maps each of the boundary hypersurfaces xi into itself (rather
than permuting them). Thus F ∗xi = aixi with 0 < ai a C∞ functions near 0 on
Rn,k. Since xi = tir, it follows that

(19) F ∗r =

k
∑

i=1

F ∗xi = (

k
∑

i=1

aiti)r = αr, 0 < α.

Here we use the fact that the ti, 1 = 1, . . . , k−1 take values in the standard simplex
in Rk−1, i.e. 0 ≤ ti ≤ 1 and t1 + · · ·+ tk−1 ≤ 1. Since tk = 1− t1 − · · · − tk−1 and
the ai in (19) are smooth and positive, it is indeed the case that the coefficient α
is positive and a smooth function of the polar variables. From this the rest follows
easily, since for instance

(20) F ∗ti =
F ∗xi

F ∗r
= α−1aiti.

�

Exercise 12. Check that these projective coordinates are equivalent to polar coor-

dinates in the usual sense. That is, show that the functions R = (x2
1 + · · ·+ x2

k)
1

2

and ωi = xi/R are smooth functions of r and the ti and conversely. Notice that
the ωi are the coordinates of a vector in Sk−1,k−1 = Sk−1 ∩ Rk,k, and that any
k− 1 of the ωi can be used as coordinates at a point on the sphere, except if there
is one which takes the value 1 at the point, in which case only the others form a
coordinate system.

Having shown that the definition (17) does actually make sense independent of
coordinates, we need to check that the space of functions so defined is indeed the
space of all C∞ functions on a compact manifold with corners. To make this space
concrete we can use the chosen defining functions xi to identify it as

(21) [Z, F ] = (Z \ F ) ∪∆× F, ∆ = {t ∈ R
k−1,k−1; t1 + · · ·+ tk−1 ≤ 1}.

Proposition 3. Once the defining functions xi are fixed, the space in (17) gives
[Z;F ] in (21), for F a boundary face of a compact manifold with corners Z, a
natural structure as a compact manifold with corners.

Proof. Already proved really. We can identify a neighbourhood of F in Z with the
product F ×U where U is a neighbourhood of 0 in Rk,k of the form x1 + · · ·+x<ε,
ε > 0. Then the functions r and ti = xi/r allows us to identify the part of the union
in (21) consisting of \F and ∆×F with F ×∆× [0, ε)r. This is consistent with the
definition of C∞([Z;F ]) and so gives the space a C∞ structure. �

Exercise 13. If you want to define [Z;F ] as a set, canonically and not as in (21)
by reference to some particular collection of defining functions, it is not hard to
do; so do it! The usual way is to introduce the normal bundle to F. This is the
quotient of the tangent bundle to Z over F, TFZ, by the tangent bundle to F. Thus
NpF = TpZ/TpF for all p ∈ F. It is a bundle of rank k over F and has a positive



14 RICHARD MELROSE

‘quadrant’ bundle, namely the image of the tangent vectors which satisfy V xi ≥ 0
for all i. This condition is independent of the choice of defining functions xi. If we
let N+F denote this ‘quadrant bundle’ we can pass to the corresponding ‘fractional
sphere bundle’ – really a bundle of simplices – given by the quotient by the fibre
R

+ action, SN+F = (N+F \ 0)/R+. After all this we can set, as a set,

(22) [Z;F ] = (Z \ F ) ∪ SN+F.

Check that the choice of defining functions xi gives a natural identification SN+F =
F × ∆ and the C∞ structure induced on [X ;F ] in (22) by this choice is actually
independent of the choice.

Now, the blown up space comes with a smooth map back to the original

(23) β : [X ;F ] −→ Z, β(r, t, y) = (rt, y),

which is independent of any choices, since it is just the canonical identification on
the first part of (21), or (22), and the projection onto F on the second part. Under
this map, the ‘new’ boundary face r = 0 is identified with F ; sometimes I call
r = 0 the ‘front face’ of the blow up, or if a sudden algebraic wave overcomes me,
the (exceptional) divisor. The lifts (proper transforms) of the old boundary faces
xi = 0 are the ti = 0, which are mapped smoothly onto them; I will often use the
notation β∗(H) for the lift of a boundary hypersurface and ff(β) for the front face.
Notice however that

(24) β−1({xi = 0}) = {r = 0} ∪ {ti = 0} = ff(β) ∪ β∗{xi = 0},

so the preimage of a boundary hypersurface containing F is the union of its lift
(proper transform) and the front face (divisor).

Exercise 14. Make sure you see that in this real setting, blowing up a boundary
hypersurface does absolutely nothing.

Now, back to the matter at hand. We want do identify the space of ‘order
−∞ b-pseudodifferential operators’ on X with a space of smooth kernels on X2

b =
[X2, (∂X)2]. To do so, we should be careful and include the obligator right density
factors. Since we are in this ‘b-category’ it is natural (and wise) to take the density
to be a b-density.

To do so, let me introduct another little bit of notation. Since we will need to
talk about the projections of X2 onto the factors, set

(25) πR : X2 −→ X, πR(x, x′) = x′, πL : X2 −→ X, πL(x, x′) = x.

Then we need the corresponding ‘stretched’ maps from X2
b :

(26) πb,R : X2
b −→ X, πb,R = πR ◦ β, πb,L : X2

b −→ X, πb,L = πL ◦ β.

Definition 1. On any compact manifold with boundary we set

(27) Ψ−∞

b
(X) = {A ∈ C∞(X2

b;π∗

b,RΩb);A ≡ 0 at β∗(∂X ×X) ∪ β∗(X × ∂X)}.

recall that u ≡ 0 at H for a smooth function u indicates that it vanishes with its
Taylor series at each point of H, so all derivatives vanish there.

Now, as we shall see, these are operators and form an algebra.
Let me show first that the act on the smallest reasonable space, Ċ∞(X). It is

easy to see that the Schwartz kernel theorem applies here and shows that A ∈
Ψ−∞

b
(X) does define an operator from Ċ∞(X) to C−∞(X), the space of extendible
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distributions (the dual of Ċ∞(X ; Ω). This is pretty unimpressive, and would not
allow us to compose the operators. To do so, observe how the action should go.
We want to ‘define’

(28) Af =

∫

X

A(z, z′)f(z′)

where f ∈ Ċ∞(X) and I have formally written z, z′ for the two ‘variables’ in X.
Notice that the kernel A is supposed to carry within it the density factor needed
to carry out the integral.

Trying to interpret (28) rigourously, we have to think of A as a smooth function
on X2

b . The functin f is on X but in (28) this is clearly supposed to be interpreted
as the right factor of X2. So we can consider the product

(29) A · π∗

b,Rf ∈ Ċ
∞(X2

b ;π∗

b,RΩb).

Here we are using the obvious fact that π∗

b,Rf ∈ C
∞(X2

b) which is just the smooth-

ness of the map, but also the fact that it vanishes to infinite order at ff ∩β∗(X ×
∂X) = π−1

b,R(∂X), simply because f, by assumption, vanishes to all orders at the
boundary. Now, A already vanishes to infinite order at the old boundaries so the
product in (29) does, as claimed, vanish to infinite order at all boundaries.

Now, one elementary property of the blow-up procedure is that it induces an iso-
morphism on functions that are smooth and vanish to infinite order at all boundaries

(30) β∗ : Ċ∞(Z)←→ Ċ∞([Z;F ])

for the blow-up of any boundary face. This allows us to interpret the product in
(29) as a section of the b-density bundle

(31) Af ∈ Ċ∞(X2;π∗

RΩb) = Ċ∞(X2;πRΩ)

where we use the fact that the sections of Ωb which vanish to infinite order at the
boundary are the same, naturally, as the sections of Ω, the ordinary density bundle.
Finally then we see that

(32) Ψ−∞

b
(X)× Ċ∞(X) 3 (A, f) 7−→

∫

X

Af ∈ Ċ∞(X)

is actually a continuous bilinear map. In particular we get the desired operator
interpretation

(33) A : Ċ∞(X) −→ Ċ∞(X), A ∈ Ψ−∞

b
(X).

Exercise 15. Check that this action is faithful, i.e. if A vanishes as an operator
(33) then it vanishes as an element of the space Ψ−∞

b
(X).
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11. Lecture XI: October 14

Last time I defined (again) the space Ψ−∞

b (X) and showed that its elements are

operators on Ċ∞(X). Today I want to prove that they form an algebra and discuss
some of its properties, relating them in general to geometric properties of X2

b (‘the
b-double space’). As a warm-up exercise, that turns out to be close to the proof of
the composition theorem, let me discuss

Proposition 4. The elements of Ψ−∞

b
(X) act on C∞(X).

Of course this is also important in its own right, as a further justification that the
elements of Ψ−∞

b (X) act on ‘almost everything’.

Proof. We are supposed to get this action in the same way as the action on Ċ∞(X).
Notice that π∗

b,R : C∞(X) −→ C∞(X2
b) so the big difference is that we do not have

vanishing at the preimage of the boundary, hence not at ff(X2
b). We can summarize

the operations in the little diagram

(1) X2
b

πL,b

~~}}
}}

}}
} πR,b

  
AA

AA
AA

A

X X

In fact it is clear from the definition that

(2) Ψ−∞

b (X) is a C∞(X2
b)-module.

Thus, in trying to show that when we integrate Aπ∗

b,Rf over the right factor of X

we get an element of C∞(X), we might as well forget about f and just integrate a
general A. Thus we are trying to show that the push-forward map to the left factor
gives

(3) (πb,L)∗ : Ψ−∞

b (X) −→ C∞(X).

Note that if the map in question was a fibration, as the left projection from X2 is,
then this is a version of Fubini’s theorem. However πb,L is NOT (quite) a fibra-
tion. If it were a fibration then (3) would be true without the vanishing conditions
on the ‘old boundary faces’ which are inherent in the definition of Ψ−∞

b (X) and
C∞(X2

b ; π∗

b,RΩb) itself would push-forward into C∞(X); it does not, so we have to
make use of this vanishing.

So, to business. To prove (3) we can work locally on X2
b . Indeed using a partition

of unity we can cut the kernel, A, up into small pieces and assume that it has support
in the preimage of the product of coordinate neighbourhoods in the two factors of
X. If we are away from the front face of X2

b , so away from the corner ‘downstairs’
in X2, then (3) is obvious – the map is locally a fibration and in any case we are

back to the previous result and the image is actually in Ċ∞(X).
Thus, we can assume that A has its support in a ‘polar coordinate’ neighbour-

hood [0, ε)r × [−1, 1]t × U × U ′ where U, U ′ are open neighbourhoods of 0 ∈ R
n−1

with coordinates y, y′ and r = x+x′, t = (x−x′)/r are projective polar coordinates.
Then

(4) A = a
dx′

x′
dy′, a ∈ (1 − t)k(1 + t)k′

C∞

c ([0, ε) × [−1, 1]× U × U ′) ∀ k, k′.
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Here the factors of 1 − t and 1 + t reflect the assumed rapid vanishing at the old
boundaries, which are t = ±1. In fact, because we want to discuss the map back to
x, y variables, it is convenient to introduce the singular projective coordinates

(5) s = x′/x, x, y, y′ so t =
1 − s

1 + s
, r = (s + 1)x.

These are valid coordinates in some region 0 ≤ r ≤ ε, t ∈ (−1, 1] with t = 1,−1
corresponding to s = 0,∞. My claim is that, despite the singularity of these coor-
dinates, we can translate the conditions on a to imply

(6) a′(s, x, y, y′) = a(r, t, y, y′) =⇒ a′ ∈ S([0,∞); C∞

c ([0, δ) × U × U ′)).

By this I just mean that a′ is C∞ has support contained in [0,∞) × K for some
compact K ⊂ [0, δ) × U × U ′ and all derivatives (meaning in s, x, y and y′ of all
orders) vanish rapidly as s → ∞.

This is clear in 0 ≤ s ≤ S where the coordinates are legitimate. In s ≥ S > 0 for
any fixed S, we can introduce s′ = 1/s (= x/x′) taking values in (0, 1/S). We still

do not quite get legitimate coordinates since t = s′
−1

s′+1 is fine, but r = (1 + s′)x/s′

is not smooth. Since x = x′s′, s′, x′ are legitimate coordinates in this region, with
r = (1 + s′)x′ so we do get a smooth function, b, of s′, x′, y, y′ which vanishes to
infinite order at s′ = 0 and has bounded support in x′. Notice that such a function
can indeed be written as a smooth function of s′, x, y, y′ :

(7) b′(s′, x, y, y′) = b(s′,
x

s′
, y, y′)

because the singularities in the second variable, as s′ → 0 are swamped by the rapid
decay in s′. For instance we can write

b = (s′)NbN (s′,
x

s′
, y, y′), bN C∞,

from which it follows that the first N − 1 derivatives in x are continuous down to
s = 0. Now, for a function to be smooth and vanish to infinite order at s′ = 0 is
equivalent to its being ‘Schwartz’ in the variable s = 1/s′ near s = ∞. Thus we do
really have (6).

Exercise 16. Prove the converse to (6) that this (with the correct support con-
straints) does actually characterize the kernels of elements in Ψ−∞

b (X).

Finally then we can write our push-forward integral as

(8)

∫

∞

0

∫

Rn−1

a(
x′

x
, x, y, y′)

dx′

x′
dy′

where the supports in x′ and y′ are actually bounded. Changing variable from x′

to s = x′/x this becomes

(9)

∫

∞

0

∫

Rn−1

a(s, x, y, y′)
ds

s
dy′

Note that the measure has ‘miraculously’ become regular except at s = 0, ∞

where we have corresponding rapid vanishing (or decay) in the integrand. Thus the
integral (9) converges absolutely and uniformly to a smooth function of x and y.
This is what we need to prove. �
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This proof is a bit hands-on for my taste! For later purposes I will generalize
this result and make it more geometric. The results I will formulate next will first
(as usual you might say) be used to prove something worthwhile, in this case the
composition theorem, and then later it will be proved. The proof can be based
on computations in singular coordinates just like that above, but there are other
approaches too.

First think about the properties of smooth maps between compact manifolds
with corners. We know what smoothness means already, but we need to add some
conditions as to how boundaries are mapped. Recall that the boundary hypersur-
faces each have defining functions (if you like these are simply generators of the
C∞-module of functions which vanish on the boundary hypersurface in question),
ρH for each H ∈ M1(X).

Definition 2. A smooth map F : X −→ X ′ is a b-map if each boundary defining
function ρ′H′ , H ′ ∈ M1(X

′) pulls back to a product of boundary defining functions
for X :

(10) f∗ρ′H′ = aH′

∏

H∈M1(X)

ρ
e(H,H′)
H , a < aH′ ∈ C∞(X).

It is an interior b-map if it maps the interior of X into the interior of X ′. It is a
simple b-map if it is a b-map and in addition the exponents e(H, H ′) take only the
values 0, 1. It is a b-normal map if it is a b-map and in addition for each H ∈ M1(X)
there is at most one H ′ ∈ M1(X

′) such that e(H, H ′) 6= 0.

A simple b-normal map is one which is simple and b-normal, etc, duh.

Exercise 17. Translate these definitions into statements about the behaviour of the
ideals corresponding to boundary faces.

Now recall that the b-cotangent bundle bT ∗X is the ordinary cotangent bundle in
the interior, but near a boundary face has as local basis the ‘logarithmic differentials’
dxi/xi and dyj in terms of our usual adapted coordiantes. The b-tangent bundle,
its (pre-)dual, has corresponding basis xi∂xi

, ∂yj
.

Proposition 5. Any interior b-map the usual differential on the interior extends
by continuity to a ‘b-differential’ and its dual

(11) f∗b : bT ∗

f(p)X
′ −→ bT ∗

p X, f∗b : bTpX
′ −→ bTf(p)X, forallp ∈ X.

Note that despite some danger of confusion, I will generally denote this ‘new’ dif-
ferential by f∗ or f∗, just like the usual one.

Exercise 18. See if you can carry the proof through.

Definition 3. An interior b-map f : X 7−→ X ′ is said to be a b-submersion if it
is surjective and f∗b = f∗ : TpX −→ Tf(p)X

′ is surjective for each p ∈ X. A
b-submersion which is also b-normal is said to be a b-fibration

Exercise 19. Check that these definitions are not at all vacuous!

(1) Show that the blow-down map β : [X, F ] −→ X for F a boundary face of
a manifold with corners is always a b-submersion but not a submersion in
the usual sense unless F is a boundary hypersurface (in which case it is the
identity map).
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(2) Show that this blow-down map is never b-normal, and hence is not a b-
fibration, unless H is a boundary hypersurface.

(3) Show that the ‘stretched projection’ πL,b : X2
b −→ X is a b-fibration but

is not a fibration in the usual sense.

I will discuss the general structure of b-fibrations, and so on, later. For the
moment I will just quote a push-forward result

Theorem 1. For a simple b-fibration f, suppose for each H ′ ∈ M1(X
′) for which

e(H, H ′) 6= 0 for some H ∈ M1(X) a particular such H = pf (H ′) is chosen, then
push-forward (fibre-integration) gives a map

(12) f∗ :
{

u ∈ C∞(X ; Ωb); u ≡ 0 at H ∈ M1(X)

unless H = pf (H ′) for some H ′ ∈ M1(X
′)
}

−→ C∞(X ′; Ωb).

Of course you are very welcome to try to prove this, but it is easier when we have
a little more machinery at our disposal. For the moment I suggest

Exercise 20. Show that this theorem does imply Proposition 4 in the form (3).
Hint: Since the theorem deals with b-densities and (3) is about ‘partial’ b-densities,
something has to be done! First show that there is a natural isomorphism

(13) (πL,b)
∗Ωb(X) ⊗ (πR,b)∗Ωb(X) ≡ Ωb(X2

b)

(Hint-within-a-hint, the corresponding statement on X2 is true). Now to get (3),
choose a positive b-density 0 < νb ∈ C∞(X ; Ωb) and show that Theorem 1 can be
applied to Ψ−∞

b (X) · π∗

L,bνb. Check that the result is independent of the choice of
νb.

Despite appearances there is something going on here to do with b-densities as
opposed to ordinary densities.
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14. Lecture XIV, 23 October, 2003

What have I not done to complete the treatment of the ‘conic case’ at least as
far as the identification of the L2 cohomology, the relative Hodge cohomology and
the appropriate intersection cohomology is concerned? I have not

(1) Treated the composition of finite-order b-pseudodifferential operators.
(2) This in turn is only really needed (for the moment) for the proof of the

Sobolev continuity of such operators, that A ∈ Ψk
b(X) always defines a

bounded linear operator from xsHm
b (X) to xsHm−k

b (X) for any m, s. This
is what gives us elliptic regularity.

(3) I have not yet discussed intersection cohomology at all.

I will add to the notes, but probably not devote a lecture to, the first two of these.
My reasoning here is that these reduce, given what we already know, to the same
issues in the boundaryless case, so I do not feel the need to go through the discussion
fully here.

Rather than go through the conic case again, I will now quickly describe the same
sort of approach to another class of degenerate metrics which I will call ‘cusps’ but
are often called ‘horns’. I do not want to take the time to go through all the details,
but I will attempt to write down everything to the point where it is ‘straightforward’
to check the claims that I make.

The metrics we consider again exist on any compact manifold with boundary, but
with a somewhat different degeneration than for conic metrics. Thus, we suppose
that in the interior, g is a metric and near the boundary there is a boundary defining
function ρ such that

(1) g = dρ2 + ρ2Nh

where h is as before, a smooth symmetric 2-cotensor which restricts to the boundary
to a metric h0 and N ≥ 2; the conic case corresponds to N = 1. The extreme case,
N = 0, is that of a regular boundary problem, which can also be handled the same
way but leads to somewhat different analytic issues (and a different L2 cohomology
of course, namely the absolute cohomology).

Exercise 21. Let Y n ⊂ Xn+1 be a singular submanifold of a compact manifold
without boundary where Y has just an isolated singular point (or perhaps several)
near which there are local coordinates zj , in which it takes the form

(2) z2N
0 =

n
∑

j=1

z2
j + f(z1, . . . , zn), z0 ≥ 0,

where f (real-valued) vanishes to order 3 at least at 0. Show that the introduction
of the singular coordinates z0, zj/zN

0 resolves Y to a manifold with boundary to
which a metric on X restricts to a ‘horn’ metric (note that z0 might not quite be
x.)

For extra credit (!) show that the same thing can be accomplished by repeatedly
blowing up the singular point, namely it needs to be blown up N times.

Problem 1. Describe the L2 and Hodge cohomology for a metric of this ‘cusp’ type.
In fact we want to do ‘everything’ in a sense that should be getting clearer by now.

The approach I will use is, and of course this is one of the main points, essentially
the same as in the conic case although some of the ‘details’ are necessarily different.
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Namely, first look at the structure of d + δ in terms of a Lie algebra of vector fields
such that we can give an elliptic regularity result for the associated enveloping
algebra (and develop a full calculus of pseudodifferential operators to go along with
this). This is used to analyse the relative and absolute domains, which have the
same definitions as before, deduce self-adjointness and the Fredholm property and
hence get the Hodge decomposition and identity of L2 cohomology and relative
Hodge cohomology. It turns out that in this case the Hodge cohomologies can
be identified in terms of the usual relative/absolute cohomology and subsequently
in terms of appropriate intersection cohomology. Rather surprisingly perhaps the
spaces (say L2 cohomology) on a fixed manifold for different metrics and different
values of N ≥ 1 turn out to be canonically isomorphic.

So, first we look for a Lie algebra of smooth vector fields with which to describe
the Laplacian and d+δ. If we look at vector fields of finite length they will generally
be singular at the boundary, with the worst singularity being O(ρ−N ) (take N = 2
if you want). So we can look at the vector fields V which are smooth and satisfy

(3) |V |g = O(ρN ).

Since the part ρ2Nh of the metric already gives such an order of vanishing for any
smooth V, this is equivalent to

(4) V ρ ∈ ρNC∞(X) ⇐⇒ V ∈ VNc(X).

Locally, in adapted coordinates, in which x = ρ must always be an admissible
defining function, i.e. one for which (4) holds, this Lie algebra and C∞(X) module
is spanned by

(5) xN∂x, ∂yj
.

It follows that it is the space of all smooth sections of a vector bundle, NcTX, for
which (5) gives a local basis. In the case N = 2 I introduced this Lie algebra long
ago; it depends on the choice of ρ as a trivialization of the normal bundle to the
boundary, but nothing more. For N ≥ 3 it only depends on the choice of ρ modulo
terms O(ρN ) as is clear from (4).

Exercise 22. Can you give a ‘geometric’ description of an N -cusp structure on
a compact manifold with boundary, analogous to the trivialization of the normal
bundle in case N = 2?

Similarly we define the N -cusp cotangent, and form, bundles based on C∞ com-
binations of the forms

(6) dx, ρNdyj

I will denote these bundles NcT ∗X and NcΛX ; note that they depend on more than
N !

Since NcT ∗X is, by definition, the dual of NcTX, a smooth section of the latter,
V ∈ VNc(X), defines a smooth function on the former which is linear on the fibres;
we normalize this by defining σ(V ) to be iV thought of as a linear function. A
function f ∈ C∞(X) similarly defines a smooth function on NcT ∗X which is constant
on the fibres (and we do not put an i in the identification of σ(f) with f in this

sense). Let Diffk
Nc(X) be the space of N -cusp differential operators of order k (at

most). Thus P ∈ Diffk
Nc(X) is an operator, for example on C∞(X), which can be

written as a finite sum of up to k fold products of elements of VNc(X); this one can
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think of as the enveloping algebra of VNc(X) as a Lie algebra and C∞(X) module
(in particular k = 0 factors means the action of f ∈ C∞(X) by multiplication); the

Diffk
Nc(X) clearly form a (n order-)filtered algebra. Moreover, from the fact that

VNc(X) is a Lie algebra

(7) [Diffk
Nc(X), Diff l

Nc(X)] ⊂ Diffk+l−1
Nc (X)

we see that the commutative product in C∞(NcT ∗X) leads to a short exact sequence

(8) Diffk−1
Nc (X) ↪→ Diffk

Nc(X)
σk−→ Pk(NcT ∗X).

Here the quotient space is the space of smooth functions on NcT ∗X which are
homogeneous (polynomials) of degree k on the fibres. The symbol map is de-
termined by the fact that it is multiplicative and our earlier normalization on
C∞(X) = Diff0

Nc(X) and VNc(X).
We can extend these definitions to sections of vector bundles without pain. Either

localize everything, which is a bit painful, or interpret the tensor product in

(9) Diffk
Nc(X ; E, F ) = Diffk

Nc(X) ⊗C∞(X) C
∞(X ; hom(E, F )).

Of course it is important that this defines a space of operators C∞(X ; E) −→
C∞(X ; F ).

Exercise 23. Check that there are no surprises and the symbol extends in the
obvious way and gives rise to a short exact sequence as in (8) but with bundles
inserted appropriately.

As usual, ellipticity means precisely that σk(P ) is invertible off the zero section
of NcT ∗X.

Now we look at d + δ from this point of view.

Lemma 4. For an N -cusp metric (1), d + δ ∈ ρ−N Diff1
Nc(X ; NcΛ∗) is elliptic in

this sense.

Proof. To check that d ∈ ρ−N Diff1
Nc(X ; NcΛ∗) just work out its action on the local

basis of 1-forms (6):

(10) d(adx +

n−1
∑

k=1

bkxNdyk) = x−N (

n−1
∑

j=1

(∂yj
a)xNdyj ∧ dx

+

n−1
∑

k=1

(xN∂xbk + NxN−1bk)dx ∧ xNdyk +

n−1
∑

l,k=1

(∂yl
bk)xNdyl ∧ xNdyk

Remark 2. It is precisely at this point that we see a simplification arising in the
cases N ≥ 2 relative to the conic case, N = 1. Namely in the middle, ‘cross’, term
here the term of order 0, which arises from the x-differentiation of xN in the basis
of forms, vanishes at x = 0 if N > 1. This means that this term will not show up
in the ‘model’ operator we later consider, as we considered the model cone earlier.
For this reason the non-zero eigenvalue problems that appeared for the cone, and
caused most of the computation work, do not show up at all for N > 1. I did say
the cone was the hardest case earlier! It also means that the ‘model operator’ for
d + δ, when we try to look at what happens to leading order at the boundary is
not, or at least should not be thought of, as the operator for the model problem.
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For the latter this xN−1 term would appear, but it is irrelevant to the analysis and
is better dropped. Make of that what you will.

Then we can either check, exactly as before, that Hodge ? is an isomorphism of
NcΛ∗X, which is essentially immediate from the definition, or else that the adjoints
with respect to a measure such as

(11) dg = ρN(n−1)ν, 0 < ν ∈ C∞(X ; Ω),

and non-degenerate fibres inner products, of elements of Diffk
Nc(X ; E, F ) are in

Diffk
Nc(X ; F, E). Anyway, we easily conclude that δ ∈ Diff1

Nc(X ; NcΛ∗).
The argument for ellipticity is the same as before. We can see from (10) that

the symbol of d at (p, ξ), ξ ∈ NcT ∗
p X, is iξ∧ acting on NcΛ∗

pX. The symbol of the
adjoint is the adjoint of the symbol (or use ?) so the symbol of δ is −icξ in terms
of metric contraction. The result is a Clifford action of NcT ∗X on NcΛ∗X, and in
any case is elliptic since its square is diagonal and given by multiplication by the
metric (remember, this is a course on Dirac operators, except I have only talked
about one so far!) �

We want uniform elliptic estimates (and more, we really want a way to write
down the inverse of d + δ). To get these we will work on a double space which
resolves VNc(X). This is supposed to be obtained through iterated blow-up, β :
X2

Nc −→ X2 and be such that we can lift VNc smoothly from either factor of X and
the resulting smooth vector fields are transversal to the lifted diagonal. We also
want the stretched projections πH,Nc = πH ◦ β, H = L, R, to be b-fibrations which
are transversal to the lifted diagonal (among other things this means that the lifted
diagonal is diffeomorphic to X). Let’s try to do it; maybe just sticking to N = 2
would be wise, but I will go on and outline the general case.

Locally our vector fields are xN∂x and ∂yj
. Just as in the conic case we do not

want, in fact cannot, do anything to the tangential ∂yj
vector fields, since they are

already non-degenerate. Basically this resolution problem is again 1-dimensional,
or since we are in the double space, 2-dimensional, just involving x and x′. An
obvious thing to look at is the lift of xN∂x to the space X2

b , which resolves Vb(X).
In the coordinates s = x/x′ x′, yj and y′

j near a point on the lifted diagonal s = 1,

y = y′ in X2
b we know that x∂x = s∂s. (So that the lift of Vb(X) is everwhere

transversal to the diagonal). So of course, xN∂x lifts to (x′)N−1sN∂s. Since s = 1
on the diagonal, this vanishes exactly at x′ = 0 on the lifted diagonal, which is to
say at its boundary. However, we cannot blow-up the boundary of the diagonal,
since the ∂yj

are not tangent to it! The smallest reasonable thing to blow up is

(12) B2 = {x′ = 0, s = 1} ⊂ ff(X2
b).

Exercise 24. Check that this is actually a well-defined submanifold of X2
b which

depends (only) on the choice of cusp structure, i.e. the defining function ρ. Note that
it is a boundary p-submanifold, i.e. is an interior p-submanifold of the boundary
hypersurface ff(X2

b .

Even though the notation is not quite defined, we consider

(13) X2
cu = [X2

b ; B2].

I have not defined the blow up of a boundary p-submanifold such as B but it is
a straightforward generalization of the blow up of a boundary face. We get a new
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boundary face ff and b-map as blow-down map. The main (big) difference is that
this map is not a b-submersion, if fact it is a b-submersion exactly when B is a
boundary face, which it is not here. This is replaced by the fact that

Lemma 5. The Lie algebra Vb(X ; Y ) of vector fields tangent to the boundary faces
of X and to the p-submanifold Y lifts smoothly to [X ; Y ] to span Vb([X ; Y ]) as a
module over C∞([X ; Y ]).

Thus we do in fact know the range of β∗.

Exercise 25. Check this in the particular case of interest here, namely for B2 ⊂ X2
b.

Proposition 6. The cusp algebra Vcu(X) defined by a choice of boundary defining
function ρ ∈ C∞(X) on a compact manifold with boundary lifts, from the right
or left factor, to a space of smooth vector fields on X2

cu (defined of course by the
same choice of ρ) to be transversal to the lifted diagonal, which is an interior p-
submanifold Diagcu ⊂ X2

cu. The left and right stretched projections, πO,cu = πO◦βcu,
O = L, R, are b-fibrations which are transversal to Diagcu .

Proof. That the cusp algebra lifts, we know from Lemma 5. In any case it is a
rather straightforward computation which I will do! We can ignore ∂yj

throughout

and we have only to deal with the one vector field, which starts off as x2∂x. After
we lift it to X2

b it is x′s2∂s in terms of the coordinates x′, s = x/x′ which are valid
near the boundary of the diagonal. We can drop the s2 since it is non-vanishing and
switch from s to t = s−1 which has the virtue of vanishing at B2 = {x′ = 0, t = 0}
and our vector field is a non-vanishing smooth multiple of x′∂t. The lifted diagonal
is y = y′ t = 0 and near it we can use the singular coordinates x′ and t2 = t/x′

(together with y and y′). In terms of these our vector field has become ∂t2 , so
with ∂yj

we do indeed get a set of smooth vector fields transversal to the interior
p-submanifold Diagcu .

So, X2
cu does resolve Vcu(X). Now we need to check that we haven’t gone too far

somehow. So, πR,cu is a well-defined b-map. Why is it a b-submersion? Consider
the vector field x∂x + x′∂x′ . This is in Vb(X2) and so lifts to X2

b to be smooth.
Near B2 it has become

(t − 1)∂t + (x′∂x′ − (t − 1)∂t) = x′∂x′ .

in terms of the coordinates t = s−1 = (x−x′)/x′ and x′. Here the first term is the
lift of x∂x and the second is the lift of x′∂′

x = −s∂s + x′∂x′ in the new coordinates.
Thus it is certainly tangent to B2 and so lifts to be smooth on X2

cu by Lemma 5.
But this means that the vector field to which it lifts pushes forward under πL,cu

(or πR,cu for that matter) to x∂x on X. So in fact (πL,cu)∗ : bTpX
2
cu −→ bTp′X

must always be surjective! Since the image manifold is a manifold with boundary
the additional condition of b-normality is void. Thus πL,cu is a b-fibration. That
this b-fibration is transversal to Diagcu is the statement that the null space of the
(ordinary or b-) differential (πR,cu)∗ contains a complement to the tangent space of
Diagcu at each point. This we already know, since the lifts from the left factor of
elements of Vcu(X) must be killed by πR,cu, and this lift spans such a complement
at each point. �

Now, having done this in the cusp case, N = 2, I may as well go on into the
higher cusp cases. First try N = 3. Then we have x3∂x in place of x2∂x. So, when
we lift it up to X2

cu from the left, we can see from the computation above that in
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the coordinates t2, x′ (and always y, y′) that we get a smooth positive multiple of
x′∂t2 . So, we have to blow up B3 = {t2 = 0, x′ = 0} ⊂ X2

cu. Thus we conclude that

(14) V3c(X) is resolved on X2
3c = [X2

cu; B3].

In fact the same argument clearly works for any N. Proceeding by induction we
can claim that the functions

(15) tN =
x − x′

(x′)N
, x′, y, y′

lift to X2
Nc to give coordinates near the lifted diagonal in which it becomes tN = 0,

y = y′ and such that xN+1∂x lifts from the left factor to be a smooth positive
multiple of x′∂tN

. Then we can define BN+1 = {x′ = 0, tN = 0} and define the next
space as

(16) X2
(N+1)c = [X2

Nc; BN ].

Proposition 7. Proposition 6 carries over to the N-cusp algebra with X2
cu replaced

by X2
Nc.

With this behind us, we can define

(17) Ψk
Nc(X) = {A ∈ Ik(X2

Nc, DiagNc; π
∗

R,NcΩNc); A ≡ 0 at ∂X2
Nc \ ffNc},

where ΩNc = ρ−Nn+1Ωb = ρ−NnΩ.

Exercise 26. I leave it to you to show how to define the operators on sections of
vector bundles.

There are lots of things to say about these operators, and I will say at least some
of them. The first thing is to see that Diffk

Nc(X) ⊂ Ψk
Nc(X). The place to start here

is the identity operator! In local coordinates it can be written

(18) Id u(x, y) =

∫

δ(x − x′)δ(y − y′)u(x′, y′)|dx′dy′|.

To lift the kernel up to X2
b we need to introduce say s = x/x′ as variable in place

of x. Since it is essentially a parameter we can use the fact that the delta ‘function’
is homogeneous of degree −1, so

(19) δ(x − x′) = (x′)−1δ(s − 1) = (x′)−1δ(t).

But the factor of x′ just turns dx′ into dx′/x′ and we get a coefficient b-density:

(20) δ(t)δ(y − y′)|
dx′

x′
dy′| ∈ Ψ0

b(X).

We can continue this way up to X2
Nc to see that

(21) Id = δ(tn)δ(y − y′)|
dx′

(x′)N
dy′| ∈ Ψ0

Nc(X).

Clearly it is elliptic, since it has symbol 1.

Exercise 27. Now use the fact that VNc(X) lifts from the left fact to be smooth

vector fields inn Vb(X
2
Nc) to show that Diffk

Nc(X) ⊂ Ψk
Nc(X).

Proposition 8. The elements of Ψm
Nc(X), for any m ∈ R, define continuous linear

operators on C∞(X).
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Proof. This is an application of the push-forward theorem using the fact that the
stretched projections are b-fibrations; it is also necessary to sort out the behaviour
of the density factors. �

Proposition 9. The Ψk
Nc(X) form an order-filtered asymptotically complete *-

algebra of operators on C∞(X) with multiplicative symbol map giving a short exact
sequence

(22) Ψm−1
Nc (X) ↪→ Ψm

Nc(X) −→ (Sm/Sm−1)(NcT ∗X)

and each A ∈ Ψ0
Nc(X) is bounded on L2(X).

Proof. So, I have left a bit of a hole in the preparation for the product formula – in
particular I don’t quite have the machinery in place to prove even the composition
formula in the boundaryless case, so I will have to talk about that too. So this
whole proof will take a little while – maybe you should bypass it as I will do in the
lecture!

First we consider the composition formula for operators of order −∞, which
of course is part of the claim. The idea here is exactly the same as before. We
want to find a triple product with appropriate properties. This will involve a
bit of an effort. Let’s start with the triple b-product X3

b . We already know that
X3

b maps back under πO, b to X2
b . Now, inside X2

b we have the submanifold B2

that we need to blow up to turn X2
b into X2

cu. So, we consider the inverse image

π−1
O,b(B2) = B2,O for O = F, S, C. Two of the boundary faces of X3

b are mapped

into the front face of X2
b under each of the stretched projections so we actually get

two, intersecting, boundary p-submanifolds as the preimage of B2 from each of the
projections. Somewhere there are some pictures of what is going on!

�

In particular our elliptic construction from the boundaryless case carries over
unchanged.

Proposition 10. If P ∈ Ψk
Nc(X ; E, F ) is elliptic then there exists Q ∈ Ψ−k

Nc (X ; F, E)

such that P ◦ Q − Id ∈ Ψ−∞

Nc (X ; F ) and Q ◦ P − Id ∈ Ψ−∞

Nc (X ; E).

One important point is that, as in the conic case, (x/x′)s is a multiplier on
the space Ψk

Nc(X ; E, F ), although as we shall see, much more is true for N > 1.
Anyway, by conjugating and using ellipticity it follows that

(23) u ∈ L2
g(X ; NcΛ∗), ρN (d + δ)u ∈ L2

g(X ; NcΛ∗) =⇒ u ∈ ρ−
Nn
2 H1

Nc(X ; NcΛ∗)

Here I have put in the weight that comes from the metric. The Sobolev space on
the right is just that based on VNc(X), so u ∈ Hp

Nc(X) just means that VNc(X)ju ⊂
L2

Nc(X) for all j ≤ p. This of course applies to the maximal, ungraded, domain

(24) Dmax =
{

u ∈ L2
g(X ; NcΛ∗); (d + δ)u ∈ L2

g(X ; NcΛ∗)
}

⊂ ρ−
Nn
2 H1

Nc(X ; NcΛ∗)

So, we then want to work out more precisely what this domain, and the various
smaller ones we have defined, D, DA, DR and Dmin are. This turns out to be
fairly straightforward when N ≥ 2 using the finer conjugation property anticipated
above. Namely, for any real τ,

(25) exp(iτ(
1

x
−

1

x′
) is a multiplier on Ψk

cu(X).
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More generally

(26) exp(iτ(x−N − x′−N
) is a multiplier on Ψk

Nc(X).

Exercise 28. Check this by seeing what happens to the function when lifted to X2
Nc;

i.e. show that it is smooth except at the part of the boundary where the kernels
are assumed to vanish rapidly where it only has a singularity of finite order.

Now, the maximal graded domain

(27) D =
{

u ∈ L2
g(X ; Λ∗); du, δu ∈ L2

g(X ; Λ∗)
}

with norm ‖u‖2
D = ‖u‖2

L2 +‖du‖L2 +‖δu‖L2 and the relative and absolute domains

(28)

DR = {u ∈ D; ∃Ċ∞(X ; Λ∗) 3 un → u in L2
g(X ; Λ∗) s.t. dun → du in L2

g(X ; Λ∗)}, DA = ∗DR.

Lemma 6. If k = n−1
2 (so n is odd) and U : Hk

Ho,h0
(∂X ; Λk) −→ D, and V :

H
n−1

2

Ho,h0
(∂X) −→ D such that

(29) Uφ = φ + ρC∞(X ; Λk), V φ = dρ ∧ φ + ρC∞(X ; Λk+1).

Proof. For φ ∈ Hk
Ho,h0

(X), let φ(x) be the representative harmonic with respect to

the varying metric h(x, y, dy, 0). The termss in dx can be suppressed since these
are already O(x2) with respect to the metric. It then follows that Uφ = χφ(x), for
an appropriate cut-off χ, is in D and then we can take V φ = ∗Uφ. �

Basically there is nothing else!

Theorem 2. For a cusp metric as in (1) the graded L2 domain

(30) D = x−
n
2
+1H1

cu(X ; cuΛ∗) + UH
n−1

2

Ho,h0
(∂X) + V UH

n−1

2

Ho,h0
(∂X),

where the closure is with respect to ‖ · ‖D, and the relative domain

(31) DR = x−
n
2
+1H1

cu(X ; cuΛ∗) + UH
n−1

2

Ho,h0
(∂X)

and with this domain, d + δ is a self-adjoint Fredholm operator with consequent
Hodge decomposition

(32) L2(X ; cuΛ∗) = H∗

g (X) ⊕ dDR ⊕ δDR

and null space canonically isomorphic to the L2 deRham cohomology.

Proof. This involves computations similar to, but easier than, those in the conic
case. �
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17. Lecture XVII, 4 November, 2003

Next lecture will be Thursday November 13 (and it will be a short one!)
Last time I constructed a principal bundle associated to any family A ∈ C∞(Y ; Ψk(X ; E, F ))

of elliptic pseudodifferential operators on a compact manifold without boundary, X,
ofr a compact parameter space Y. The structure group of this bundle is G−∞(X ; E)
or G−∞(X ; F ) as the numerical index of the family if negative or positive. Assum-
ing for the same of definiteness that # − ind(A) ≥ 0, the bundle

(1) G−∞(X ; F ) // PA,N

��

Y

has fibre at y ∈ Y

(2) PA,N,y =
{

B ∈ Ψ−∞(X ; E, F ); Ay + B has null space exactly N
}

where N ⊂ C∞(X ; E) is fixed but is chosen arbitrarily with dimension equal to
# − ind(A·).

Essentially by definition, this bundle is trivial if and only if there exists a smooth
map E ∈ C∞(Y ; Ψ−∞(X ; E, F )) such that Ay + Ey is surjective for all y ∈ Y and
has null space N.

Exercise 29. Check this carefully, starting from the definition of triviality of a
principal bundle.

Thus, the triviality of the principal bundle, together with the vanishing of the
numerical index is precisely the obstruction to ‘perturbative invertibility’.

Also recall that I defined

K−1(Y ) = [Y ; G−∞](3)

K−2(Y ) = [Y × S, Y × {1}; G−∞, Id](4)

i.e. K−1(Y ) is the set of homotopy classes of smooth maps into G−∞ (for any
model) and K−2(Y ) is similarly the set of homotopy classes of smooth maps from
Y × S into G−∞ taking Y × {1} to Id . We can also thing of (4) as

(5) K−2(Y ) = [Y ;LG−∞, Id]

where LG−∞ is the loop group:

(6) LG−∞ =
{

F : S −→ G−∞; F (1) = Id
}

.

The definitions (3) and (4) depend on the fact, which is the essential nature of Bott

Periodicity that

(7) Πj(G
−∞) =

{

{0} j even

Z j odd.

Exercise 30. Assuming (7) show that

(8) Πj(LG−∞) =

{

Z j even

{0} j odd

where the higher homotopy groups can be considered as maps into the component
of the identity.
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Exercise 31. What are K−1(Sn) and K−2(Sn)?

I will prove the first part of (7). The first claim is

Lemma 7. G−∞ is connected.

Proof. This is a direct consequence of the fact that for any smoothing operators
A ∈ Ψ−∞(X ; E) the family Id +zA is invertible for A ∈ C \ D where D ⊂ C is
discrete (i.e. countable and without points of accumulation). We can either use
the Fredholm determinant to prove this or proceed directly. Fix a value z̄ of z.
If Id +zA is invertible then we know it has a bounded inverse as an operator on
L2(X ; E) and by the openness of the set of invertible operators (i.e. convergence of
the Neumann series) it remains invertible for |z − z̄|‖A‖‖(Id−z̄A)−1‖ < 1. Thus D
is closed. If Id +z̄A is not invertible then we use finite rank approximation to write
A = A1 + A2 where A1 is a finite rank smoothing operator and A2 has small norm,
for instance |z̄|‖A2‖L2 < 1

2 . Then Id +zA2 has inverse Id +B(z) for |z− z̄| < ε with
B(z) holomorphic with values in the smoothing operators and we are reduced to
considering

(Id +B(z))(Id +zA) = Id +A′(z), A′(z) = (Id +B(z))zA1

Thus A′(z) has finite rank, at most the rank of A1, and is holomorphic near z so
IdN +A′(z) is invertible for 0 < |z − z̄| < ε′ for some ε > 0 and D is discrete.

Thus if Id +A is invertible then it can be connected to the identity by an inverible
family Id +z(s)A. �

Exercise 32. Use such a finite rank approximation to define the Fredholm determi-
nant det(Id +A) as an entire function of A, extending the usual definition for finite
rank operators, such that (Id +A)−1 exists if and only if det(Id +A) 6= 0 with the
usual multiplicative and differential properties

(9)

det((Id +A)(Id +B)) = det(Id +A) det(Id +B),

d

dz
det(Id +zA) = det(Id +zA) Tr(Id +zA)−1A) where det(Id +zA) 6= 0.

The second, and more substantial, part of (7) is

Proposition 11. If F : S −→ G−∞(X ; E) is a smooth loop then

(10) w(F ) =
1

2πi

∫

S

Tr

(

F (θ)−1 dF (θ)

dθ

)

dθ ∈ Z

there exists a smooth map

(11) F̃ : [0, 1] × S −→ G−∞(X ; E) with F̃ (0) = F and F̃ (1) = (Id−π) + zw(F )π

where π is a projection of rank one.

We start off with a simple case, where the family is actually affine.

Lemma 8. If A, B are N×N complex matrices and A+zB is invertible on |z| = 1
then, for |z| = 1, it is homotopic to (Id−π) + zπ where π is a projection of rank

w(A + zB).

Proof. If A is not invertible, we may perturb the family slightly and so deform it to
(A+t Id)+zB where the constant term is invertible. Then, using the connectedness
of GL(N), which follows from the proof above, we may deform away the constant
term and replace the family by Id +zB′, B′ = (A + t Id)−1B. On the circle z = eiθ,
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dz = ieiθdθ so for a family which is holomorphic near the circle the integral in (10)
can be written as a contour integral

(12) w(F ) =
1

2πi

∫

|z|=1

Tr

(

F (θ)−1 dF (z)

dz

)

dz

In this case dF/dz = B and the integral, without the trace, becomes

(13) M =
1

2πi

∫

|z|=1

(Id +zB′)−1B′dz

which is in fact the projection onto the span of the generalized eigenspaces of B for
outside the unit circle (and with null space the span of those inside). We don’t need
all of this information but we do need to see that M is a projection (or perhaps
better to say an idempotent, M 2 = M). Indeed the square can be written as the
double integral

(14) M2 =
1

(2πi)2

∫

|z|=1

∫

|z′|=1+ε

(Id +zB′)−1(Id +z′B′)−1(B′)2dzdz′

for ε > 0 small (using Cauchy’s theorem). Now the resolvent identity can be written

(15) (Id +zB′)−1(Id +z′B′)−1B′ = (z′− z)−1
(

(Id +zB)−1 − (Id +z′B′)
)

, z 6= z′.

Inserting this into (14), one of the integrals can be carried out for each term. Indeed
the second is holomorphic in |z| ≤ 1 so integrates to zero, while for the first has a
simple pole in z′ at z′ = z and so the z′ integral may be replaced by the residue
which is just M.

Furthermore M and B′ commute, since B′ commutes with (Id +zB′)−1 and
(16)
(Id +zB′)−1M is holomorphic in |z| ≥ 1, (Id +zB′)−1(Id−M) is holomorphic in |z| ≤ 1.

This involves an argument similar to that above, to prove the first write

(Id +zB′)−1M =
1

2πi

∫

|s|=1

(Id +zB′)−1(Id +sB′)−1B′ds

=
1

2πi

∫

|s|=1

(s − z)−1
(

(Id +zB′)−1 − (Id +sB′)−1
)

ds.

Here the first term vanishes (for |z| > 1), by Cauchy’s theorem, and the second is
holomorphic. The other case is similar.

Finally, we conclude that under the deformation B′
t = t(Id−M)B′ + M(tB′ +

2(1 − t)) (Id +zB′
t)

−1 remains holomorphic near |z| = 1 and results in a family as
desired. �
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18. Lecture XVIII, 13 November, 2003

Handwritten notes: Pages 1-11

19. Lecture XIX, 18 November, 2003

Handwritten notes: Pages 1-10
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