LECTURE NOTES FOR 18.157, FALL 2009

RICHARD MELROSE

Abstract.

CONTENTS

Introduction

1. Lecture 4: 22 September, 2009

1 1

INTRODUCTION

1. Lecture 4: 22 September, 2009

What I did today.

(1) Recalled the basic properties of pseudodifferential operators that I have shown so far.

First I showed that if $a \in S^{-\infty}(\mathbb{R}^{2n}; \mathbb{R}^n)$ then the convergent integral

(1)
$$I(a)u(z) = (2\pi)^{-n} \int e^{i(z-z')\cdot\zeta} a(z,z',\zeta)u(z')dz'd\zeta, \ u \in \mathcal{S}(\mathbb{R}^n)$$

defines a continuous linear map $A: \mathcal{S}(\mathbb{R}^n) \longrightarrow \mathbb{S}(\mathbb{R}^n)$ and for each $m \in \mathbb{R}$ there exists L such that

(2)
$$||I(a)u||_{p} \leq C_{m,L} ||a||_{p+L,m} ||u||_{p+L}$$

Here $\|\cdot\|_p$ are the norms on $\mathcal{S}(\mathbb{R}^n)$ and $\|a\|_{q,m}$ the norms on $S^m(\mathbb{R}^{2n};\mathbb{R}^n)$.

Then I defined $\Psi_{\infty}^{m}(\mathbb{R}^{n})$ by continuity using these estimates so by definition it is the range of I on $S^{m}(\mathbb{R}^{2n};\mathbb{R}^{n})$ as a space of continuous linear operators on $\mathcal{S}(\mathbb{R}^{n})$.

The main result is left-reduction, that restricted to symbols which are independent of the z' variable this I gives an isomorphism – which I am calling left quantization

(3)
$$q_L: S^m(\mathbb{R}^n; \mathbb{R}^n) \longrightarrow \Psi^m_{\infty}(\mathbb{R}^n).$$

I showed that this is a bijection and declared it to be a topological isomorphism by using it to transfer the topology from S^m to Ψ_{∞}^m . The inverse of q_L is the left symbol map σ_L .

- (2) Formal adjoint defines an isomorphism of $\Psi^m_{\infty}(\mathbb{R}^n)$.
- (3) Composition as operators on $\mathcal{S}(\mathbb{R}^n)$ gives a non-commutative product

(4)
$$S^m(\mathbb{R}^n;\mathbb{R}^n) \times S^{m'}(\mathbb{R}^n;\mathbb{R}^n) \longrightarrow S^{m+m'}(\mathbb{R}^n;\mathbb{R}^n), \ (a,b) \longmapsto \sigma_L(q_L(a) \circ q_L(b))$$

and that this product has an asymptotic expansion in terms of the commutative product

(5)
$$\sigma_L(AB) = \sum_{\alpha} \frac{(-i)^{|\alpha|}}{\alpha!} D_z^{\alpha} \sigma_L(A) \cdot D_{\zeta}^{\alpha} \sigma_L(B).$$

Here the terms in the sum are of order $m + m' - |\alpha|$.

(4) Today I showed the uniform ellipticity of $\sigma_L(A)$ is equivalent to the existence of a two-sided inverse modulo errors of order $-\infty$.

A symbol $a \in S^m(\mathbb{R}^{2n};\mathbb{R}^n)$ is uniformly elliptic of order m if there exists c>0 such that

(6)
$$|a(t,\zeta)| \ge c|\zeta|^m \text{ in } |\zeta| > 1/c \ \forall \ t \in \mathbb{R}^p$$

So, if $A \in \Psi^m(\mathbb{R}^n)$ then (6) for $\sigma_L(A)$ (and this is equivalent to the the same result for $\sigma_R(A)$) is equivalent to the existence of $B \in \Psi_{\infty}^{-m}(\mathbb{R}^n)$ such that

(7)
$$AB - \mathrm{Id}, BA - \mathrm{Id} \in \Psi_{\infty}^{-\infty}(\mathbb{R}^n).$$

(5) Next I defined the essential support of a symbol and the local elliptic set of a symbol.

ess-supp
$$(a) = \{(\bar{z}, \bar{\zeta}) \in \mathbb{R}^n \times \mathbb{S}^{n-1}; \exists \epsilon > 0 \text{ s.t.} \sup_{\substack{|z-\bar{z}| \le \epsilon, |\frac{\zeta}{|\zeta|} - \bar{\zeta}| \le \epsilon} |a(z, \zeta)(1+|\zeta|)^{-N} < \infty \ \forall \ N\}^{\complement}$$

$$\operatorname{Ell}_m(a) = \{(\bar{z}, \bar{\zeta}) \in \mathbb{R}^n \times \mathbb{S}^{n-1}; \exists \epsilon > 0 \text{ s.t.} \inf_{\substack{|z-\bar{z}| \le \epsilon, |\zeta| \ge 1/\epsilon} |a(z, \zeta)||\zeta|^{-m} > 0.$$

Certainly $Ell(a) \subset ess-supp(a)$. For pseudodifferential operators we define

(9)
$$WF'(A) = \text{ess-supp}(\sigma_L(A)) = \text{ess-supp}(\sigma_R(A)),$$
$$\text{Ell}_m(A) = \text{Ell}_m(\sigma_L(A)) = \text{Ell}_m(\sigma_R(A)), \ \Sigma_m(A) = \text{Ell}_m(A)^{\complement}.$$

Lemma 1. For any $A \in \Psi_{\infty}^{m}(\mathbb{R}^{n}), B \in \Psi_{\infty}^{m'}(\mathbb{R}^{n})$

(10)

$$WF'(AB) \subset WF'(A) \cap WF'(B),$$

$$Ell_{m+m'}(AB) = Ell_m(A) \cap Ell_{m'}(B),$$

$$\Sigma_{m+m'}(AB) = \Sigma_m(A) \cup \Sigma_{m'}(B).$$

(6) Then, after correction, I defined for any $u \in \mathcal{C}_c^{-\infty}(\mathbb{R}^n)$

(11)
$$WF(u) = \bigcap_{A \in \Psi_{\infty}^{0}(\mathbb{R}^{n}); Au \in \mathcal{C}^{\infty}(\mathbb{R}^{n})} \Sigma(A).$$

This is the same as saying $(\bar{z}, \bar{\zeta}) \notin WF(u)$ iff there exists $A \in \Psi_{\infty}^{m}(\mathbb{R}^{n})$ such that $Au \in \mathcal{C}^{\infty}(\mathbb{R}^{n})$ and $(\bar{z}, \bar{\zeta}) \in Ell(A)$.

(7) Finally I proved the easy half of

Theorem 1. If $u \in \mathcal{C}^{-\infty}(\mathbb{R}^n)$ then $(\bar{z}, \bar{\zeta}) \notin WF(u)$ iff there exists $\phi \in \mathcal{C}^{\infty}_c(\mathbb{R}^n)$ with $\phi(\bar{z}) \neq 0$ and $\epsilon > 0$ such that

(12)
$$\sup_{\substack{|\frac{\zeta}{|\zeta|}-\bar{\zeta}|\leq\epsilon,|\zeta|\geq 1}} |\zeta|^N |\widehat{\phi u}(\zeta)| < \infty \ \forall \ N.$$

18-157-F09

Proof. That (12) implies that $(\bar{z}, \bar{\zeta}) \notin WF(u)$ according to the definition (11) requires us to construct an operator $A \in \Psi^0_{\infty}(\mathbb{R}^n)$ such that $(\bar{z}, \bar{\zeta}) \notin \Sigma_0(A)$, meaning that $(\bar{z}, \bar{\zeta}) \in Ell_0(A)$ but $Au \in \mathcal{C}^{\infty}(\mathbb{R}^n)$. So, simply choose a cutoff $\psi \in \mathcal{C}^{\infty}_c(\mathbb{R}^n)$ with support in $|\zeta| \leq 1$ and which is equal to 1 in $|\zeta| \leq \frac{1}{2}$. Then consider

(13)
$$a = \phi(z')\psi(\epsilon^{-1}(\frac{\zeta}{|\zeta|} - \bar{\zeta}))(1 - \psi(\zeta)) \in S^0(\mathbb{R}^n; \mathbb{R}^n).$$

This is smooth since the last term keep the support away from $\zeta = 0$ where the middle term is singular. The symbol estimates follow easily from the fact that in $|\zeta| > 1$ it is homogeneous of degree 0 in ζ . Moreoverl $(\bar{z}, \bar{\zeta}) \in \text{Ell}_0(a)$. So if we take $A \in \Psi^0_{\infty}(\mathbb{R}^n)$ to have *right* symbol *a* then $(\bar{z}, \bar{\zeta}) \in \text{Ell}_0(A)$ and directly from (12)

(14)
$$\widehat{Au}(\zeta) = \psi(\epsilon^{-1}(\frac{\zeta}{|\zeta|} - \bar{\zeta}))(1 - \psi(\zeta)\widehat{\phi u}(\zeta) \longrightarrow Au \in \mathcal{C}^{\infty}(\mathbb{R}^n).$$

Department of Mathematics, Massachusetts Institute of Technology $E\text{-}mail \ address: rbm@math.mit.edu$