
CHAPTER 9

Homotopy invariance of the index

Lecture 9: 18 October, 2005

Let me first improve a little on the parametrix constructed in the case of an
elliptic pseudodifferential operator.

Proposition 18. If A ∈ Ψm(X;E,F ) is elliptic then there exists B ∈ Ψ−m(X;F,E)
such that

(L9.1) BA = IdE −π, AB = IdF −π′

where π ∈ Ψ−∞(X;E) is projection onto the null space of A and π′ is projection
onto the null space of B which is a complement to the range of A. Choosing inner
products and smooth densities one can further arrange that π∗ = π and (π′)∗ = π′.

Proof. We know already, as a consequence of the assumption of ellipticity,
that there exists a parametrix B0 ∈ Ψ−m(X;F,E) such that B0A = Id−R, AB0 =
Id−R′ with R and R′ smoothing operators on the appropriate bundles, E and F.
Since the finite rank smoothing operators are dense in the smoothing operators, we
can find a finite rank operator RF such that R̃ = R − RF has L2 norm less than
one. Thus (Id−R̃)−1 exists as a bounded operator on L2(X;E) and is of the form

Id−S̃ with S̃ ∈ Ψ−∞(X;E). Composing on the right with this operator,
(L9.2)

B′A = (Id−S̃)(Id−R) = (Id−R̃)−1(Id−R̃−RF ) = Id−(Id−S̃)RF = Id−SF , B′ = [(Id−S̃)B0],

where SF ∈ Ψ−∞(X;E) also has finite rank. On the null space of SF , which has
finite codimension, A is injective, since B′ inverts it. It also follows from (L9.2)
that the null space of A is contained in the null space of Id−SF , which is finite
dimensional. Thus we may choose a finite dimensional subspace U ⊂ C∞(X : E)
which complements null(SF )+(A) in C∞(X;E). Setting D = null(SF )+U it follows
that

(L9.3) C∞(X;E) = D + null(A)

and that A : D −→ A(D) = A(null(SF ) + A(U) ⊂ C∞(X;F ) is injective. Let
V ⊂ C∞(X;F ) be a complement to A(D); thus V is finite-diemnsional and in
terms of this, and the decomposition (L9.3),

(L9.4) A =

(

A 0
0 0

)

Then we may simply define B to be the inverse of A on A(D) and to be zero on
V. Note that B differs from B′, which inverts A on A(null(SF )) by a finite rank
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smoothing operator and BA = Id−π where π is the projection onto null(A) which
vanishes on D and that AB = Id−π′ where π′ is the identity on V and vanishes
on A(D). Thus we have arrived at (L9.1).

If we give E and F Hermitian inner products and choose a positive smooth
density on X then we may consider the effect of replacing D in the discussion
above by null(A)⊥. Certainly null(A)⊥ ∩D has finite codimension in null(A)⊥ and
the same codimension in D. We may replace D by null(A)⊥ in the discussion above
and choose V to be A(null(A)⊥)⊥. This ensures that π∗ = π and (π′)∗ = π′. �

Now observe that for a finite rank, smoothing, projection Tr(π) is equal to its
rank. Thus, with B the ‘generalized inverse’ of Proposition 18 we find that

(L9.5) ind(A) = Tr(π)− Tr(π′) = Tr(IdE −BA)− Tr(IdF −AB).

Proposition 19. For any parametrix, B ∈ Ψ−m(X;F,E) of an elliptic ele-
ment A ∈ Ψm(X;E,F )

(L9.6) ind(A) = Tr(IdE −BA)− Tr(IdF −AB).

Proof. Denote the generalized inverse of Proposition 18, for which (L9.5)

holds, as B̃. Then for a parameterix as in the statement, C = B−B̃ ∈ Ψ−∞(X;F,E)

and Bt = B̃ + tC is a smooth family of parametrices for t ∈ [0, 1] with B0 = B̃ and
B1 = B. Thus it suffices to show that the right side in (L9.6) is constant in t. Since

(L9.7)
d

dt
(Tr(IdE −BtA)− Tr(IdF −ABt)) = Tr(AC)− Tr(CA) = 0

since

Lemma 18. For any C ∈ Ψ−∞(X;F,E) and A ∈ Ψm(X;E,F )

(L9.8) Tr(AC) = Tr(CA).

Proof. If Ci −→ C in Ψ−∞(X;F,E) then ACi ←→ AC and CiA −→ CA
in Ψ−∞(X;F ) and Ψ−∞(X;E) respectively. Since we may choose the Ci to be of
finite rank, it suffices to prove (L9.8) for finite rank smoothing operators. Since
the identity is linear in C it is enough to consider the case where C has rank 1,
Cf = v(f)w where v(f) =

∫

X
v ·f for some v ∈ C∞(X;F ′⊗ΩX) and w ∈ C∞(X;E)

is fixed. Then AC and CA are also of rank 1 (or 0)

(L9.9) AC(f) = v(f)Aw, CA(g) = v(Ag)w

and

(L9.10) Tr(AC) =

∫

X

v ·Aw = Tr(CA).

�

�

From this we deduce that

Proposition 20. The index is a (smooth) homotopy invariant of elliptic op-
erators.
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Proof. Consider a smooth family of elliptic operators At ∈ C
∞([0, 1];Ψm(X;E,F )),

(the argument works equally well if we just assume continuity in t). Then, as shown
above, we may construct a smooth family of parametrices Bt ∈ C

∞([0, 1];Ψ−m(X;F,E).
Thus BtAt− IdE and AtBt− IdF are both smooth families of smoothing operators.
It follows from (L9.6) that the index itself depends smoothly on t ∈ [0, 1]. However
it takes integer values and so is constant. �

Since the index is homotopy invariant we can change the lower order terms
freely and leave the index unchanged. Thus ind(A) actually only depends on σ(A) ∈
C∞(S∗X; hom(E,F )) since it two operators A, A′ have the same symbol then (1−
t)A + tA′ has constant symbol and hence remains elliptic, so the ind(A) = ind(A′).

In fact even some of the information in the symbol is irrelevant for the index
and to state the index theorem we eliminate this extraneous data by passing to a
topological object.

Proposition 21. For any compact manifold Y (of positive dimension) and
any bundle G over Y

(L9.11) K−1(X) = [X;G−∞(Y ;G)]

the set of smooth homotopy classes of smooth maps, is an Abelian group naturally
independent of the choice of Y and G.

Proof. We know that we may deform a smooth map F : X ←→ G−∞(Y ;G)

to be of the form Id−F̃ with F̃ of uniformly finite rank, i.e. acting on a fixed finite-
dimensional subspace of C∞(Y ;G). Choosing a basis of this space, this reduces the

map to F̃ : X −→M(N, C), Id−F̃ ∈ C∞(X; GL(N, C).
Consider especially the case Y = S, G = C. Then we may identify M(N, C),

the algebra of N ×N matrices, with the operators on finite Fourier series

(L9.12) M(N, C) ∋ {ajk}
N
1 7−→ a(θ, θ′) =

1

2π

N
∑

j,k=1

ajkeijθe−ikθ′

,

a

(

N
∑

p=1

upe
ipθ

)

=
∑

k

(

∑

l

aklul

)

eikθ.

Combined with the discussion above, this allows us to deform F to the finite rank
perturbation F̃ and then embed into G−∞(S) :

(L9.13) [X;G−∞(Y,G)] 7−→ [X;G−∞(S)].

Note that the homotopy class of the image is independent of the basis chosen, since
GL(N, C) is connected. Similarly, it does not depend on N, increasing it results in
a homotopic map.

This construction is reversible, so proving the first part of the proposition.
So, this is just a consequence of the possibility of finite rank approximation.

In standard topological approaches K−1(X) is defined simiply by the stabilization
of maps in GL(N, C), we ‘avoid’ this by passing to G−∞. Note that G−∞ is like
GL(N, C), as non-commutative as can be. Nevertheless K−1(X) is an Abelian
group with the product induced by the product in G−∞. Namely, after retracting
both Fi ∈ C

∞(X;G−∞) to F̃i ∈ C
∞(X; GL(N, C)) we may embed GL(N, C) as the
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upper left corner in GL(2N, C) as 2×2 matrices with entries in M(N, C) (stabilized
by the identity in the lower right corner) and then we may rotate using

(L9.14)

(

cos θ − sin θ
sin θ cos θ

)(

F̃ 0
0 Id

)(

cos θ sin θ
− sin θ cos θ

)

=

(

F̃ 0
0 Id

)

at θ = 0,

(

Id 0

0 F̃

)

at θ = π/2.

This allows us to deform F̃2 until it commutes with F̃1. Thus the product is com-
mutative. �

Lemma 19. For any compact manifold with corners we may embed K−1(X) 7−→
K−1(X × S) as the subgroup of homotopy classes of S-constant maps and then
K−1(X × S) splits as a direct sum of groups

(L9.15) K−1(X × S) = K−1(X)⊕K−2(X)

where

(L9.16) K−2(X) = [X × S,X × {1}, G−∞(Y ;G), Id]

may be identified as the homotopy classes of pointed maps.

Note that the identification (L9.15) can be seen at the level of maps as

(L9.17) [f ] 7−→ [f1] + [f2], f1(x, θ) = f(x, 1), f2(x, θ) = f(x, 1)−1f(x, θ)

which is clearly an isomorphism at the level of maps.

Proof. The map induced by (L9.17) gives an isomorphism (L9.15) since under
homotopy of f both f1 and f2 undergo homotopies within their respective classes
of maps, constant and pointed. �

There are other useful representations of K−2(X). One that will occur later
corresponds to maps which are not only ‘pointed’ in the sense that f(x, 1) = Id
but are flat at this submanifold, that is they differ from the constant, identity, map
by a map into Ψ−∞(Y ;G) which vanishes to infinite order at X × {1}. Namely, if
F : X × S −→ Ψ−∞(Y ;G) defines Id+F : X × S −→ G−∞(Y ;G) and F (x, 1) = 0
then if φ ∈ C∞(S) has 0 ≤ φ ≤ 1 and φ(θ) = 1 in |θ−1| ≤ ǫ, φ(θ) = 0 if |θ−1| > 2ǫ
for ǫ > 0 small enough,

(L9.18) Id+(1− ρ)F : X × S −→ G−∞(Y ;G)

is homotopic to Id+F.

Definition 5. The (smooth, flat, pointed) loop group, G−∞

(1) (Y ;G), of G−∞(Y ;G)

is the space of Schwartz maps
(L9.19)

G−∞

(1) (Y ;G) =
{

a ∈ bS(R; Ψ−∞(Y ;G)) s.t. (Id +a(t)) ∈ G−∞(Y ;G) ∀ t ∈ R
}

.

Lemma 20. For any compact manifold Y and complex vector bundle G over Y,
G−∞

(1) (Y ;G) is a topological group with the topology inherited from bS(R; C∞(Y 2; Hom(G)⊗

ΩY ).
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Proof. Since we already know that G−∞(Y ;G) is a topological group, this is
straightforward. In fact G−∞

(1) (Y ;G) is an open subset of bS(R; C∞(Y 2; Hom(G)⊗

ΩY ), since invertibility in G−∞(Y ;G) is the same as invertibility on L2(Y ;G).
Composition and inversion are continuous, since the are continuous on G−∞(Y ;G).

�

The smooth map R ∋ t −→ exp

(

i t

1+t2)
1

2

π

)

identifies the complement of 1 in

S with R. Using this and the deformation above, we may identify

(L9.20) K−2(X) = [X;G−∞

(1) (Y ;G)],

since this is just a restatement of flatness at the submanifold X × {1}.
Thus, essentially by definition, G−∞(Y ;G) and G−∞

(1) (Y ;G) are classifying

spaces for odd and even K-theory, respectively. Later I will reinterpret G−∞

(1) (Y ;G)

as the ‘symbol group’ for elliptic Toeplitz operators on the circle (stabilized by hav-
ing values in the smoothing operators on Y ). This will lead to an exact classifying
sequence for K-theory of the form

(L9.21) G−∞(S× Y ;G) −→ ∗ −→ G−∞

(1),0(Y ;G)

where ∗ is a contractible group (a group of invertible Toeplitz perturbations of
the identity) and the extra ‘0’ on the loop group means the component of the
identity, on which the index vanishes. This is closely related to Bott periodicity.
The sequence in (L9.21) is essentially the symbol sequence for Toeplitz operators,
as a subalgebra of the pseudodifferential operators on the circle.
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